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ABSTRACT

Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in
laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form,
poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modular protein D4S2 and used them
against termite colonies Coptotermes lacteus in fields. To achieve this, an integrated biomolecular bioprocess was
developed to produce D4S2 for manufacturing SNC containing fipronil with high encapsulation efficiency of
approximately 97% at benign reaction conditions and at scales sufficient for the field applications. PEI coating
was achieved via electrostatic interactions to yield SNC-PEI with a slower release of fipronil than SNC without
coating. As a proof-of-concept, bait toxicants containing varied fipronil concentrations were formulated and
exposed to nine termite mounds, aiming to prolong fipronil release hence allowing sufficient time for termites to
relocate the baits into and distribute throughout the colony, and to eliminate that colony. Some baits were
relocated into the mounds, but colonies were not eliminated due to several reasons. We caution others interested
in producing bait toxicants to be aware of the multilevel resistance mechanisms of the Coptotermes spp.

“superorganism”.

1. Introduction

Nanotechnology promises a great impact on agricultural fields.
Among many applications of nanotechnology in agriculture, develop-
ment of nanoscale carriers for efficient and sustainable utilities of pes-
ticides has received a lot of attention [1, 2, 3]. Specifically, encapsulation
of pesticidal active ingredients within nanocarriers enhances their
deliverability to target pests and enables control over their release ki-
netics, while at the same time protects them from premature degradation
caused by direct exposure to ultraviolet light, low pH or heat [4, 5, 6].
These integrated controlled-release and protective properties of nano-
carriers are expected to facilitate better efficacy of the encapsulated
pesticide by prolonging its release on a target site, as compared to
non-encapsulated formulations. In this way, the application rates of
pesticides can be potentially reduced, minimizing pest resistance devel-
opment and adverse environmental impacts. This has been one of the key
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drivers for the application of nanotechnology in agriculture [1].
Progress in the development of nanocarriers has created a library of
delivery systems for various pesticides like insecticides, herbicides, and
fungicides [7, 8, 9]. In this regard, nanocarriers synthesized based on
lipids (e.g., liposome [10], nanoemulsions [11], and solid lipid nano-
particles [12, 13, 14]) and polymers (nanospheres [15, 16], nanogels
[17, 18], and micelles [19, 20]) have been widely used. Recently, agro-
chemical nanocarriers based on silica have been increasingly viewed as
an attractive alternative [21, 22, 23, 24, 25, 26]. Their structural prop-
erties can be engineered from solid to mesoporous nanoparticles and
even liquid-filled mesoporous nanoparticles (core-shell) to facilitate
high-capacity loading [27]. Furthermore, due to their rich surface
chemistry [27, 28], their surfaces can be physically or chemically func-
tionalized with small molecules (e.g., sulfonate [29] or amine [30])
and/or biomacromolecules (e.g., a-cyclodextrin [31], pectin [32], chi-
tosan [33] or alginate [34, 35]) for further sustaining and/or controlling
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the release of agrochemicals.

Many of the aforementioned nanocarriers have been tested and
compared to conventional formulations for their efficacy against various
types of pests. Cao et al. loaded pyraclostrobin into silica nanoparticles
and then surface-coated the nanoparticles with chitosan to sustain its
release against Phomopsis asparagi, and only half dose of the technical
recommendation was required to demonstrate effective fungicidal ac-
tivities [25]. Mattos et al. improved the stability and prolonged the
release of neem bark extract by encapsulating in silica nanoparticles, so
that the nanoformulation was able to eliminate worker ants, Acromyrmex
crassispinus [26]. We have previously synthesized biocompatible silica
nanocapsules based on SurSi peptide [36] and demonstrated the release
of encapsulated fipronil in a time-controlled manner through control of
the silica-shell thickness to eliminate worker and soldier termite colonies,
Coptotermes acinaciformis [24]. Overall, efficacies of pesticide-loaded
nanoparticles can be enhanced by up to 30% relative to conventional
products [1].

Despite the efforts in developing nanoformulations of pesticides
aforementioned, the evaluation of their performances has been limited to
the laboratory environment. Application of pesticide-loaded nanocarriers
in actual field conditions, to the best of our knowledge, are yet available
in the literature. Herein, we reported the efficacy tests of our silica
nanocapsules encapsulating fipronil against termite colonies of Copto-
termes lacteus (C. lacteus) (Froggatt) at their natural feeding-sites in
tropical northern Queensland, Australia. Termites are prevalent
throughout the tropics and subtropics [37] where they are the most
problematic pests [38]. The economic impact of termites exceeds US$40
billion annually worldwide [39]. Therefore, controlling termite pest
populations are urgent. However, elimination of termite pests in fields
remains challenging due to, for example, their sophisticated behaviors
[40], seasonal weather patterns [41], density and age of the colonies
[42], and also different susceptibility of different castes of termites (e.g.,
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queen, king, soldier, worker) within the nest to pesticides [43].

