
Validation of an Electronic Medical Record–Based Algorithm for 
Identifying Posttraumatic Stress Disorder in U.S. Veterans

Kelly M. Harrington1,2, Rachel Quaden1, Murray B. Stein3,4, Jacqueline P. Honerlaw1, 
Shadha Cissell3, Robert H. Pietrzak5,6, Hongyu Zhao7,8, Krishnan Radhakrishnan7,9, 
Mihaela Aslan7,10, John Michael Gaziano1,11, John Concato7,10, David R. Gagnon1,12, Joel 
Gelernter5,6,13, Kelly Cho1,11 VA Million Veteran Program and Cooperative Studies Program
1Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA 
Boston Healthcare System, Boston, Massachusetts, USA

2Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA

3Psychiatry Service, VA San Diego Healthcare System, San Diego, California, USA

4Departments of Psychiatry and Family Medicine & Public Health, University of California San 
Diego, La Jolla, California, USA

5Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut, USA

6Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA

7VA Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West 
Haven, Connecticut, USA

8Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, 
USA

9Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, 
Kentucky, USA

10Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA

11Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 
Massachusetts, USA

12Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 
USA

13Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, 
Connecticut, USA

Abstract

We developed an algorithm for identifying US veterans with a history of posttraumatic stress 

disorder (PTSD) using the Department of Veterans Affairs (VA) electronic medical record (EMR). 
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This work was motivated by the need to create a valid EMR-based phenotype to identify thousands 

of cases and controls for a genome-wide association study of PTSD in veterans. We used manual 

chart review (n = 500) as the gold standard. For both the algorithm and chart review, three 

classifications were possible: likely PTSD, possible PTSD, and likely not PTSD. We used Lasso 

regression with cross-validation to first select statistically significant predictors of PTSD from the 

EMR and then to generate a predicted probability score of being a PTSD case for every participant 

in the study population. Probability scores ranged from 0 – 1.00. Comparing the performance of 

our probabilistic approach (Lasso algorithm) to a rule-based approach (ICD algorithm), the Lasso 

algorithm showed modestly higher overall percent agreement with chart review compared to the 

ICD algorithm (80% vs. 75%), higher sensitivity (.95 vs. .84), and higher overall accuracy (AUC 

= .95 vs. .90). We applied a 0.7 probability cut point to the Lasso results to determine final PTSD 

case and control status for the VA population. The final algorithm had a 0.99 sensitivity, 0.99 

specificity, 0.95 positive predictive value, and 1.00 negative predictive value for PTSD 

classification (grouping possible PTSD and likely not PTSD) as determined by chart review. This 

algorithm may be useful for other research and quality improvement endeavors within the VA.

Widespread implementation of electronic medical record (EMR) systems provides 

opportunities for transforming population-based research by enabling efficient, cost effective 

collection of data on a large scale, and thus helps to address a rate-limiting step for genetic 

research: the need for large sample sizes (Charles, Gabriel, & Furukawa, 2014; Smoller, 

2017). Specifically, the development of clinical phenotypes (i.e., observable traits such as 

height or blood type, the presence of a disease, or the response to a medication; Newton et 

al., 2013) derived from EMR data and the linkage of EMRs with biobanks creates a valuable 

data resource for genetic and other biomarker discovery (Olson et al., 2014; Smoller, 2017). 

However, one major challenge that interferes with capitalizing on these resources is the need 

to demonstrate the validity of phenotypes extracted from the EMR (Newton et al., 2013; 

Smoller, 2017; Wojczynski & Tiwari, 2008). Thus, there is a critical need for highly accurate 

EMR phenotyping algorithms to advance genomic and mechanistic studies in 

megabiobanks, such as the UK Biobank and the Million Veteran Program (MVP), whereby 

it is not feasible to carefully and prospectively assess every participant for the disease of 

interest. The main objective of the current project was to develop an EMR-based algorithm 

for identifying posttraumatic stress disorder (PTSD) cases and controls in US veterans for a 

genome-wide association study (GWAS) of PTSD which is being conducted within the 

MVP.

Investigators in the Department of Veterans Affairs (VA) are well-positioned to use EMR-

based phenotypes for clinical research given the large size of the patient population, the 

national scope of the healthcare system, and the wealth of over 15 years of longitudinal data 

available. Large VA EMR databases have been used to conduct extensive clinical and 

epidemiological research on a variety of priority disease domains in the VA. Diagnostic data 

captured in billing codes (typically based on International Classification of Diseases [ICD-9 

or ICD-10]) are readily available and commonly used in EMR-derived phenotype algorithms 

to classify patients with specific diseases but the validity of phenotypes solely based on 

billing codes is questionable (Smoller, 2017). PTSD is a high-priority, complex phenotype 

that is prevalent in the VA population. As summarized in Supplemental Table 1, a number of 
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studies have evaluated the validity of PTSD diagnoses found in the VA EMR (Abrams et al., 

2016; Frayne et al., 2010; Gravely et al., 2011; Holowka et al., 2014; Magruder et al., 2005). 

These prior studies have shown that ICD codes from the VA EMR can be used to identify 

PTSD, albeit with varying degrees of accuracy. Inconsistent results of PTSD validation 

studies using VA data can be attributed, in large part, to divergent diagnostic criteria, 

assessment methods, sampling procedures, and reference standards for comparing EMR-

derived diagnoses.

The primary aim of this study was to develop and validate an EMR algorithm for identifying 

lifetime (ever) PTSD in a sample of Veterans Health Administration (VHA) service users. 

