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Abstract
Computational tools for the analysis of protein data and the prediction of biological

properties are essential in life sciences and biomedical research. Here, we introduce

ProtDCal-Suite, a web server comprising a set of machine learning-based methods

for studying proteins. The main module of ProtDCal-Suite is the ProtDCal software.

ProtDCal translates the structural information of proteins into numerical descriptors

that serve as input to machine-learning techniques. The ProtDCal-Suite server also

incorporates a post-processing optional stage that allows ranking and filtering the

obtained descriptors by computing their Shannon entropy values across the input set

of proteins. ProtDCal's codification was used in the development of models for the

prediction of specific protein properties. Thus, the other modules of ProtDCal-Suite

are protein analysis tools implemented using ProtDCal's descriptors. Among them

are PPI-Detect, for predicting the interaction likelihood of protein–protein and

protein–peptide pairs, Enzyme Identifier, for identifying enzymes from amino acid

sequences or 3D structures, and Pred-NGlyco, for predicting N-glycosylation sites.

ProtDCal-Suite is freely accessible at https://protdcal.zmb.uni-due.de.
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1 | INTRODUCTION

The analysis of protein data and the prediction of protein
properties are of fundamental importance in modern Molec-
ular Biology. Subjects such as the elucidation of protein–
protein interaction networks, protein function prediction,
and computational drug design, all benefit from massive
computational analysis of the known protein data to extrapo-
late new knowledge of biological function.1–4 The numerical
encoding of raw protein sequences or structural data plays
an important role for the development of robust prediction
tools based on machine-learning techniques.

In this context, ProtDCal is a software package that trans-
forms protein sequences or 3D-structures into general-purpose
numerical descriptors, accounting for both global and local
information.5 Due to its complementary performance with
respect to other well-established tools in the field like PROF-
EAT6 and PseAcc7 (later extended to Pse-in-one8), ProtDCal
has been used in a number of studies.9–19 Notable among them
are the modeling of posttranslational modifications,14 the pre-
diction of protein enzymatic function,15 the prediction of anti-
microbial activity in peptides,16 the determination of residues
critical for protein function,17 and the prediction of stability
changes upon mutations.18 Very recently, ProtDCal was
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enhanced with a procedure for encoding protein pairs, which
allows targeting the protein–protein interaction identification
problem.19

Here, we present ProtDCal-Suite, a versatile platform for
granting web access to the wealth of encoding approaches
implemented within ProtDCal, as well as to several protein
analysis tools developed using ProtDCal's descriptors.
Currently, ProtDCal-Suite allows predicting the enzyme-
like character of proteins (Enzyme Identifier)15 and N-
glycosylation (Pred-NGlyco) sites5,14 as well as evaluating
the likelihood of protein–protein interactions (PPI-Detect).19

Recently, a tool for the prediction of methylation sites
(MethylSight)20 was also incorporated by us in ProtDCal-
Suite. These applications of ProtDCal are useful on their own
right, but also illustrate the capabilities of ProtDCal-derived
features for novel and diverse protein analysis tasks.

2 | RESULTS

ProtDCal-Suite consists of a main module (ProtDCal) and a
set of secondary modules that provide access to machine
learning-based tools. These applications are used to predict
specific protein functions and were created using ProtDCal
descriptors. Next, we describe the generalities of the suite
and the available tools.

2.1 | The ProtDCal-Suite

The graphical design of ProtDCal-Suite is highly intuitive
(Figure 1). Each tool has its own interface but shares a simi-
lar layout for quick familiarization by users. We documented
all individual tools with help content and usage examples.
Extended documentation and a tutorial, explaining the
protein-encoding features of ProtDCal, are also available.
Template python scripts allow remotely accessing the web
services and parsing the output data. This way, users can
also submit jobs without using the web interface. This fea-
ture is valuable for remotely invoking the server services or
for integrating the calculation of descriptors into custom
third-party workflows.