In this study, we utilized bait toxicant systems comprising a mixture
of fipronil-loaded silica nanocapsules and a-cellulose, and aimed for
eliminating termite colonies of C. lacteus in the fields (Fig. 1). To achieve
this, recombinant catalytic modular protein D4S2 was produced in mi-
crobial cell factory and used [44], in lieu of SurSi peptide we previously
used [24], to enable cost-effective manufacture of fipronil-loaded silica
nanocapsules at scales sufficient for the field trials. Moreover, the use of
protein D4S2 enabled the formation and stabilization of nanoemulsions
and subsequently catalyzed the synthesis of nanoemulsion-templated
silica nanocapsules at neutral pH, room temperature and without using
any toxic reagents. Surface chemistry of the silica nanocapsules was
further modified to prolong the sustained release of the encapsulated
fipronil. We hypothesized that worker termites would forage for the bait
toxicants and relocate the baits into their mounds, and the sustained
release of fipronil would provide a sufficient time for the worker termites
to distribute the baits to the other termite castes within the mound and
subsequently eliminate the colonies (Fig. 1).

2. Materials and methods
2.1. Materials

Analytical grade fipronil (C;2H4CloFgN4OS, M 437.15 g/mol, pow-
der) was kindly provided by Accensi Pty. Ltd. (Narangba, Australia).
Miglyol 812 was purchased from AXO Industry S.A. (Wavre, Belgium).
Prior to use, it was passed through heat-activated silica gel (Sigma-
Aldrich, Castle Hill, Australia). A stock solution of poly(ethyleneimine)
(PEI) (#P3143, Sigma-Aldrich) was prepared at 5% (w/v), pH 8 in water
(using hydrochloric acid to adjust the pH). Water with >18.2 MQ cm
resistivity was used (a Milli-Q system, Merck Millipore, Bayswater,
Australia). Other chemicals were of analytical grade, and used as

3. Termite field trials
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Fig. 1. Application of silica nanocapsules as fipronil nanocarriers against termite colonies in field. (1) Production of D4S2 protein in microbial cell factories. (2)
Synthesis of silica nanocapsules (SNC) and poly(ethyleneimine) (PEI)-coated silica nanocapsules (SNC-PEI) using the D4S2 protein-stabilized nanoemulsions as the
template. (3) Hypothetical schemes of worker termites foraging the bait toxicants, then relocating the baits into and distributing them to other termite castes (e.g.,
queen, king, soldiers, etc.) inside the mound. The sustained release properties of silica nanocapsules would provide sufficient time for bait distribution, hence, colony
elimination. Note: the red dotted lines illustrate the movement of worker termites, and the arrow illustrates their moving direction.
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received. They were purchased from either Sigma-Aldrich or Merck.
2.2. Protein production from Escherichia coli (E. coli)

E. coli strain BL21(DE3) containing plasmid pET-14b(+) with the
inserted DNA encoding D4S2 protein was cultivated as previously
described [45]. Briefly, a single colony was selected from a freshly
streaked Luria Bertani (LB) agar plate, and was then inoculated and
incubated overnight at 30 °C, 180 rpm. The resulting overnight
pre-cultures were inoculated to give main cultures with a starting ODggo
of 2.5 x 1073, The main cultures were grown at 37 °C, 180 rpm for about
4 h to reach an ODggy of 0.5, then induced with 1 mM iso-
propyl-B-D-thiogalactopyranoside and allowed to grow at 37 °C for
additional 4 h. Final ODggo of 2 was routinely obtained. All media was
supplemented with kanamycin sulfate at 15 pg/mL.