We sought to improve upon prior algorithms that relied exclusively on ICD codes by 

developing a multivariable prediction model of PTSD that assigns a probabilistic score of 

PTSD caseness from 0 – 1.00 for every participant in the study population. The advantages 

of using predicted probabilities of PTSD caseness instead of a dichotomous classification 

include the ability to apply a probability score of PTSD to the entire population, greater 

flexibility in selecting the most appropriate cut point(s) for defining cases and controls, and 

potential reusability of the phenotype in future studies of PTSD. For example, investigators 

may prioritize having a more precise PTSD case definition (by setting a higher threshold) at 

the cost of decreasing the sample size. Another innovative aspect of our study was using a 

three-level outcome for both algorithm definitions as well as classifications by expert chart 

reviewers to capture an intermediate category with less diagnostic certainty, reflecting real-

world clinical presentations of subthreshold PTSD or insufficient information available to 

make a definitive PTSD diagnosis. We validated the PTSD classification algorithm using a 

training dataset of 500 expert-reviewed medical records labeled as likely PTSD (case), 

possible PTSD (neither case nor control), and likely not PTSD (control). We compared the 

performance of our probabilistic PTSD algorithm against a rule-based approach (ICD codes 

only), hypothesizing that our probabilistic algorithm would outperform the ICD algorithm.

A secondary aim of this paper was to demonstrate how we applied the probabilistic PTSD 

algorithm to (a) the VHA population and (b) the MVP population in a genomic study of 

PTSD in combat-exposed veterans. We determined the optimal cut points for classifying 

PTSD cases and controls based on estimated misclassification rates, operating 

characteristics, and sample sizes. Last, we used MVP survey data related to PTSD symptoms 

to further refine and validate the final classification algorithm for the GWAS of PTSD in 

MVP.

Method

Participants

This study was undertaken as a part of a GWAS of PTSD which is being conducted within 

the Million Veteran Program (MVP). MVP, as a mega-biobank established within the 

national VA healthcare system, collects blood specimens and questionnaires from consented 

veteran volunteers and links them with consent for EMR research use, as has been described 

in detail elsewhere (Gaziano et al., 2016). The source population consisted of veterans who 

have utilized the VHA for medical care since EMR implementation (N = 16,770,849). As 

shown in Figure 1, after excluding 608,666 veterans with ICD-9/10 codes for bipolar 
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disorder or schizophrenia because of concerns about reliability of PTSD symptom reporting, 

we censused all veterans with at least one ICD-9/10 code for PTSD (n = 1,400,839). To 

create a likely not PTSD (control) group, we also censused veterans with no ICD-9/10 codes 

for PTSD (n = 14,768,648). To ensure that a patient was not classified as a control due to 

limited use of VHA services, we required at least 3 months in the VHA system and at least 

10 unique visit days. The MVP study population (N = 74,091) consisted of MVP enrollees 

who have been genotyped, completed a survey indicating that they have experienced combat 

or served in a warzone, and did not have ICD codes for bipolar disorder or schizophrenia.

Chart review sample.—A total of 500 veterans (including 300 who also enrolled in 

MVP) were randomly selected for chart review using a stratified sampling strategy based on 

our initial working algorithm (ICD algorithm) to ensure adequate representation of MVP 

participants and VHA enrollees, and our three outcome categories, for training the PTSD 

model (see “ICD algorithm definition” below for details). We generated chart review 

assignments for 400 veterans using two selection criteria: (1) the proportion of MVP 

participants to VHA enrollees was set at 60:40 and (2) the prevalence of ICD algorithm 

outcome categories were fixed to 45% likely PTSD, 30% possible PTSD, and 25% likely not 
PTSD. In addition, 50% of MVP participants (n = 150) were selected because they were 

positive for combat exposure. Finally, we selected a random sample of 100 charts to estimate 

the prevalence of PTSD in the study population (50 MVP participants, 50 VHA enrollees). 

After excluding 15 veterans with insufficient information for classification, the final chart 

review sample was comprised of 485 veterans (293 MVP participants, 192 VHA enrollees), 

458 men, 27 women, 342 Whites, 88 Blacks, and 55 other race/missing (see Table 1).

Procedure

This study was approved and reviewed annually by the Institutional Review Boards (IRBs) 

at three U.S. Department of Veterans Affairs Healthcare System facilities [locations removed 
for blind review]. The IRBs granted waivers of informed consent and HIPAA authorization 

for access to protected health information required to conduct this VA database study. The 

MVP protocol was initially approved by the VA Central IRB in 2010 and reviewed annually. 

MVP enrollees provided written consent, gave a blood sample, and completed self-report 

questionnaires.

Data sources.—The algorithm was defined using variables available in the VA EMR. We 

obtained patient sociodemographic information, ICD-9/10 codes for mental health 

diagnoses, PTSD screening measures, patient flags (combat, military sexual trauma), and 

medication prescriptions from the VA Corporate Data Warehouse (CDW) in November 

2016. For consistency, we only used CDW data that was available prior to the chart review 

date for a given participant. We also used MVP questionnaire data (i.e., self-report of current 

PTSD symptoms) to further refine and validate our classification of PTSD cases and controls 

among MVP participants included in a genomic study of PTSD.

Algorithm development process.—First, we created a rule-based working algorithm 

using ICD codes based on literature review (see Supplemental Table 1) and consultation 

with experts in PTSD. The “ICD algorithm” was defined using only ICD-9/10 codes for 
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PTSD. The ICD algorithm was used to create a base population (depicted in the upper 

righthand corner of Figure 1) of patients who were grouped according to their likelihood of 

having PTSD [i.e., likely PTSD (case), possible PTSD, and likely not PTSD (control)]. 