2.1.1 | ProtDCal-Suite input

All the predictive tools implemented in ProtDCal-Suite accept
input files containing the sequence information of proteins in
FASTA format (Enzyme Identifier, PPI-Detect, MethylSight
and Pred-NGlyco) and/or structural information in PDB for-
mat (Enzyme Identifier). In the main module (ProtDCal), the
user can also specify options for the calculation of protein
descriptors via the web interface. In the documentation of the
interfaces for the different tools within ProtDCal-Suite we
provide information about the input formats and offer

examples for the submission of jobs. Besides the input data,
the user enters a job name and (optionally) an email address
to receive information about the progress of the job. Using
the identification code (ID) assigned to the job, the user can
follow its status in the computing queue and subsequently
retrieve the results of the calculations.

2.1.2 | ProtDCal-Suite output

Once a job is completed, there are two main output inter-
faces depending on whether the used tool was (1) ProtDCal
or (2) any of the ProtDCal-based applications. In the first
case, the output is a download link to access the file con-
taining the complete descriptor matrix. In addition, the out-
put interface permits the user to post-process the computed
descriptors using an unsupervised feature selection approach
based on Shannon Entropy (see section Analysis of
ProtDCal´s outcome). The use of Shannon Entropy allows
for a preliminary reduction of the dimensionality of the
descriptor matrix. For ProtDCal-based applications, the pre-
dictions are visualized directly in the web, using a tabular
form. All the results can be downloaded in CSV format.

2.2 | ProtDCal

ProtDCal is a computational package5 for encoding the
sequences and structures of proteins into numerical descrip-
tors. These descriptors are the input to machine-learning tech-
niques (artificial neural networks,21 support vector machine,22

and random forest,23 among others) used for the develop-
ment of novel predictors of protein functions and proper-
ties. ProtDCal splits the protein into different residue
groups. Then, the contributions of the residues in each group
are aggregated using diverse descriptive statistics (such as
averages, variance, minimum or maximum values). This
aggregation gives rise to a large variety of scalar descriptors,
each of which represents local or global properties of the pro-
tein. The resulting vector is applicable to data mining prob-
lems such as protein classification, similarity analysis, and
function prediction.

2.2.1 | ProtDCal steps for calculating a
protein descriptor

Figure 2 illustrates the process of obtaining the descriptor
FD_AC2_GLY_Ar for the human prion protein fragment
described by the PDB entry 1OEH27 with sequence:
HGGGTGQP. The notation used in ProtDCal to label the
final descriptors directly refers to the options chosen by the
user in the input step. A combinatorial algorithm composed
of four steps (Figure 2, top), each with several options (that
can be defined by the user) is implemented in ProtDCal.
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The program computes all the combinations of defined
options, thus producing one individual descriptor from
each combination. The combination of the selected indices
(In), vicinity operators (VO), groups (Gp), and aggregation
operators (AO) results in a large set of descriptors for each
protein. All these descriptors are univocally identified fol-
lowing the convention: In_VO_Gp_AO. In the example
shown in Figure 2, the options selected to generate the
descriptor are highlighted in red.

Next, we briefly describe, step by step, the general pro-
cess of calculating the protein descriptors using ProtDCal,
for the human prion protein fragment shown in Figure 2.

Step 1: Residue codification (indices). ProtDCal has
implemented a list of indices (Tables S1–S4), mostly extracted
from the AAindex database28 that represent several structural
and chemical physical properties of amino acids. For each resi-
due in the protein, according to the indices selected by the user,
an array of numerical values is created. This list of indices is

FIGURE 1 Main interface
of ProtDCal-Suite
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then used to encode the residues in the protein in order to
obtain sequence-based and 3D-structure protein descriptors.

