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Abstract

The UL4 gene is conserved within the genome of defective interfering particles of equine 

herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein 

inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 

protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin 

immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and 

the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in 

infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 

EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced 

expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. 

Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected 

with the UL4-null virus as compared to wild-type EHV-1.

INTRODUCTION

The Alphaherpesvirinae subfamily member equine herpesvirus 1 (EHV-1) is a significant 

etiologic agent of severe respiratory, neurological, and abortigenic disease in equines 

worldwide (Allen and Bryans, 1986; O’Callaghan and Osterrieder, 2008). The viral gene 

program is expressed in a coordinated and temporal fashion, such that the 78 EHV-1 genes 

(Telford et al., 1992) are expressed at immediate-early (IE), early (E), and late (L) stages of 

infection (Caughman et al., 1985; Gray et al., 1987). Extensive work has been completed to 

describe the EHV-1 proteins responsible for controlling the expression of viral genes. The 

majority of the regulatory proteins are activators of viral gene expression. The essential IE 

gene encodes the sole IE protein (IEP) that is the major trans-activator of early and some late 

genes (Buczynski et al., 1999; Caughman et al., 1988; Garko-Buczynski et al., 1998; Grundy 
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et al., 1989; Smith et al., 1992, 1994). The IEP also functions to trans-repress its own gene 

expression (Smith et al., 1992). Early regulatory proteins IR4P and UL5P function in a 

synergistic manner with the IEP to mediate the full activation of early and late EHV-1 gene 

promoters (Albrecht et al., 2004; Holden et al., 1995; Kim et al., 1997; Zhao et al., 1995). 

The powerful and promiscuous EICP0P can independently activate expression of all three 

gene classes and is capable of antagonizing the trans-activation potential of the IEP (Bowles 

et al., 1997, 2000). The late equine α-trans-inducing factor (ETIF) is a tegument protein 

required for secondary envelopment and virus egress as well as the activation of expression 

of the IE gene promoter (Kim and O’Callaghan, 2001; Lewis et al., 1993; Purewal et al., 

1994; von Einem et al., 2006). The early IR2 protein and the IR3 transcript serve to inhibit 

EHV-1 gene expression (Ahn et al., 2010; Kim et al., 2006, 2011). The IR2P is a major 

inhibitory protein and is a truncated version of the IEP (Harty and O’Callaghan, 1991; Kim 

et al., 2006, 2011). Finally, the IR3 gene is unique to EHV-1 (Holden et., 1992), lies 

antisense to the IE transcript, does not produce a translated protein, and plays a role in 

down-regulating IE gene expression (Ahn et al., 2007, 2010).

Serial, high multiplicity passage of EHV-1 in cell culture or Syrian hamsters results in the 

production of defective interfering particles (DIP) that are capable of interfering with 

standard viral replication and establishing a state of persistent infection (Campbell et al., 

1976; Chen et al., 1996, 1999; Dauenhauer et al., 1982; Ebner et al., 2008; Ebner and 

O’Callaghan, 2006; Henry et al., 1979). The DIP genome (~7.5 kbp) is a severely truncated 

and rearranged form of the standard viral genome (~155 kbp) and consists of only three 

genes: the perfectly conserved UL3 and UL4 genes and a hybrid gene that is comprised of 

portions of the IR4 and UL5 regulatory genes, which is important for the interference with 

standard viral replication (Chen et al., 1996, 1999; Ebner et al., 2008; Ebner and 

O’Callaghan, 2006). Until recently, no functional role for the UL3 and UL4 proteins had 

been described. It was reported that the UL4 protein was capable of inhibiting gene 

expression in transient transfection assays, and cells infected with EHV-1 lacking expression 

of the UL4 protein exhibited increased levels of viral gene transcripts during lytic infection 

(Charvat et al., 2011). Additionally, an EHV-1 lacking the complete UL4 open-reading 

frame (ORF) was incapable of producing the DIP genome after serial, undiluted passage, 

while a mutant EHV-1 that possessed the UL4 ORF but did not express the UL4 protein was 

still capable of generating the DIP genome (Charvat et al., 2012). In the present study, we 

elaborate on the properties of the UL4 protein and begin to characterize its mechanism of 

inhibition. Expression of the UL4 protein decreased reporter gene transcript levels, possibly 

through direct interactions with the TATA box-binding protein (TBP) and the carboxy-

terminal domain of RNA polymerase II. The UL4 protein is not a DNA-binding protein as it 

fails to interact with EHV-1 promoters in gel shift assays and does not associate with EHV-1 

promoters in chromatin immunoprecipitation assays. Microarray analysis of the expression 

of all 78 EHV-1 genes in cells infected with wild-type or ΔUL4 EHV-1 revealed that late 

gene expression is enhanced in the absence of the UL4 gene. Quantitative PCR analyses 

showed that viral DNA synthesis was not retarded in cells infected with ΔUL4 EHV-1 as 

compared to cells infected with wild type EHV-1.
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RESULTS

