Skip to main content
. 2019 Jul 27;24:101961. doi: 10.1016/j.nicl.2019.101961

Table 5.

Lesion symptom mapping for N = 58 participants using the least absolute shrinkage and selection operator (LASSO) for regression modelling. Predictor candidates were all 27 left hemisphere ROIs, and 2 control variables (lesion volume, number of words produced). Two-tailed statistical tests were applied. Table 5a shows the LASSO model for the dependent variable lexical diversity, Table 5b for lexical sophistication, and Table 5c for phonological word features.

a) Dependent variable: lexical diversity
Independent variables LASSO coefficient
Supramarginal gyrus −0.118
Posterior insula −0.186
Inferior fronto-occipital fasciculus −0.117
Number of words
0.088
Model summary
Coefficient of determination
Expected prediction error
R2 Adjusted R2 Estimatea Std. Error
0.580 0.511 0.736 0.115



b) Dependent variable: lexical sophistication
Independent variables LASSO coefficient
Pole of superior temporal gyrus
−0.091
Model summary
Coefficient of determination
Expected prediction error
R2 Adjusted R2 Estimatea Std. Error
0.262 0.235 1.040 0.175



c) Dependent variable: phonological word features
Independent variables LASSO coefficient
Supramarginal gyrus
−0.045
Model summary
Coefficient of determination
Expected prediction error
R2 Adjusted R2 Estimatea Std. Error
0.297 0.271 1.027 0.181
a

Mean squared error (10-fold cross validation).