Second, the ICD algorithm was used to select a stratified random sample of 500 veterans 

from the base population for manual chart review. Third, we developed a multivariable 

prediction model of PTSD (“Lasso algorithm”) using VA EMR data and generated a 

probabilistic score of PTSD caseness from 0 – 1.00 for every participant in the study 

population. The Lasso model was trained using chart validated cases as the “gold standard.”

Chart review validation.—Blinded, independent chart reviews and abstraction were 

performed by five subject matter experts with a minimum of six years of experience in the 

diagnosis and treatment of PTSD (3 PhDs in clinical psychology, 1 psychiatrist, 1 licensed 

clinical social worker). All chart reviewers followed the same detailed protocol and manual 

chart abstraction form (see supplementary materials) and underwent intensive training in its 

use including six gold standard cases during the initial calibration phase. All EMR chart 

reviews were conducted between January 2015 and May 2016. The abstractors selected one 

of the following classifications of patient’s PTSD status: likely PTSD (significant evidence 

of a lifetime PTSD diagnosis), possible PTSD (weak or indeterminate evidence of a lifetime 

PTSD diagnosis or presents with subclinical level of PTSD symptomatology), likely not 
PTSD (no evidence of a lifetime PTSD diagnosis), or insufficient data available. A random 

sample of 25% of the 500 charts (n = 125) was independently reviewed by two raters to 

assess inter-rater agreement for PTSD diagnosis. Discrepancies between raters on 

classifications of PTSD diagnosis were reviewed via regular teleconferences to reach final 

consensus. A weighted kappa for lifetime PTSD diagnosis was calculated for each of the 

possible two rater pairs (Cohen, 1968). We considered a kappa of 0.80 to be excellent. 

Kappa statistics ranged from 0.75 to 0.87 (substantial agreement to almost perfect 
agreement) (Landis & Koch, 1977) and percent agreement ranged from 75.7% to 85.7% 

(mean = 79.4%). Importantly, none of the rater discrepancies on chart classifications were 

between likely PTSD and likely not PTSD.

Measures

ICD algorithm definition.—We defined likely PTSD (case) by either 1 inpatient 

ICD-9/10 code for PTSD (ICD-9 code 309.81 and ICD-10 codes F43.10, F43.11, F43.12 

listed as the primary or secondary diagnosis), or at least 2 outpatient ICD-9/10 codes for 

PTSD within any one-year window by a mental health professional (VA clinic stop codes 

501–599). We defined likely not PTSD (control) as the absence of ICD-9/10 diagnostic 

codes for PTSD by any VHA clinic or specialty, during any VHA visit (inpatient or 

outpatient) or on the Problem List. We defined possible PTSD by having only 1 outpatient 

ICD-9/10 code for PTSD within a year by a mental health professional or by having only 

outpatient ICD-9/10 code(s) for a PTSD diagnosis made by a non-mental health 

professional.

Lasso algorithm definition (candidate predictors).—We tested various candidate 

predictors available from the VA CDW in the Lasso model, including PTSD screening 

instruments, psychiatric comorbidities, medications, and demographic characteristics.
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DSM-IV PTSD Checklist (PCL) (Weathers, Litz, Herman, Huska, & Keane, 
1993).—The PTSD Checklist (PCL) (Weathers et al., 1993) is a 17-item self-report measure 

of PTSD symptoms based on DSM-IV criteria with solid psychometric properties including 

good temporal stability, internal consistency, test-retest reliability, and convergent validity 

(Wilkins, Lang, & Norman, 2011). Veterans were classified as having or not having a PCL 

score in their chart (no = 0, yes = 1) because scores are not missing at random in the EMR 

(i.e. lack of a PCL may indicate insufficient reason to screen a patient for PTSD).

DSM-IV Primary Care PTSD Screen (PC-PTSD) (Prins et al., 2003).—The PC-

PTSD is a four-item self-report measure corresponding to the four factors associated with 

the DSM-IV PTSD construct. Items are scored dichotomously as either 0 or 1 (0 = no, 1 = 

yes). The PC-PTSD has demonstrated good test-retest reliability and good diagnostic 

efficiency in primary care settings (Prins et al., 2003). We used a 3-level variable of the PC-

PTSD (never administered; administered with a score of 0, 1 or 2; administered with a score 

of 3 or 4) based on evidence of an optimal cut point of 3 (Tiet, Schutte, & Leyva, 2013).

PTSD-related variables.—We tested several other predictors related to PTSD diagnosis 

including VA service-connected disability rating for PTSD (no = 0, yes = 1), absence/

presence of 2 or more outpatient ICD-9/10 codes for PTSD within a year by a mental health 

professional, absence/presence of 1 or more inpatient ICD-9/10 codes for PTSD, count of 

ICD-9/10 codes for PTSD associated with mental health clinic stop codes (501–599), count 

of ICD-9/10 codes for PTSD associated with PTSD clinic stop codes (516, 519, 540–542, 

561, 562, 580, 581), and count of ICD-9/10 codes for PTSD associated with primary care 

physician clinic stop codes (323, 348, 350).

Psychiatric comorbidities and medications.—We tested comorbid depression and 

anxiety disorder (absence = 0, presence = 1) in the Lasso model, defined by having either 

one inpatient or two outpatient ICD-9/10 codes (list of ICD codes is available upon request). 