Expression of the UL4P decreases messenger RNA levels

In our previous publication (Charvat et al., 2011), we demonstrated that the UL4 protein was 

capable of inhibiting luciferase gene expression driven by various EHV-1 promoters, and 

experiments using the chloramphenicol acetyltransferase (CAT) reporter system validated 

these original findings (data not shown). Previous data indicated that the absence of UL4 

protein synthesis during infection with a mutant UL4 EHV-1 resulted in elevated levels of 

viral transcripts (Charvat et al., 2011). These data suggested that the UL4P may be 

responsible for affecting mRNA levels; specifically, it may play a role in reducing 

transcripts. To assess whether expression of the UL4 protein reduces transcript levels, two 

groups of RK13 cells were transiently transfected with the gK-Luc reporter plasmid, along 

with expression plasmids for the EICP0 and UL4 proteins. The EICP0 protein has been 

shown to activate the gK promoter (Bowles et al., 1997; Kim et al., 1999); thus, it serves as a 

positive control for a protein that increases gene expression. One group of transfected cells 

was used to determine mRNA levels by harvesting RNA at 4 h post-transfection (hpt) and 

performing a northern blot for the luciferase transcript (Fig. 1). The other group of cells was 

used to perform a luciferase assay (48 hpt) to correlate mRNA levels with luciferase activity 

(Fig. 1A). As expected, expression of the EICP0 protein increased the luciferase activity 

driven by the gK promoter, which was approximately two-fold greater than gK-Luc activity 

alone. Additionally, the increase in luciferase activity corresponded to a 78% increase in 

mRNA levels (Fig. 1B). Conversely, expression of the UL4 protein decreased the amount of 

luciferase activity by 50%, which coincided with diminished amounts of the luciferase 

transcript which were approximately 46% of the levels of the gK-Luc transcript alone. Thus, 

the decreased luciferase activity correlated to decreased mRNA levels. These findings 

indicate that inhibition of gene expression by the UL4 protein is mediated at the level of 

transcription.

Decreased transcript levels are not a result of mRNA instability

After observing that the gK-Luc transcript was decreased in the presence of the UL4 protein, 

we examined mRNA stability as an explanation for reduced transcript levels. It is possible 

that the UL4 protein plays a role in increasing mRNA turnover or decreasing the stability of 

transcripts. To assess whether the UL4 protein was involved in mRNA stability, we utilized 

quantitative real-time PCR (qRT-PCR) to examine the half-life of mRNA from cells infected 

with either wild-type or ΔUL4 EHV-1. Rabbit kidney RK13 cells were infected at a 

multiplicity of 5 with each virus and incubated for 12 h in normal medium. After 12 h of 

infection, the medium was replaced with medium supplemented with 1 μM Actinomycin D 

(Act D) to prevent any further transcription. RNA samples were collected every three hours 

for a total of 18 h and the levels of the late glycoprotein 2 (gp2) transcript were determined 

by qRT-PCR. The results are summarized in Table 1 and revealed that the overall levels of 

the gp2 transcript are not greatly altered during the course of the Act D treatment, 

suggesting that the gp2 mRNA is inherently stable. Furthermore, the presence of the UL4 

protein had no effect on the stability of the gp2 mRNA as indicated by similar levels of 

message at both 3 and 18 h post-Act D treatment. These observations were reproducible in 

multiple experiments and revealed that the UL4 protein is not responsible for increasing 
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mRNA instability and turnover, but rather it is likely involved in the process of gene 

transcription.

The UL4 protein is not a DNA-binding protein

After observing that the expression of the UL4 protein inhibited transient gene expression in 

reporter assays as well as decreased the levels of viral transcripts, a mechanism to explain 

this inhibitory activity was investigated. One possible mechanism is that the UL4P binds to 

DNA in such a way to block transcription from the targeted genes. This potential DNA-

binding activity could affect the assembly of the pre-initiation complex (PIC) involved in the 

transcription of viral genes, as is observed with the EHV-1 IR2 protein (Kim et al., 2006, 

2011) and the IE2 (IE86) protein of human cytomegalovirus (Lee et al., 1996; Wu et al., 

1993). Inhibition of viral transcription through DNA binding is also documented for human 

papillomaviruses, where the E1M^E2C fusion protein inhibits viral gene expression as an 

E2-binding site-specific repressor (Chiang et al., 1991). Therefore, the ability of the UL4 

protein to bind DNA was explored. Electromobility shift assays (EMSA) were utilized to 

determine whether a recombinant GST-UL4 fusion protein possessed DNA-binding activity 

for the IE, TK, IR4, and UL5 gene promoters, all of which were shown to be inhibited by the 

UL4P in reporter assays (Charvat et al., 2011; unpublished observation). The GST protein 

alone was used as a negative control; while the GST-IR2 fusion protein that has documented 

DNA-binding properties (Kim et al., 1995) was used as a positive control. As expected, the 

GST protein was unable to bind any of the four radiolabeled promoters (Fig. 2, lanes A1, 

B1, C1, and D1). In contrast, the GST-IR2 fusion protein readily bound to the four EHV-1 

promoters (Fig. 2, lanes A2, B2, C2, and D2), which was confirmed by a shift in the 

mobility of the radiolabeled DNA-protein complexes using anti-IR2P monoclonal antibody 

A1.4 (Fig. 2, lanes A4, B3, C3, and D3). As expected, pre-immune serum (Fig. 2 lane3) or 

antibody to the EHV-1 TAD (Fig. 2, lanes A5 and B4) failed to cause a supershift in the 

DNA-protein complexes. However, no DNA-binding activity was observed for the GST-UL4 

fusion protein with the IE, TK, IR4, or UL5 promoters over a range of protein 

concentrations (Fig. 2, lanes A6–8, B5–7, C 4–6, and D4–6). Very minor bands were not 

reproducibly detected and were considered as background.