In the example shown in Figure 2, we use the folding
degree (FD) as residue index. FD is a geometrical parame-
ter,29 which significantly correlates with the folding rate
constant and the average of the logarithm of the folding
degree (lnFD) along all the residues in the protein.

lnFDi = −

PN

j;jj− ij>1
j j− i j =d3ij

N−x

where d is the spatial Euclidian distance, N the length of the
protein, and x a parameter that takes value 2 for terminal res-
idues and 3 for all the others. In the example, FD is selected
as index to provide an initial numerical characterization of
all residues in the protein. In addition to the folding degree,
more than 30 geometrical and chemical–physical indices
(e.g., hydrophobicity, number of contacts, molar weight, sol-
vent accessible surface area) are implemented in ProtDCal,
which results in a great variability of the information cap-
tured by different descriptors.

Step 2: Modification by vicinity. Here, the numeric
values in each array of index values are modified according
to the values of neighboring residues within the sequence.
Different definitions of “neighborhood” result in several
potential vicinity operators (Table S5). The application of
vicinity-modification operators to the values of a specific
index array allows to include information in the final
descriptor that reflects the ordering of the amino acids
within the protein.

In the example of Figure 2, the autocorrelation operator
of order 2 (AC2) is used to modify the initial FD values of
each residue. This is achieved by incorporating information
of the values from residues separated by two amino acids
along the sequence. The operator is formulated as:

FD_AC2i =FDi*FDi−k +FDi*FDi+ k

where i represents the i-th residue in a protein and
k corresponds to the order of the autocorrelation.

Step 3: Grouping. Subarrays of groups of residues are
formed, according to a set of grouping criteria implemented
in ProtDCal5 (Tables S6–S8). Among them, the entire pro-
tein forms the largest group, while the shortest group could
contain a single type of residue. Such splitting of informa-
tion in the amino acid sequence results in highly specific
descriptors applicable to various protein analysis-related
problems. In the example shown in Figure 2, the group is
formed by all glycine residues (GLY) in the protein.

Step 4: Aggregation operators. Finally, an aggregation
operator is applied to the columns of each matrix obtained
after grouping, to transform such matrix into a final numeric
descriptor. Available aggregation operators include the p-norms
of orders p = 1 to p = 3,30 central-tendency measures (geo-
metric, average, and harmonic means, among others), disper-
sion and distribution parameters (kurtosis, variance, quartiles,
skewness), and information-theoretic measures based on
Shannon entropy31 (Tables S9–S12). The different aggrega-
tion operators deliver distinct information about the property
and the group used to generate the descriptors. In this way,
descriptors derived from norms are most appropriate for

FIGURE 2 ProtDCal steps for calculating a protein descriptor. The fragment of a human prion protein (upper panel, far left) with Protein Data
Bank24–26 identification code 1OEH27 is used as an example of protein under codification

ROMERO-MOLINA ET AL. 1737

http://firstglance.jmol.org/fg.htm?mol=1OEH


modeling protein functions and classes that are dependent on
protein size. On the contrary, for classes that are not related to
the number of residues, descriptors obtained with dispersion
and central tendency (means) aggregation operators may be
preferable. In Figure 2, the arithmetic mean (Ar) is used to
aggregate the values in the group into a single scalar value.

After following these four steps, the final descriptor
resulting from the selected options (Figure 2, highlighted in
red) is: FD_AC2_GLY_Ar. Hence, the structural informa-
tion in this descriptor can be read as the average value
(Ar) for all glycine amino acids (GLY), of the modified fold-
ing degree (FD) property, according to the autocorrelation
(AC2) operator between neighboring residues.

2.2.2 | Analysis of ProtDCal's outcome

PROFEAT,6 PROTEIN RECON,32 and PseAAC7,8 are
among the most notable available tools for calculating large
numbers of sequence-based physicochemical protein fea-
tures. We used principal component analysis (PCA) to com-
pare these methods to ProtDCal5 (Figure 3). PCA was
applied on the matrix of all computed descriptors. Then, the
contribution of each program was measured using the load-
ing values to evaluate the correlation between the original
descriptors and the principal components. A given compo-
nent is said to be loaded by a descriptor arising from one
program when the correlation between the descriptor and a
component is higher than 0.7.