Prescription counts of psychiatric medications were also evaluated, grouped by medication 

class (antidepressants, antipsychotics, sedatives/hypnotics, mood stabilizers, and prazosin).

Demographic characteristics.—We tested age (continuous), sex (male = 0, female = 1), 

ethnicity (NA = 0, Hispanic = 1, not Hispanic = 2), and race (NA = 0, White = 1, Black = 2, 

Other = 3).

Trauma exposure.—Trauma exposure was not included in the original Lasso model due 

to concerns about reliability and missingness of these variables in CDW. However, we tested 

the combat flag (no = 0, yes = 1) and military sexual trauma (MST) flag (no = 0, yes = 1) as 

predictors in an alternative model to evaluate the impact on accuracy of the algorithm.

Probability of caseness.—Every participant in the study population received a 

probability of PTSD caseness ranging from 0 – 1.00 based on the Lasso probabilistic model.
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Data Analysis

Chart review sample characteristics.—We compared the gold standard chart review 

likely PTSD and likely not PTSD groups on demographic and clinical characteristics. 

Specifically, we tested for statistically significant differences between the two groups using 

the chi-square test and t-test for frequencies and means, respectively. Using the same 

statistical approach, we also tested for significant differences between MVP participants and 

VHA enrollees by three PTSD categories: likely PTSD, possible PTSD, and likely not 
PTSD.

Lasso algorithm model development and evaluation.—First, we evaluated possible 

collinearity among candidate predictors for the Lasso algorithm using Spearman rank-

correlation coefficients. Next, we used Least Absolute Shrinkage and Selection Operator 

(Lasso) penalized regression with 10-fold cross-validation to fit a prediction model for 

PTSD. Lasso penalized regression imposes an L1 penalty on the size of coefficients and sets 

some coefficients to zero, thus retaining only the most important predictors in the model 

without causing overfitting and multiple testing issues of other selection methods (e.g., 

stepwise models) (Tibshirani, 1996). Lasso analyses were completed using the R package 

GLMNET, which has built-in cross-validation (cv.glmnet) (Friedman, Hastie, & Tibshirani, 

2010). The coefficients for each covariate and outcome were used to determine the 

probability for membership in each outcome category (i.e. likely PTSD, possible PTSD, 

likely not PTSD). Since Lasso can handle multinomial distributions, we entered the three-

level PTSD outcome in the regression model. Lasso generated a probability for each of the 

three outcome categories for every participant; the total probability sums to 1.0. Participants 

were then classified into one of the three categories based on the maximum probability 

generated.

Participants with missing age or sex were removed from the analysis (n = 1,443). For all 

other variables tested in the model, missingness was incorporated into the coding of the 

variable (e.g., PCL score was coded as absent/present [0/1]). To evaluate the rank order of 

predictors, we standardized the coefficients for likely PTSD by multiplying the standard 

deviation times the beta value. All programs for participant selection and analysis were 

checked by an independent data analyst for quality control.

Performance characteristics.—We calculated classification metrics (percent agreement, 

Cohen’s weighted kappa, sensitivity, specificity, positive predictive value [PPV], negative 

predictive value [NPV], and area under the curve [AUC]) to evaluate the performance of the 

ICD and Lasso algorithms against the chart review gold standard. We also calculated the 

AUC (or c-statistic) to directly compare the performance of an alternative Lasso model 

(including trauma variables) and to evaluate whether the accuracy of the algorithms differed 

for the MVP and VHA subsets of the chart review sample. Given these metrics require 

classifying subjects into dichotomous categories (e.g., case and control), we took three 

approaches to calculate the performance characteristics of each algorithm. First, we dropped 

all possible PTSD. Second, we grouped possible PTSD with likely PTSD. Third, we 

grouped possible PTSD with likely not PTSD. We applied the same rule to algorithm and 

chart review classifications for all three approaches.
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Weighted population estimates.—We over-sampled likely PTSD and possible PTSD 
groups to ensure we had a sufficient number of veterans with PTSD symptoms for training 

the model. To account for this over-sampling of likely PTSD and possible PTSD, we 

weighted each individual based on their selection for chart review (i.e. ICD algorithm case 

status) (Scholer et al., 2007). The weighted estimates better represent the algorithm 

performance in the entire VHA population. We used bootstrapping with these weights to 

obtain estimates and confidence intervals for sensitivity, specificity, PPV, and NPV in the 

VHA population.

Developing the cut points.—Using the probabilities of case status generated by Lasso, 

we next determined the optimal cut points for the final classification of PTSD cases and 

controls for the VHA and MVP study populations. We derived the optimal thresholds for 

cases and controls based on estimated misclassification rates, operating characteristics, and 

sample sizes. Specifically, we conducted a sensitivity analysis to determine the most 

appropriate cut points for the predictive probabilities (i.e., 0.6, 0.7, or 0.8). To estimate the 

misclassification rates associated with applying various cut points to the study population, 

we used weights derived from the ICD algorithm status of the chart review participants (as 

previously described). We calculated the operating characteristics for each cut-off value in 

the overall VHA study population as well as the MVP study population. Given our use of 

three outcome categories, we also calculated the operating characteristics under two 

conditions (i.e., possible PTSD grouped with likely PTSD vs. likely not PTSD).