To confirm that the UL4 protein is not a DNA-binding protein, chromatin 

immunoprecipitation (ChIP) assays were carried out. EHV-1-infected HeLa cells were 

crosslinked with 1% formaldehyde, cell pellets were lyzed, and lysates were treated with 

micrococcal nuclease. Immunoprecipitation was performed overnight in spin columns using 

pre-immune serum, anti-RNA polymerase II antibody, or anti-UL4 antibody. DNAs were 

eluted and recovered, and PCR assays were carried out to amplify precipitated target 

sequences. As shown in Fig. 3, RNA polymerase II as the positive control was readily 

detected and associated with the EHV-1 UL4 promoter. In contrast, antibody to the UL4 

protein failed to reveal an association of this EHV-1 protein with the UL4 promoter or with 

the immediate-early, early TK, or late gK promoters (Fig. 3). Similar findings were obtained 

at both early (6h) and late times (10h and 16h) after infection and indicate that the UL4 

protein is not directly associated with viral DNA sequences and suggest that the inhibition of 

EHV-1 gene expression by UL4P is not mediated through its binding to promoter DNA 

sequences.
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The UL4P directly interacts with TBP and RNA polymerase II

Whether the UL4 protein interacts with cellular transcription factors to inhibit gene 

expression was examined as a possible mechanism for decreased transcription. Initial 

experiments were carried out with general transcription factors (GTFs) involved in the 

assembly of the pre-initiation complex (PIC) at gene promoters (Buratowski et al., 1989; 

Davison et al., 1983; Kornberg, 2007; Van Dyke et al., 1988). The TFIID complex, which 

includes the TATA box-binding protein (TBP), plays a critical role in initiating PIC 

assembly and transcription and is a target for a number of viral proteins including the E1A 

protein of adenovirus (Geisberg et al., 1995), the ICP4 protein of herpes simplex virus 1 

(Lester and DeLuca, 2011), as well as the EHV-1 IE, IR2, EICP0, and UL5 proteins 

(Albrecht et al., 2004; Kim et al., 2003, 2006, 2011).

Direct protein-protein interactions were assessed using in vitro GST-pulldown assays with 

the GST-UL4 fusion protein and purified cellular transcription factors TFIIA, TFIIB, TBP 

and RNA polymerase II (Pol II). Again, the GST protein and GST-IR2 fusion protein were 

used as negative and positive controls, respectively. Expectedly, the GST protein alone did 

not interact with any of the cellular GTFs (Fig. 4, lanes A3 and B3). When purified TBP was 

incubated with GST-IR2, a direct interaction was observed (Fig. 4A, lane 4). TBP was also 

found to bind to the GST-UL4 fusion protein (Fig. 4A, lane 5). Similar results were obtained 

when the GST-IR2 and GST-UL4 fusion proteins were incubated with purified samples of 

the carboxy-terminal domain (CTD) of Pol II, as shown in Fig. 4B, lanes 4 and 5. However, 

no interaction was observed between GST-UL4 and TFIIA, TFIIB, or the EHV-1 IEP (Fig. 

5). These findings indicate that the UL4 protein directly interacts with TBP and the CTD of 

Pol II, observations that suggest that the UL4 protein may prevent the assembly of a pre-

initiation complex at viral promoters to inhibit gene expression.

The UL4 protein partners with TBP and Pol II during EHV-1 infection

It was demonstrated that the UL4P directly interacts with TBP and RNA polymerase II (Pol 

II) in vitro through GST-pulldown assays (Fig. 4). However, as this is an artificial system to 

examine protein-protein interactions, we next addressed whether this interaction occurred 

during viral infection. HeLa cells were mock infected or infected with the wild-type RacL11 

strain of EHV-1. Co-immunoprecipitation assays were performed using the UL4-specific 

OC95 antibody (Charvat et al., 2011) or a non-related antibody to EHV-1 glycoprotein D 

(gD). The immunoprecipitated complexes were subjected to SDS-PAGE and western blot 

analysis using antibodies specific for TBP or Pol II (Fig. 6). Immunoprecipitation with the 

anti-UL4P antibody of mock infected cell extracts yielded no interaction with either TBP or 

Pol II (Fig. 6A, lane 2; Fig. 6B, lane 2, respectively). Additionally, assays that included the 

anti-gD antibody produced no interactions of the UL4 protein with TBP or Pol II from HeLa 

cells infected with EHV-1 (Fig. 6A, lane 3; Fig. 6B, lane 3, respectively). However, when the 

anti-UL4P antibody was used to immunoprecipitate protein complexes from EHV-1 infected 

cells, interactions of the UL4 protein were observed with both TBP and Pol II (Fig. 6A, lane 

4; Fig 6B, lane 4, respectively).