The application of PCA resulted in 191 principal compo-
nents, explaining 95% of the total variance in the descriptor
data. Notably, while PROFEAT explains 45% of the variance
(90 components loaded), ProtDCal descriptors are able to
explain 52% of the variance (103 components loaded, Figure 3
top). Of the 20 top-ranked components (Figure 3, bottom),
16 have high loadings uniquely from ProtDCal. This analysis
indicates that the components of ProtDCal capture most of the

data variance. Importantly, ProtDCal captures information that
it is not contained in other descriptors such as those of PROF-
EAT and PROTEIN RECON.

The information content of the structural descriptors gener-
ated by ProtDCal makes them suitable for modeling various
functions and properties of proteins. However, given the large
number of descriptors that ProtDCal delivers, the application
of feature selection methods is required as an intermediate
step between generating a raw feature matrix and training the
final model. Machine-learning platforms, such as Weka33

offer several methods to perform feature selection based on
both unsupervised and supervised approaches. Depending of
the size of the data set and the number of initial features,
this step can be computationally demanding. Importantly, the
resulting subset of features can determine the quality of the
final model. Thus, to offer users an initial processing of
the feature matrix, our web server characterizes each descrip-
tor using standardized Shannon Entropy (sSE).

sSE=
−
PN

i=1
pi logpi

logN

where pi is the probability that a randomly selected instance
(protein) belongs to the interval i and N is the number of
intervals over which the range of descriptor values is split.
We use uniform splitting to obtain all the intervals. The
number of instances in the data set determines the number of
bins. In this way, the range of the sSE values for each
descriptor is within (0,1), ranging from zero, corresponding
to a total absence of variability, to one, corresponding to a
uniformly distributed data set along the descriptor range.
Accordingly, plots of the frequency histogram per interval of
sSE and of the cumulative frequency along the data set are
provided to the user (Figure 4). Then, users can perform an
initial reduction of the feature matrix by requesting a subset

FIGURE 3 PCA test. Top:
Pie chart showing all 191 principal
components. Bottom: Bar diagram
of the 20 top-ranked composed
components of the test. The
descriptors from the RECON
program were highly redundant,
thus they are found only within
the first two “combined
components.”
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of descriptors within a custom interval of sSE. This
preprocessing step presents, in a user-friendly manner, the
dispersion of the obtained descriptors along the data set of
input proteins. In addition, it enables the elimination of
invariant descriptors that do not provide useful information.
This step also allows discarding highly variable features that
may not be as effective to model discrete properties, such as
in a binary classification problem (e.g., active vs. inactive
peptide drugs), where we generally seek descriptors follow-
ing a bimodal distribution.

Independent tools, such as the IMMAN program,34 allow
for the advanced use of SE and several other information the-
oretic measures for applying both unsupervised and super-
vised feature selection to a set of descriptors. Information
gain35,36 is another widely used measure for supervised fea-
ture selection in machine-learning approaches. In future
developments of our web server, we intend to implement
these and other feature-selection analysis tools, for post-
processing the descriptors generated by the ProtDCal server.

2.3 | Protein analysis tools

ProtDCal's features have been used to develop predictors for
protein analysis.9,14–17,19,20 In ProtDCal-Suite we provide,
for the first time, web access to some of these tools.

2.3.1 | Performance measures

Next, we summarize the set of measures used to evaluate the
predictors implemented in the different protein analysis tools.

Precision Prð Þ=TP= TP+FPð Þ
Sensitivity Snð Þ=TP= TP+FNð Þ
Specificity Spð Þ=TN= TN+FPð Þ
Accuracy Accð Þ= TP+TNð Þ= TP+TN+FP+FNð Þ

where TP means true positive predictions, TN corresponds
to true negative predictions, FP represents false positives,
and FN indicates false negative predictions.