Refining algorithm for the MVP study.—We used PCL scores from MVP survey data 

(available for everyone in the MVP cohort) to further refine and validate the likely not PTSD 
(control) group classified by the Lasso algorithm. We considered various cut points for the 

PCL (30–50), and assessed tradeoffs between improved accuracy versus loss in sample size 

for the GWAS of PTSD analysis.

Results

Characteristics of the chart review sample

Table 1 shows the demographic and clinical characteristics for the final chart review sample 

(n = 485), after excluding 15 veterans with insufficient data available in the electronic 

medical record. The sample is comprised of 40.8% veterans classified by chart review as 

likely PTSD, 17.3% as possible PTSD, and 41.9% as likely not PTSD. The sample of 100 

randomly selected chart reviews yielded a lifetime PTSD prevalence estimate of 18.0%. The 

rate of PTSD was higher among women veterans (44.4%) than men (40.6%). Approximately 

73% (n = 352/485) of the chart reviewed sample had evidence of combat exposure based on 

expert chart review, presence of the combat flag in the EMR, and/or self-report on the MVP 

survey. Compared to likely not PTSD (controls), likely PTSD (cases) were significantly 

younger; more ethnically diverse; more likely to have a history of combat service, military 

sexual trauma, and service connection for PTSD; and more likely to have depressive and 

anxiety disorders. When the chart review sample was stratified by MVP status, we found 

that the MVP group was generally comparable to the VHA group with three exceptions. 

Among MVP participants, likely PTSD (cases) were significantly older, likely not PTSD 
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(controls) were significantly less racially and ethnically diverse, and possible PTSD cases 

were more likely to have depression relative to the VHA group (see Supplemental Table 2).

Lasso algorithm

The results of the Lasso procedure are shown in Table 2; unstandardized and standardized 

coefficients are reported for all variables retained in the model. All classes of psychiatric 

medications, the count of ICD-9/10 codes for PTSD associated with PTSD clinic stop codes, 

race, and comorbid anxiety disorder were dropped from the model. Results of the alternative 

Lasso model that added the MST screen and combat flag are provided in Supplemental 

Table 3. We found that combat and MST were retained by the Lasso regression and the main 

change was that sex dropped out of the model. Only three male veterans were reclassified 

among the 485 charts reviewed according to the alternative model: two possible PTSD and 

one likely not PTSD were reclassified as likely PTSD (each probability of being a PTSD 

case was just over 0.5). The AUC value for the alternative model was identical to the 

original Lasso model (AUC = .95) which suggests that the addition of these two variables 

did not improve the overall accuracy of the algorithm.

Agreement between algorithms and chart review

Table 3 displays 3 × 3 contingency tables comparing patient classifications according to the 

ICD algorithm, the expanded Lasso algorithm, and chart review. The percent agreement 

between the ICD algorithm and the gold standard PTSD diagnosis was 75.3% (n = 365/485) 

and kappa (κ) = 0.72 (95% CI: 0.68 – 0.77) which indicates substantial agreement. The 

percent agreement of Lasso algorithm-defined PTSD with chart review classifications was 

80.2% (389/485) and κ = 0.77 (95% CI: 0.73 – 0.81) which suggests substantial agreement. 
The percent agreement between the ICD algorithm and the Lasso algorithm for lifetime 

PTSD diagnosis was 75.7% and κ = 0.74 (95% CI: 0.70 – 0.78), suggesting substantial 
agreement. Applying the algorithms to the entire VHA cohort, the prevalence of PTSD was 

slightly higher according to the Lasso algorithm (14.9%) than the ICD algorithm (12.9%). 

Figure 2 shows the predicted probabilities of PTSD caseness compared with chart review 

classifications. The median probabilities of PTSD caseness were .92, .14, and .03 for chart 

reviewed likely PTSD, possible PTSD, and likely not PTSD, respectively. The likely not 
PTSD group had the highest level of agreement between chart classifications and algorithm 

predictive probabilities, whereas there was considerably more variation for possible PTSD 
and likely PTSD groups. However, there were 7 outliers in the likely not PTSD group which 

had moderate probabilities of being a likely PTSD case (.53 – .60). Each outlier had one or 

more of the strongest predictors of PTSD present in the EMR, whereas chart reviewers did 

not find any significant evidence of PTSD in the charts. Notably, all outliers would be 

excluded from analysis when applying the optimal cut point of 0.7 for PTSD cases and 

controls.

Performance characteristics

The performance characteristics for identifying lifetime PTSD diagnosis using the ICD 

algorithm and the Lasso algorithm are presented in Table 4, separately for the chart review 

sample and the VHA study population. Both algorithms performed optimally when 

participants with diagnostic uncertainty (i.e., possible PTSD) were excluded from 
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calculations and there was a trend for both algorithms to perform better when grouping 

possible PTSD with likely not PTSD (versus likely PTSD). For direct comparison of the two 

algorithms, we will focus on the performance characteristics based on grouping possible 
PTSD with likely not PTSD (controls) because it represents an intermediate scenario 

between the most optimistic and pessimistic results. The Lasso and ICD algorithms had 

comparable specificity (.84 vs. 87), PPV (.57 vs. .59), and NPV (.99 vs. .96), whereas the 

Lasso algorithm had higher sensitivity (.95 vs. .84) and slightly higher accuracy (AUC = .95 

vs. .90). After applying population weights to account for over-sampling the likely PTSD 
and possible PTSD groups, the specificity (.95 vs. .97) and PPV (.72 vs. .82) improved for 

both the Lasso- and ICD-algorithms, respectively.