To confirm these interactions of the UL4 protein with these two cell factors essential for 

transcription, reverse immunoprecipitation assays using antibody to TBP and antibody to Pol 
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II CTD were carried out. Control reactions employed pre-immune serum or anti EHV-1 gD 

antibody. Precipitates were then probed with pre-immune serum or anti-UL4P antibody. As 

shown in Fig. 7A, precipitates obtained from EHV-1 infected cells with anti-TBP antibody 

revealed the presence of the UL4 protein. In contrast negative control precipitates of mock-

infected cells or precipitates obtained by use of anti-gD antibody as the primary antibody 

failed to reveal the UL4 protein. Similarly, reverse precipitation assays using anti-Pol II 

CTD antibody as the primary antibody confirmed the interaction of the UL4 protein with Pol 

II CTD during EHV-1 infection (Fig. 7B). The interaction of the UL4 protein with these 

cellular factors was demonstrated at both early (6h) and late times (10h and 16h) after 

infection. Overall, findings from GST-pulldown assays and both series of 

immunoprecipitation analyses indicate that the interaction of the UL4 protein with the TBP 

and Pol II occurs during viral infection.

Late gene expression is augmented in the absence of the UL4 protein

Our previous work (Charvat et al 2011) and findings in Fig. 1 and Table 1 indicate that 

promoters representative of all three EHV-1 gene classes were inhibited by the expression of 

the UL4 protein. However, the effect of the UL4 protein on global viral gene expression was 

unknown. Therefore, the effect of the UL4 protein on the expression of all 78 EHV-1 genes 

was assessed via microarray analysis using cells that were either mock infected or infected 

with wild-type EHV-1 or ΔUL4 EHV-1. It was hypothesized that the greatest effect of UL4 

protein expression would be evident for the regulatory genes of EHV-1. Unexpectedly, it was 

observed that the genes with the most enhanced expression in the absence of the UL4 

protein were those of the late class responsible for mature virus particle assembly and 

maturation (Table 2A). The included genes encode tegument proteins, capsid proteins, 

proteins involved in cleavage and packaging of nascent genomes, and glycoproteins. The 

only regulatory gene with significantly increased expression in the absence of the UL4 

protein was the late ETIF gene that encodes a protein that localizes within the tegument and 

is necessary for secondary envelopment and egress of viral particles (von Einem et al., 

2006). The remaining regulatory genes of EHV-1 were considered to be unaffected in the 

absence of the UL4 protein (Table 2B). As expected, no UL4 gene expression was observed 

in the ΔUL4 EHV-1 infected cells. These data suggest that during lytic infection, one role of 

the UL4 protein is to regulate the expression of late genes.

Viral DNA synthesis is not retarded in cells infected with ΔUL4 EHV-1

The microarray data indicated that the genes most affected in the absence of UL4 were those 

of the late class responsible for assembly and maturation of viral particles. However, these 

changes in viral gene expression did not significantly affect virus replication as the ΔUL4 

EHV-1 and wild type EHV-1 replicated with similar kinetics during a 24-hour time course 

(Fig. 8A). Extensive quantitative PCR analyses revealed that viral DNA synthesis was not 

retarded in the absence of the UL4 protein, and cells infected with wild type and ΔUL4 

EHV-1 produced similar amounts of viral DNA by 24 hours post infection (Fig. 8B).
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DISCUSSION

It was reported previously that transient expression of the EHV-1 UL4 protein inhibited 

expression from reporter genes that were under the control of a variety of promoters 

(Charvat et al., 2011). Furthermore, in the absence of the UL4 protein during EHV-1 lytic 

infection, expression of representative transcripts of all three gene classes was increased. 

These observations suggested that the UL4 protein plays a role in regulating gene 

expression, but no insight into the mechanism of inhibition was provided. In this report, we 

demonstrate that expression of the UL4 protein is associated with a decrease in the level of 

reporter gene transcripts (Fig. 1). However, the reduced transcript levels were not a result of 

increased mRNA instability or turnover (Table 1). Taken together, these observations 

indicate that the UL4 protein-mediated inhibition of gene expression occurs at the level of 

transcription. However, the UL4 protein does not inhibit gene expression by binding to viral 

promoters as demonstrated by gel retardation and ChIP assays, which is in contrast to that 

demonstrated for the EHV-1 IR2 negative regulatory protein (Kim et al., 2006, 2011).

Protein-protein interactions with cellular transcription factors play a role in inhibiting viral 

gene expression in a number of viral systems. The human T-cell leukemia virus encodes a 

bZIP factor that interacts with transcription factor CREB-2 to regulate viral gene expression 

(Gaudray et al., 2002). Protein interactions between the simian virus 40 (SV40) T antigen 

and AP-2 prevent AP-2 from binding to DNA to activate viral gene transcription (Mitchell et 

al., 1987). During infection with high-risk human papillomaviruses, the viral E8^E2C 

protein mediates repression of viral gene expression by interacting with cellular corepressor 

molecules, nuclear receptor corepressor 1 (NCoR1), and the chromodomain helicase DNA 

binding domain 6 protein (CHD6) (Ammermann et al., 2008; Fertey et al., 2010; Powell et 

al., 2010). Therefore, it was hypothesized that the UL4 protein mediated its inhibitory 

activity during the process of transcription, presumably at the stage of pre-initiation complex 

(PIC) assembly and recruitment of the RNA polymerase. Indeed, protein-protein interaction 

assays revealed that the UL4 protein could directly bind to purified TATA box-binding 

protein (TBP) and the carboxy-terminal domain (CTD) of Pol II (Fig. 4). Additionally, a 

series of co-immunoprecipitation analyses confirmed that the UL4 protein interacted with 

these two cellular factors in EHV-1 infected cells (Figs. 6 and 7). Additional experiments 

showed that the UL4 protein did not directly associate with general transcription factors 