FIGURE 4 Illustration of the
information content plots derived from a
set of 3,000 descriptors calculated with
ProtDCal. (a) A frequency histogram per
interval of standardized Shannon entropy
(sSE) is presented. (b) The cumulative
frequency along the range of sSE is
depicted
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2.3.2 | PPI-detect

PPI-Detect19 is a support vector machine (SVM) model that
allows predicting the likelihood of interactions between two
proteins based on their sequence information. The method is
based on a new formalism that transforms pairs of amino
acid sequences into general-purpose-numerical descriptors,
which are used as input to an SVM classifier.

The benchmark employed for PPI-Detect was created
using the publicly available databases of protein domains
interaction data: 3did37 and IPfam,38 containing pairs of
domains reported as interacting, and Negatome 2.0,39 con-
taining pairs of domains with no reported interactions. For
each domain, the corresponding sequences were obtained
from Pfam, a database with a large collection of protein fami-
lies.40 The final dataset comprises 1,922 interacting pairs and
2,405 noninteracting pairs of domains. Then, the data set was
split into training (3,491 pairs: 1,613 positive and 1,878 nega-
tives) and test (836 pairs: 309 positives and 527 negatives).

The theoretical background of PPI-Detect is described
elsewhere.19 Shortly, we defined new pairwise protein
descriptors as follows: Provided two amino acid sequences
A and B, and the reaction:

2A+2B= >AB+BA

where AB and BA are block copolymers formed by the
sequences of A and B.

The pairwise descriptor D(A-B) is calculated as: D(A-B) = D
(AB) + D(BA) − 2D(A) − 2D(B), where D(X) corresponds to
the value of the single-chain descriptor for a given sequence X
(A, B, AB, or BA in this example). The value of D(A-B) is related
to the change in the topological information upon the dimerization
process. We note that the contribution of the unaltered partners is
removed, thus the descriptors are a numerical representation of the
relation between the independent sequences. We obtained the
individual descriptors using the electro-topological state (E-State)
vicinity operator, which allows capturing the topological informa-
tion of both the original and combined sequences.

The training was performed with the SVM package
SMO22,41 and the final model was selected with a linear
kernel and a cost (C) for misclassified cases, C = 11.3. The
results of an external test for PPI-Detect and the tools
PIPE,42 Pred-PPI,43 and SPPS44 indicate that PPI-Detect
outperforms, in terms of accuracy, the other tools (Table 1).

PPI-Detect was successfully used to identify improved
derivatives of EPI-X4,45,46 an endogenous peptide inhibitor
of the G-protein-coupled receptor CXCR4.19

2.3.3 | Enzyme identifier

Enzyme Identifier is a SVM predictor for identifying
enzyme-like proteins15 from sequence or structural data.

Accordingly, two models are implemented in Enzyme Iden-
tifier: sequence-based (using FASTA Files) and structure-
based (using PDB files).

The data set employed for training both models was
taken from Dobson and Doig (D&D),47 comprising a total of
1178 structurally diverse proteins (691 enzymes and
487 nonenzymes), extracted from the PDB and Medline
Abstracts databases. The Enzyme Identifier SVM models
were generated and validated using 10 × 10-fold CV. The
accuracy values reported in Table 2 illustrate how this
structure-based model outperforms structure-based predic-
tors developed by other authors using the same data set.

In addition, the accuracy of the predictions of the 3D
structure-based model was assessed in an external set of 52 pro-
teins, which was structurally unrelated to the training data set.
The accuracy obtained was 80.8%, while with the method of
Dobson and Doig the reported accuracy is 79.0%.47

2.3.4 | Pred-NGlyco

Pred-NGlyco is a sequence based Random Forest (RF) model
for predicting N-glycosylation sites in peptides and proteins.
This model illustrated, for the first time, the applicability of
ProtDCal's descriptors to model relevant protein structural

TABLE 1 Comparison of the accuracy values for PPI-detect and
other PPI predictors19

PIPE Pred-PPI SPPS PPI-detect

Accuracy (%) 63.9 43.5 61.7 66.1

Abbreviation: PPI, protein–protein interaction.