We also evaluated whether the algorithms performed differently in the chart review sample 

of MVP participants versus VHA enrollees. Similar accuracy was observed in the MVP and 

VHA subgroups for both the ICD algorithm (AUC = .91 vs. .89) and the Lasso algorithm 

(AUC = .95 vs. .94). Table 5 shows estimated misclassification rates and corresponding 

operating characteristics using a range of cutoffs for probability of PTSD caseness (0.6 to 

0.8) for the VHA and MVP study populations (see Supplemental Table 4 for summary of cut 

points considered for controls). A cutoff of 0.7 appears to be optimal for both VHA and 

MVP, given that the estimated misclassification rates leveled off without improvement in 

accuracy to balance the additional loss of sample size that would accompany a higher 

probability cutoff. After applying a probability cut point of 0.7 for both PTSD cases and 

controls, the operating characteristics overall looked similarly strong for both the VHA and 

MVP populations with all metrics ≥ .95 except for the PPV in the MVP population (.87).

After deriving the optimal cut points for the final MVP cohort, we used PCL scores from 

MVP survey data to help further validate MVP Lasso algorithm-defined controls. We 

selected a threshold score of 30 on the PCL from the MVP survey to minimize false negative 

classifications. As a result, we excluded veterans from the final MVP control sample who 

screened positive for PTSD according to the MVP-administered PCL despite having little or 

no indication of PTSD in the VA EMR. Although this step reduced the final MVP control 

sample by 28.3% (from n = 46,884 to 33,609), it increased our confidence that we identified 

a group of “true controls” for inclusion in the MVP GWAS of PTSD analysis.

Discussion

The current study developed and evaluated an EMR algorithm for identifying lifetime PTSD 

in a sample of VHA service users that assigns a likelihood of PTSD caseness ranging from 0 

– 1.00. We validated our probabilistic PTSD algorithm (“Lasso algorithm”) using a training 

dataset of expert-adjudicated medical record reviews on 500 veterans and found substantial 
agreement with chart reviewers’ classifications (Cohen’s κ = .77). As previously described, 

three classifications were possible for algorithm definitions and chart reviews: likely PTSD 
(case), possible PTSD, and likely not PTSD (controls). For simplicity, we have focused our 

discussion on the set of results based on grouping possible PTSD with likely not PTSD. The 

Lasso algorithm showed high sensitivity (.95) and high accuracy (AUC = .95) compared to 

time and resource-intensive chart review. The predictors which appeared to contribute the 

most to probability of PTSD caseness in the Lasso model were (1) presence of service 
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connection for PTSD, (2) presence of at least two outpatient ICD codes for PTSD by a 

mental health professional within a year, and (3) the PC-PTSD screen. We acknowledge that 

variable retention depends largely on what other variables are entered in the predictive 

model, as demonstrated by sex dropping out of the model when the combat flag and MST 

screen were added to the model. Similarly, elimination of a variable from the model does not 

indicate a lack of association with PTSD, rather that it does not add to our predictive ability.

This paper also describes the method we used for determining the optimal cut points for 

classifying PTSD cases and controls in the overall VHA population and in the MVP 

population within the context of a genomic study of PTSD which motivated this work. We 

found an optimal probability cut point of 0.7 for likely PTSD (cases) and likely not PTSD 
(controls) in the VHA study population to minimize both false positive and false negative 

classifications, which yielded high sensitivity, specificity, PPV, and NPV (≥ .95). The 

optimal probability threshold was the same (0.7) in the MVP population of combat-exposed 

veterans and showed similarly strong operating characteristics with the exception of a lower 

PPV than was observed in the VHA population (.87 vs. .95).

Our final classification algorithm (i.e., after applying cut points of 0.7 to PTSD cases and 

controls, and thus excluding participants with less decisive probabilities) compares favorably 

with all of the previous studies we reviewed that used ICD codes from the VA EMR to 

identify PTSD (Abrams et al., 2016; Frayne et al., 2010; Gravely et al., 2011; Holowka et 

al., 2014; Magruder et al., 2005). Our algorithm performed most similarly to Abrams et al.’s 

(2016) PTSD algorithm that was defined by ≥ 3 outpatient ICD-9 PTSD codes and used 

chart review as the reference standard. Compared to our final algorithm, Abrams and 

colleagues’ algorithm carried a slightly lower sensitivity (.98 vs. .99), lower specificity (.97 

vs. .99), and higher PPV (.97 vs. .95).

We also compared the performance of our probabilistic approach (Lasso algorithm) to a 

rule-based approach (ICD algorithm) against the gold standard chart review classifications. 

Relative to the ICD algorithm, the Lasso algorithm classified many more chart review 

participants as likely PTSD (cases) or likely not PTSD (controls), and markedly fewer 

participants as possible PTSD (11 vs. 118). The Lasso algorithm showed modestly higher 

overall percent agreement with chart review compared to the ICD algorithm (80% vs. 75%) 

and the operating characteristics were quite similar for the two algorithms. The ICD 

algorithm showed slightly higher specificity, PPV, and NPV, whereas the Lasso algorithm 

had higher sensitivity (.95 vs. .84) and overall accuracy (AUC = .95 vs. 90). The Lasso 

algorithm yielded more likely PTSD (cases) and likely not PTSD (controls) than the ICD 

algorithm (see Figure 1), and thus can afford greater statistical power with a larger sample 

size. However, when it is desirable to increase the precision and specificity of case/control 

definitions by excluding individuals with diagnostic uncertainty, this can result in a 

significant drop in sample size. For example, in the MVP genomic case-control study, Lasso 

identified 22,651 likely PTSD cases but the sample size decreased to 16,490 after we applied 

the p > 0.7 cut point (shown in Table 5).