TFIIA or TFIIB or with the sole EHV-1 immediate early regulatory protein (Fig. 5). The 

possibility that the UL4 protein could prevent TBP translocation into the nucleus, thus 

blocking the critical initiating step in PIC assembly was not substantiated by ongoing 

immunofluorescence assays to monitor TBP localization in the presence and absence of UL4 

protein expression (data not shown). It remains unclear whether the direct interaction of the 

UL4 protein with TBP and Pol II diminishes their ability to interact with DNA. This 

question and the Identification of domains within the UL4 protein responsible for its 

interaction with general transcription factors are the focus of future studies.

It has been well documented that the phosphorylation state of the CTD of Pol II is intimately 

involved in the progression of transcription from initiation and elongation to termination 

(Buratowski et al., 1989; Hirose and Ohkuma, 2007; Kobor and Greenblatt, 2002). A 

potential mechanism for the UL4 protein-mediated inhibition of gene expression may 
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involve dysregulation of the dynamic process of CTD phosphorylation. The direct 

interaction of the UL4 protein with the CTD may prevent the association between the 

kinases and/or phosphatases that maintain the appropriate levels of phosphorylation to 

switch between initiation and elongation or elongation and termination. Likewise, the 

inhibitory activity may involve binding of the UL4 protein such that it directly eclipses the 

serines in the heptapeptide repeats that are the targets of phosphorylation (Hengartner et al., 

1998; Komarnitsky et al., 2000; Ni et al., 2004). Whether the UL4 protein alters the state of 

CTD phosphorylation is an interesting avenue of investigation and would represent a novel 

mechanism for EHV-1 gene regulation.

That the majority of the EHV-1 genes with enhanced expression in the absence of the UL4 

protein were those of the late gene class responsible for assembly and maturation of 

infectious viral particles was unexpected (Tables 2A and B). Thus, during lytic infection, 

expression of the UL4 protein may prevent the late genes from being transcribed before 

DNA replication has completed. This could limit the exhaustion of the nucleotide pool and 

prevent translation of structural proteins that might assemble capsids before significant 

numbers of daughter genomes can be replicated, which would diminish the assembly of non-

infectious empty particles. Additionally, the reduction of late gene expression may facilitate 

efficient DNA replication, due to the fact that the incoming viral genome would serve as the 

template for DNA replication as opposed to a template for late gene transcription. Despite 

these considerations, extensive quantitative PCR analyses clearly revealed that viral DNA 

synthesis is not retarded in the absence of the UL4 protein (Fig 8B). It is possible that the 

UL4 protein preferentially regulates late genes by preventing the association of the IE and 

UL5 proteins with general transcription factors, such as TBP, that were demonstrated to be 

critical for maximal EHV-1 late gene expression (Albrecht et al., 2004; Zhao et al., 1995). 

Additional studies are focused on determining if the UL4 protein competes with the IE and 

UL5 proteins for binding to TBP.

Overall, these findings further demonstrate the inhibitory activity of the UL4 protein and 

suggest a mechanism by which the UL4 protein affects viral gene expression, namely its 

direct interactions with two cellular proteins essential for transcription. These interactions 

may be important for the inhibition of late gene expression as well as for efficient viral DNA 

replication. Future studies will address how the interactions between the UL4 protein and the 

transcription machinery contribute to the inhibition of EHV-1 gene expression and efficient 

viral replication.

MATERIALS AND METHODS

Cell culture and viruses

Mouse fibroblast L-M, rabbit kidney RK13, and human HeLa cells were grown in 

Dulbecco’s minimum essential medium (DMEM) supplemented with 5% fetal bovine serum 

at 37°C in a 5% CO2 incubator. Wild-type, ΔUL4, and ΔUL4Res EHV-1 of the pathogenic 

RacL11 strain background were used for these studies (Charvat et al., 2012).
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Plasmids and transfection procedure

The luciferase reporter plasmids, the effector gene expression plasmids, and the GST fusion 

protein plasmids used in the transient transfection assays were generated elsewhere (Bowles 

et al., 2000; Charvat et al., 2011; Smith et al., 1992). RK13 cells were transfected using 

lipofectin (Invitrogen, Carlsbad, CA) and Opti-MEM medium (Gibco, BRL, Carlsbad, CA) 

as described previously (Ahn et al., 2007). One pmol of reporter plasmid and 0.5 pmol of 

effector plasmid were employed in most assays. Transfection efficiencies of 70% or greater 

were routinely obtained.