TABLE 2 Comparison of performance measures in 10-fold
cross-validation for ProtDCal-based models (enzyme identifier) and
other methods15

Reference Accuracy (%)

Enzyme identifier (3D structures)15 82.0 ± 0.3

Shervashidze48 81.5 ± 1.5

Senelle49 80.3

Dobson et al.47 80.2 ± 1.2

Shervashidze et al.50 79.8 ± 0.4

Neumann et al.51 79.0 ± 0.2

Enzyme identifier (amino acid sequences)a 78.8 ± 0.2

Li et al.52 78.3

Bai and Hancock53 77.6

Orsini et al.54 76.6 ± 0.6

Kilhamn55 75.9

Johansson et al.56 75.4 ± 0.6

aSequence-based model. Notice that all other models are based on 3D structural
information.
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data.5 To build the model, 3,508 sequence-unique windows,
with 15 amino acids of length, were extracted from an initial
data set of 241 proteins in the OGLYCBASE57 data set. Each
window was centered on an asparagine residue and classified
in glycosylated (positive) or nonglycosylated (negative).
Then, ProtDCal sequence-based descriptors were computed
for each position of these chains.

Feature selection was performed using a Wrapper approach,
with a genetic algorithm as implemented in Weka.33 The
resulting model was compared via cross-validation to contem-
porary N-glycosylation predictors, such as GPP,58 NetNglyc,58

EnsembleGly,59 and ScanSite.60 The results (Table 3) indicated
that, in general, Pred-NGlyco, EnsembleGly, and GPP out-
perform the methods NetNGlyc and ScanSite.

In addition, the Pred-NGlyco model was compared using
an external test set to the predictor GPP58 (Table 4, the web
server associated with EnsembleGly is no longer available).
The comparison shows higher performance for the Pred-
NGlyco model with superior values of accuracy, specificity,
and precision than those of GPP, while GPP showed slightly
better sensitivity.

Like PPI-Detect and Enzyme Identifier, Pred-NGlyco is
an example of the value of ProtDCal descriptors to model
various biological data.

3 | SERVER DETAILS

The server is hosted in an Apache2 webserver and it was
implemented in a two-layer architecture, divided into front-end
and back-end. The front-end, written in PHP and JavaScript, is
responsible for exchanging information with users. This layer

is visualized with HTML5 and Bootstrap framework. All tools
were implemented in the Java language using third-party
libraries. The back-end is formed by a set of Perl scripts that
manage job execution on a computer cluster system.

4 | CONCLUSIONS

ProtDCal-Suite is a valuable platform for the machine
learning-based study of protein structure–function relation-
ships. The principal module, ProtDCal, provides scientists
with information-rich features datasets that describe key
structural characteristics of proteins. These descriptors are
highly suited for the training and evaluation of machine
learning models used in the prediction of protein function.
The information-theoretic post-processing of the generated
protein descriptors enables rapid unsupervised feature selec-
tion, prior to the creation of the model.

The capability of ProtDCal to generate useful features
was assessed in several studies developing novel machine
learning-based tools.9–19 Here, we present web interfaces for
predicting the interaction likelihood of protein–protein and
protein–peptide pairs (PPI-Detect), for identifying enzymes
from amino acid sequences or 3D structures (Enzyme Identi-
fier), and for predicting N-glycosylation sites in peptides and
proteins (Pred-NGlyco).

In future, we will continue incorporating new applica-
tions based on ProtDCal features into ProtDCal-Suite to
bring more functionalities to users. A next development will
include a tool for the design of antibacterial peptides.
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