Taken together, these findings suggest that ICD codes may be sufficient for identifying 

PTSD cases and controls depending on the goals of a study (Bauer et al., 2015). That is, the 
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simpler rule-based ICD algorithm may be preferable for studies that can afford to eliminate 

individuals with intermediate diagnostic certainty, do not require a likelihood of having 

PTSD for every patient in the population, or have limited resources for data extraction and 

analysis. The probabilistic approach, which defines PTSD caseness continuously (0 – 1.00), 

may be most desirable for studies designed to analyze PTSD as a quantitative trait. The 

predictive PTSD probability scores can be used in a variety of ways in line with the specific 

study aims. For example, directly modeling the algorithm-derived probability of being a case 

has been shown to improve test power to detect phenotype-genotype association and effect 

estimation compared with algorithms that yield dichotomous predictions (Sinnott et al., 

2014). For the proposed genomic case-control study, the MVP population has a sufficient 

number of participants to allow those with less decisive probabilities to be excluded from 

analysis. If it were necessary to classify PTSD status for all participants, such as in a 

longitudinal cohort study, a fixed cutoff can be chosen which maximizes sensitivity and 

specificity. Defining PTSD caseness as a predicted probability also offers potential 

reusability of the phenotype in future studies.

Strengths and Limitations

To our knowledge, this study represents the first to develop an EMR-based algorithm for 

identifying PTSD in veterans using VHA services that uses a probabilistic (statistical 

modeling) approach rather than a rule-based approach that relies on ICD codes. Our 

stratified sample provides a sufficient range of subjects to train the algorithm, while 

providing sampling weights to account for deliberate oversampling and to allow accurate 

projection of statistics to the general VHA population. Another innovative aspect of our 

study involved using a three-level outcome for both algorithm definitions as well as 

classifications by expert chart reviewers. Although the possible PTSD category reflects the 

reality that there is sometimes insufficient information available in the EMR to make a 

definitive diagnosis, we acknowledge that our use of a third intermediate category had the 

unintended consequence of complicating the interpretation of results, given that current 

methods for evaluating performance characteristics are based on dichotomous outcomes.

Several limitations of this study must be acknowledged. First, these findings were based on 

data collected from and about VHA service users, including a subset of veterans voluntarily 

enrolled in the MVP, and may not generalize to the entire VHA population or to veterans 

who predominantly utilize other healthcare settings. In addition, the over-representation of 

White male combat veterans in the validation sample may limit the generalizability of the 

algorithm to other subgroups of VHA users (e.g., women and minorities). This concern was 

partially alleviated by our finding that both algorithms had nearly identifical levels of 

accuracy in the MVP and VHA subgroups, despite a higher rate of combat exposure among 

MVP participants in the chart review sample. Further, a recent study demonstrated that the 

demographic profile of participants in MVP is representative of the broader VHA population 

including mean age and gender distributions (Nguyen et al., 2018). Second, EMR-based 

algorithms are limited by the accuracy and completeness of the EMR data used to define the 

disease or condition of interest, and thus are subject to misclassification (Chubak, Pocobelli, 

& Weiss, 2012; Kim et al., 2012). Third, this study relied on EMR review to derive a “gold 

standard” for validation which depends on clinicians to properly recognize and diagnose 
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PTSD cases. To address this limitation, we are conducting external validation of the 

algorithm using the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) (Weathers et 

al., 2018), which is considered a more general “gold standard” PTSD assessment tool. The 

CAPS-5 validation project is well underway and, if successful, will lend further support for 

the accuracy and validity of our algorithm.

Conclusions

In conclusion, the current study describes an EMR-based algorithm that accurately identifies 

lifetime PTSD in veterans. Our algorithm generated probabilistic scores for PTSD for every 

participant in the VHA study population which affords flexibility in applying cut points to 

achieve the desired level of accuracy for classifying PTSD cases and controls and potential 

reusability of the phenotype in future studies. An important future direction for research is to 

refine our algorithm by applying high-throughput phenotyping and natural language 

processing (NLP) techniques to improve the efficiency and accuracy of defining phenotypes 

based on EMR data (Yu et al., 2015). Although designed for use in a research setting, a 

potential future clinical application of this algorithm is development of a comprehensive 

screening tool (e.g., a “PTSD calculator” that generates a veteran’s predicted probability 

score of having PTSD) to aid VA clincians in assessment and treatment planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sampling and flow of participants for defining and validating algorithm to identify lifetime 

PTSD in veterans. VHA = Veterans Health Administration; EMR = electronic medical 

record; ICD = International Classification of Diseases; MH = mental health; MVP = Million 

Veteran Program; Lasso = Least Absolute Shrinkage and Selection Operator (regression 

procedure); P = probability.
aSample includes 300 MVP participants. bMVP cohort requires combat exposure defined by 

MVP survey and available genotype.
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Figure 2. 
Boxplot of chart reviewed PTSD case status by Lasso algorithm predicted probability of 

being a likely PTSD (case).
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Table 1

Characteristics of the Chart Review Sample by PTSD Classification

Likely PTSD
(n = 198)

Possible
PTSD

(n = 84)

Likely not
PTSD

(n = 203)

Overall
(N = 485)

Characteristic n (%) n (%) n (%) n (%)

MVP participant 120 (60.6) 45 (53.6) 128 (63.1) 293 (60.4)