Luciferase and northern blot analysis

Two groups of RK13 cells were co-transfected with gK-Luc and either the EICP0 or UL4 

protein expression plasmids. For one group of cells, luciferase activity was determined 48 h 

post-transfection utilizing the luciferase activity kit (Promega, Madison, WI) and the 

POLARstar OPTIMA plate reader (BMG LABTECH Inc., Cary, NC) per manufacturer’s 

instructions (Ahn et al., 2007). For the other group of cells, total RNA was isolated at 4 h 

post-transfection using the RNA-Bee RNA isolation reagent (AMS Biotechnology (Europe) 

Ltd., Abingdon, UK). RNA samples were separated on a 6% denaturing urea-

polyacrylamide gel and transferred onto a positively-charged nylon membrane (Ambion, 

Austin, TX) using a semi-dry electroblotter (Bio-Rad Laboratories). Immobilized RNA was 

hybridized with a probe specific for the luciferase transcript (5’-

GGTGTTGGAGCAAGATGGAT-3’). RNA levels were determined by densitometric 

measurement of the radiolabeled bands after exposure to a phosphor screen and scanning 

with the molecular imager FX system.

mRNA half-life

Rabbit kidney cells were infected with either wild-type EHV-1 or ΔUL4 EHV-1 at an MOI 

of 5. Twelve hours post-infection, the normal growth medium was replaced with growth 

medium supplemented with 1 μM Actinomycin D. Every three hours, total RNA samples 

were collected for a total of 18 hours. cDNA was synthesized from the RNA samples using 

the iScript™ cDNA Synthesis Kit per the manufacturer’s specifications (Bio-Rad 

Laboratories). Transcript levels were determined by quantitative real-time PCR analysis 

using the iQ™ SYBR® Green Supermix (Bio-Rad Laboratories). The EHV-1 glycoprotein 2 

(gp2, gene EUs4) transcript was detected with forward primer 5’-

TACAACAACTGAGACTAC-3’ and reverse primer 5’-GGAGAACTGCTACTATTAG-3’, 

and the total transcript levels were normalized to cellular 28S rRNA using forward primer 

5’-TATCATTGTGAAGCAGAA-3’ and reverse primer 5’-AACAACACATCATCAGTA.

Electromobility shift assays

DNA binding assays were completed using IE, TK, IR4, and UL5 promoter DNA sequences 

along with GST, GST-IR2, or GST-UL4 fusion proteins. Promoter DNAs were radiolabeled 

with [α−32P]-dATP and diluted in DNA-binding buffer (10 mM Tris-HCl [pH 7.5], 1 mM 

EDTA, 10 mM β-mercaptoethanol, 0.1% CHAPS, 100 mM NaCl). Radiolabeled promoter 

DNAs were incubated with equivalent amounts of purified GST fusion proteins for 20 min at 

room temperature (Kim et al., 1995). DNA-protein complexes were resolved on a 3.2% 
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polyacrylamide gel and then dried onto Whatman chromatography paper (Whatman 

International Ltd., Maidstone, England). The chromatography paper was exposed to a 

phosphor screen and scanned with the molecular imager FX system.

Chromatin immunoprecipitation assays (ChIP)

HeLa cells were infected with EHV 1 RacL11 at a MOI of 10 and harvested at 6, 10, 12, and 

16 h after infection. The cells were crosslinked with 1% formaldehyde for 10 min followed 

by adding 1X glycine for 5 min. After adding the Halt protease and phosphatase inhibitor 

cocktail (Pierce Biotechnology, Rockford, IL), the cells were scrapped and collected. The 

chromatin preparation was then processed according to the manufacturer’s protocol (Pierce 

Biotechnology). Lysis buffer was added and micrococcal nuclease digestion was carried out 

for 15 min at 37°C followed by centrifugation at 9000xg for 5 min. Pre-immune serum, anti-

UL4 antibody (Charvat et al., 2011) or anti CTD of Pol II antibody (Protein One, Bethesda, 

MD) was added in a spin column and incubated overnight at 4°C. After washing, the elution 

process and DNA purification were carried out according to the manufacturer’s protocol. 

PCR was performed to amplify the target DNA using appropriate primers : EHV 1 UL4 gene 

was amplified by the forward primers: 5’-CAT GGT ACC CCA ACG CAA ACA GTT GGC 

ACC GTG-3’, and reverse primers 5’-CAT AGA TCT CAG GCT GGG AAT TTG CTC 

GAC TGA AG-3’. The EHV 1 IE gene was amplified by the forward primers: 5’-ACG ACG 

ATG AGA TGG AGA TG −3’, and reverse primers 5’-ACA GCG ATA CCG AGA CCT 

G-3’. The EHV 1 TK gene was amplified by the forward primers: 5’-GAG CAC GAC TGG 

ACG AGT TA −3’, and reverse primers 5’-GTC CGC TTC AAA GAG AGT CC-3’. The 

EHV 1 gK gene was amplified by the forward primers: 5’-AAA GGT CCT GCT TAG AGC 

CA −3’, and reverse primers 5’-ACG AGT TCT TAT CGC CGA CT-3’.. PCR products were 

analyzed in a BioRad XR imaging system. Pre-immune serum was employed as the negative 

control.

GST-pulldown assays

In vitro protein-protein interaction assays were described previously (Albrecht et al., 2004). 

Briefly, 2 μg of purified GST, GST-IR2, or GST-UL4 protein was combined with 40 μL of a 

50% mix of GST-Bind resin beads (Novagen, Madison, WI) in 650 μL NETN buffer (100 

mM NaCl, 1 mM EDTA, 20 mM Tris-HCl [pH 8.0], 0.5% NP-40) and incubated at room 

temperature for 1.5 h. 1 μg of purified transcription factors TATA box-binding protein 

(TBP), Pol II CTD, TFIIA, or TFIIB (Protein One, Bethesda, MD) were added to the 

samples and incubated for an additional 1.5 h. The samples were centrifuged and washed 

five times with NETN buffer. Precipitated proteins were resolved by SDS-PAGE on 10% 

polyacrylamide gels and transferred to nitrocellulose membranes. Transcription factor 

protein complexes were detected with specific antibodies to TBP, Pol II CTD, TFIIA or 

TFIIB (Protein One). Antibody to the EHV-1 IE protein was described previously (Kim et al 

2003).

Co-immunoprecipitation assays

Human HeLa cells were infected with wild-type RacL11 EHV-1 (MOI = 10) and cellular 

lysates were prepared at 6, 10 and 16 h post-infection. The samples were diluted with a Tris-

saline solution (10 mM Tris-HCl [pH 8.0] and 14 mM NaCl) and pre-cleared by mixing with 
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30 μL of a 50% mix of Protein-A agarose beads (Sigma, St. Louis, MO) for 2 h at room 

temperature. At the same time, 10μL of the UL4 protein-specific antibody (Charvat et al., 

2011) or a non-related anti-glycoprotein D (gD) specific antibody were complexed with a 

separate 30 μL of a 50% mix of Protein-A agarose beads. The beads were pelleted by 

centrifugation, and the pre-cleared samples were added to the antibody-bound beads and 

incubated for 2 h at room temperature. The beads were washed five times with 500 μL of the 

Tris-saline solution, and after the final wash, the beads were pelleted. SDS sample buffer 

was added, and the samples were boiled for 5 min before being resolved on 10% 

polyacrylamide gels. The precipitated protein complexes were detected with either the TBP 

or Pol II CTD specific antibodies (Protein One). Reverse immunoprecipitation assays using 

antibody to TBP and antibody to Pol II CTD were carried out by a similar procedure. 

Control reactions employed pre-immune serum or anti EHV-1 gD antibody. Precipitates 

were then probed with pre-immune serum or anti-UL4P antibody. The input proteins, TBP 

and Pol II CTD, were obtained from Protein One.

Microarray analysis

RK13 cells were infected with wild-type or ΔUL4 EHV-1 (MOI = 10) for 18 h before total 

RNA was isolated using the RNA-Bee reagent. Double-stranded cDNA was synthesized 

using the Superscript® Double-Stranded cDNA Synthesis Kit and Oligo(dT)12–18 Primer 

(Invitrogen) following the manufacturer’s protocol. The cDNA was fluorescently labeled 

with the Label IT® μArray™ Cy™3/Cy™5 Labeling Kit (Mirus, Madison, WI) as per 

manufacturer’s instructions and purified using the MinElute® PCR Purification Kit 

(QIAGEN, Germantown, MD). Labeled cDNA was hybridized to the EHV-1 CustomArray 

4×2K microarray following the manufacturer’s procedure (CustomArray Inc., Bothell, WA). 

All 78 EHV-1 genes are represented on the microarray. Each gene is represented by 5 to 10 

unique oligonucleotide sequences, each of which is present in triplicate. The microarray also 

contains host cellular genes GAPDH, GAPDG, and actin. The microarray was scanned using 

the GenePix 4000B Microarray Scanner (Molecular Devices, LLC, Sunnyvale, CA).

Quantitation of viral genomic DNA and infectious titers

Rabbit kidney cells (RK13) were infected with wild-type (RacL11) or ΔUL4 EHV-1 at a 

MOI of 10. At 4, 6, 8, 12, and 24 hours post infection, infected cells were pelleted and 

freeze and thaw for three times for virus titration by plaque assay on RK13 monolayers 

(Perdue et al., 1974). For quantitative real-time PCR to measure viral DNA, DNA was 

extracted from infected cell pellets using the DNeasy® Blood &Tissue Kit (QIAGEN, 

Valencia, CA) following the manufacture’s protocol. Quantitative PCR assays were 

performed using the iScript™ One-Step RT-PCR Kit SYBR® Green and iQ™ SYBR® 

Green supermix (Bio-Rad Laboratories, Hercules CA) and primers for cellular GAPDH 

(forward: 5’-TGCCCCCATGTTTGTGATG-3’ reverse: 5’-TGTGGTCATGAGCCCTTC-3’) 

and the EHV-1 glycoprotein K (gK) gene (forward: 5’-AAAGGTCCTGCTTAGAGCCA-3’ 

reverse: 5’-ACGAGTTCTTATCGCCGACT-3’), and the EHV-1 gp2 gene primers (forward:

5’-TACAACAACTGAGACTAC-3’ reverse: 5’-GGAGAACTGCTACTATTAG-3’). 

Statistical analysis for the infectious titer results was completed using the mean of log-

transformed data and a two way Student T test, and one way T test for the quantitation of 

viral genomic DNA.
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Highlights

The UL4 gene is conserved in the genome of DI particles of EHV-1.

The UL4 gene is not essential for EHV-1 lytic replication.

The UL4 protein binds to cellular transcription factors TBP and Pol II.

Late viral gene expression is enhanced in UL4 null virus infection.