Age, M (SD) 60.45 (15.00) 62.00 (16.02) 68.35(14.39)* 64.03(15.35)

Female sex 12 (6.1) 5 (6.0) 10 (4.9) 27 (5.6)

Race

 White 142 (71.7) 60 (71.4) 140 (70.0) 342 (70.5)

 Black 39 (19.7) 16 (19.1) 33 (16.3) 88 (18.1)

 Other/Missing 17 (8.6) 8 (9.5) 30 (14.8) 55 (11.3)

Hispanic/Latino ethnicity 23 (11.6) 3 (3.6) 7 (3.5)* 33 (6.8)

 Missing ethnicity 10 (5.1) 6 (7.1) 25 (12.3) 41 (8.5)

Comorbid depression 116 (58.6) 42 (50.0) 56 (27.6)* 214 (44.1)

Comorbid anxiety 76 (38.4) 26 (31.0) 35 (17.2)* 137 (28.2)

Service connected (PTSD) 142 (71.7) 19 (22.6) 2 (1.0)* 163 (33.6)

PCL available (CDW) 62 (31.3) 21 (25.0) 6 (3.0)* 89 (18.4)

PC-PTSD screen

 Score of 0, 1, 2 68 (34.3) 39 (46.4) 159 (78.3)* 266 (54.9)

 Score of 3, 4 89 (45.0) 32 (38.1) 11 (5.4)* 132 (27.2)

 Missing 41 (20.7) 13 (15.5) 33 (16.3) 87 (17.9)

2 + OP PTSD ICD codes
a 164 (82.8) 30 (35.7) 5 (2.5)* 199 (41.0)

1 + IP PTSD ICD codes 44 (22.2) 2 (2.4) 4 (2.0)* 50 (10.3)

No. PTSD dx by PCP, 2.41 (4.16) 1.38 (2.42) 0.19 (1.02)* 1.30 (3.08)

 M (SD)

No. PTSD dx by MHP, 24.29 (60.46) 4.87 (12.60) 0.25 (1.35)* 10.86 (40.53)

 M (SD)

Combat service (CDW) 48 (24.2) 13 (15.5) 19 (9.4)* 81 (16.2)

MST (positive screen) 12 (6.1) 5 (6.0) 4 (2.0)* 21 (4.2)

Note. PTSD = posttraumatic stress disorder; PCL = DSM-IV PTSD Checklist; CDW = Corporate Data Warehouse; PC-PTSD = Primary Care 
PTSD Screen; OP = outpatient; ICD = International Classification of Diseases; IP = inpatient; no. = number; dx = diagnosis; PCP = Primary Care 
Physician; MHP = mental health professional; MST = military sexual trauma.

a
2 or more outpatient ICD codes for PTSD within 1 year by mental health professional.

*
p < .05 (denotes Likely PTSD and Likely not PTSD groups are significantly different).
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Table 2

Lasso Algorithm Model Coefficients for Likely PTSD, Possible PTSD, and Likely Not PTSD

Variable Likely
PTSD B

Likely
PTSD β

Possible
PTSD B

Likely not
PTSD B

Intercept −0.96 −0.39 1.35

Service connected for PTSD (no/yes) 2.20 1.00 0.19 −2.38

2 + outpt. PTSD ICD codes (no/yes)
a

1.94 .95 0.24 −2.18

PC-PTSD (NA/score 0–2/score 3–4) 0.33 .22 0.10 −0.43

PTSD dx by PCP (ICD code count) 0.07 .22 0.06 −0.13

PTSD dx by MHP (ICD code count) 0.01 .21 −0.00 −0.00

1 + inpt. PTSD ICD codes (no/yes) 0.55 .17 −0.75 0.19

Comorbid depression (no/yes) 0.33 .16 0.17 −0.51

Ethnicity (NA/Hispanic/not Hispanic) −0.26 .15 0.10 0.16

Age (continuous) −0.01 .11 −0.00 0.01

PCL score available in CDW (no/yes) 0.03 .01 0.60 −0.64

Sex (male/female) −0.00 .00 −0.00 0.01

Note. PTSD = posttraumatic stress disorder; outpt. = outpatient; ICD = International Classification of Diseases; PC-PTSD = Primary Care PTSD 
Screen; NA = not available/missing; dx = diagnosis; PCP = Primary Care Physician; MHP = mental health professional; inpt. = inpatient; PCL = 
DSM-IV PTSD Checklist.

a
2 or more outpatient ICD codes for PTSD within 1 year by mental health professional.
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Table 3

Contingency Tables of Patient Classifications by Chart Review and by the Two Algorithms

Chart Review Classification

ICD Algorithm
Likely
PTSD

Possible
PTSD

Likely not
PTSD Total

Likely PTSD 166 30 7 203

Possible PTSD 31 45 42 118

Likely not PTSD 1 9 154 164

Total 198 84 203 485

Lasso Algorithm

Likely PTSD 188 38 7 233

Possible PTSD 2 7 2 11

Likely not PTSD 8 39 194 241

Total 198 84 203 485

Lasso Algorithm

ICD Algorithm
Likely
PTSD

Possible
PTSD

Likely not
PTSD Total

Likely PTSD 197 2 4 203

Possible PTSD 33 9 76 118

Likely not PTSD 3 0 161 164

Total 233 11 241 485

Note. Of the 500 charts reviewed by content experts, 15 participants could not be classified due to insufficient information, leaving a final chart 
review sample of n = 485.
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