Viral DNA synthesis is not retarded in cells infected with the UL4-null virus.
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Fig. 1. 
Luciferase assay and northern blot analysis correlated the activity of the reporter gene to the 

levels of luciferase gene transcripts. RK13 cells were transfected with the gK-Luc reporter 

plasmid alone or in conjunction with either the EICP0 protein or UL4 protein expression 

plasmid. Transfection efficiency was routinely 80%. (A) Luciferase activity was measured at 

48 h post-transfection while (B) luciferase transcript levels were examined by northern blot 

analysis 4 h post-transfection. Densitometry was used to determine the percent mRNA 

levels. Results were reproducible in three independent experiments. RLU, Relative 

Luminescence Units
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Fig. 2. 
Electromobility shift assays examining whether the UL4 protein possesses the ability to bind 

EHV-1 promoters. A. Immediate-early (IE) promoter DNA (−120/+73); B. thymidine kinase 

(TK) promoter DNA (−193/+133); C. IR4 promoter DNA (−267/+17); and D. UL5 promoter 

DNA (199/+20) were radiolabeled and incubated with various amounts of the protein under 

standard conditions described in Materials and Methods. The amount of GST and GST-IR2P 

used in this experiment was 100ng. Triangles: increasing amounts of the GST-UL4P added 

at 1X (100ng), 3X (300ng), 6X (600ng). Control serum (con), IR2P-specific monoclonal 

antibody (A1.4; Caughman et al., 1995), and IEP TAD-specific polyclonal antibody (a-TAD; 

Kim et al., 2011) were used. The position of complexes formed by the IR2P is indicated 

with arrows.
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Fig. 3. 
ChIP assays to assess if the UL4 protein was bound to EHV-1 promoters in infected HeLa 

cells at 16 h post infection. Assays were carried out as described in the Materials and 

Methods. Similar results were obtained at early (6h) and 10h post infection. PCR results 

were analyzed for the UL4, IE, TK, and gK promoters. In all assays, PCR bands obtained 

from DNA samples immunoprecipitated with anti-UL4 antibody did not differ significantly 

from those obtained with the pre-immune serum.
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Fig. 4. 
GST-pulldown assays were completed to determine whether the UL4 protein directly 

interacts with general transcription factors. Purified GST, GST-IR2, or GST-UL4 fusion 

proteins were incubated with GST-Bind resin beads for 1.5 h before being combined with 

(A) TATA box-binding protein (TBP) or (B) RNA polymerase II carboxy-terminal domain 

(Pol II CTD) for an additional 1.5 h incubation. Captured proteins were eluted and resolved 

by SDS-PAGE and western blot using TBP or Pol II CTD specific antibodies. MW, 

molecular weight marker
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Fig. 5. 
GST-pulldown assays were completed to determine whether the UL4 protein directly 

interacts with general transcription factor TFIIA or TFIIB or the EHV-1 IE protein. Purified 

GST (negative control), GST-TAD (positive control), GST-IE (positive control) or GST-UL4 

fusion proteins were incubated with GST-Bind resin beads for 1.5 h before being combined 

with A. TFIIA, B. TFIIB, or C. EHV-1 IE. Captured proteins were eluted and resolved by 

SDS-PAGE and western blot using anti-TFIIA antibody, anti-TFIIB antibody, or anti-IE 

specific antibody. MW, molecular weight marker. Details are in the Materials and Methods.
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Fig. 6. 
Co-immunoprecipitation assays with anti-UL4 protein antibody demonstrating that the UL4 

protein interacts with cellular transcription factors during EHV-1 lytic infection. HeLa cells 

were infected with wild-type EHV-1 (MOI=10), and cell lysates were collected at 10 h post-

infection. UL4 protein specific antibody and non-specific anti-glycoprotein D (gD) antibody 

were conjugated to Protein-A agarose beads and were then incubated with cellular lysates 

from mock-infected or EHV-1-infected cells. Immunoprecipitated proteins were resolved by 

SDS-PAGE and immunoblotted for either A. TBP or B. Pol II CTD. MW, molecular weight 

marker
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Fig. 7. 
Co-immunoprecipitation assays with antibodies specific for TBP and Pol II CTD 

demonstrating that the UL4 protein interacts with cellular transcription factors during EHV-1 

lytic infection. HeLa cells were infected with wild-type EHV-1 (MOI = 10), and cell lysates 

were collected at 6, 10, and 16 h post-infection. A. Anti-TBP antibody or B. anti-Pol II CTD 

antibody and non-specific anti-glycoprotein D (gD) antibody as a negative control were 

conjugated to Protein-A agarose beads and were incubated with cellular lysates from mock-

infected or EHV-1 infected cells. Immunoprecipitated proteins were resolved by SDS-PAGE 

and immunoblotted with anti-UL4 protein antibody. MW, molecular weight marker. Results 

from 16 hpi are show; similar results were obtained at 6 and 10 h post-infection
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Fig. 8. 
Quantitative PCR and virus titer were employed to examine the growth of UL4-deleted 

EHV-1 as compared to the wild type EHV-1 RacL11. RK13 cells were infected at MOI of 

10, and the infected cells were harvested at 4, 6, 12 and 24 hours post infection. (A) 

Infectious virus titers were determined by plaque assays as described in the Materials and 

Methods. (B). DNA was isolated using DNA STAT-60 reagent or DNeasy® Blood &Tissue 

Kit. Viral DNA was measured by quantitative PCR analyses by detecting the gp2 DNA 

sequence and normalizing to the levels of cellular GAPDH. Data shown are from four 

independent assays, and details are in the Material and Methods.
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