To purify the recombinant D4S2 protein, the cells were harvested and
then disrupted by sonication (Branson Sonifier 250, Branson Ultrasonics,
CT, USA) using an energy output of 60 W (4 times, each for 30 s). The
crude cell-extract was added with 0.5% PEI and stirred at 4 °C for 60 min
to precipitate nucleic-acid contaminants. NasSOj4 (solid) was added to the
supernatant obtained after centrifugation (48,000 x g, 4 °C, 20 min) to a
concentration of 1 M, and then incubated at 90 °C for 30 min to pre-
cipitate protein contaminants. After centrifugation (48,000 x g, 4 °C, 20
min), the supernatants were mixed with NaySO4 (solid) to a final con-
centration of 1.8 M by stirring at 30 °C for 60 min to isolate D4S2 protein.
The D4S2 precipitates were washed three times using a rinsing buffer
containing 25 mM Tris-HCl, 1 M NaCl and 1.8 M NaySO4 at pH 8, and
then resolubilized in 25 mM Tris-HCI, 1 M NaCl, pH 8 before dialysis
against 25 mM sodium 4-(2-hydroxyethyl)-1-piperazine ethanesulfonate
(HEPES) buffer at pH 7.5.

2.3. Silica nanocapsules synthesis

An oil solution of Miglyol 812 containing 10 g/L fipronil in was
prepared, and was then added to 1.53 g/L D4S2 protein in 25 mM HEPES
buffer pH 7.5 at a volume ratio of 1:9 (10% oil, v/v). The mixture was
then sonicated using a Branson Sonifier 450 ultrasonicator for four 30 s
bursts at 40 W. The resulting fipronil-loaded nanoemulsions were diluted
five times, and then mixed with the tetraethoxysilane (TEOS, 160 mM) at
room temperature for 24 h to produce oil-core silica shell nanocapsules
(SNC) with fipronil loaded. The silica nanocapsules were collected sub-
sequently after washing with ethanol and then water. To form PEI-coated
silica nanocapsules (SNC-PEI), the suspensions were mixed with 0.5%
PEI at a volume ratio of 1:1 by stirring at room temperature for 24 h
before washing thrice with water. Prior to field trial, the pellets of either
SNC or SNC-PEI stored at 4 °C were re-suspended in water and re-
characterized for ensuring quality consistency.

2.4. Material characterization

2.4.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE)

Protein samples was analyzed qualitatively using SDS-PAGE. NuPAGE
4-12% Bis-Tris Precast Gels with an XCell SureLock™ Mini-Cell Elec-
trophoresis system and 2-(N-morpholino) ethanesulfonic acid (MES)
buffer were used (Life Technologies, Mulgrave, Australia). Novex
BenchMark pre-stained Protein Ladder (Life Technologies, Mulgrave,
Australia) was used as the standard.

2.4.2. Reversed-phase high-performance liquid chromatography (RP-HPLC)

Concentrations of fipronil were analyzed by RP-HPLC using a Shi-
madzu system (Kyoto, Japan) with a Jupiter C18 column (5 ym, 300 [o\,
150 mm x 4.6 mm) (Torrance, CA). The mobile phase A was 0.1% H3PO4
aqueous solution, and the phase B was 90% acetonitrile and 0.1% H3POj.
The elution gradient increased from 50 to 70% B over 20 min at a
wavelength of 220 nm.
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2.4.3. Dynamic light scattering (DLS)

Size, size distributions and zeta potentials of fipronil-loaded nano-
emulsions, SNC and SNC-PEI were measured by DLS using Zetasizer Nano
ZS (Malvern Panalytical Ltd., Malvern, U.K.). Samples were diluted by a
factor of 100 to avoid multiple scattering effects.

2.4.4. Transmission electron microscopy (TEM)

A drop of silica nanocapsules (2 pL) was deposited onto grids (Pro-
SciTech Pty. Ltd., Kirwan, Australia) and was then observed under TEM
(JEOL 1010, Tokyo, Japan) at 100 kV. The size of the nanocapsules was
determined using iTEM software equipped with the TEM.

2.5. Encapsulation efficiency

To extract fipronil from the oil core, acetonitrile was added to the
silica-nanocapsule suspensions to a final concentration of 60% (v/v) and
then mixed through an overnight stirring at room temperature. After
centrifugation, the concentration of fipronil in the supernatant was
determined using RP-HPLC as described above. The encapsulation effi-
ciency (%EE) was calculated as the ratio of the amount of fipronil in the
silica nanocapsules to the initial amount of fipronil in the oil.

2.6. Fipronil release in vitro

The release of fipronil from the SNC and SNC-PEI were tested and
compared. 100 pL nanocapsules containing 200 pg fipronil were each
sealed in dialysis tubings having a cellulose's membrane size of 3.5 kDa
(Merck Millipore, Bayswater, Australia), and then placed into a beaker
containing10 mL of water while being shaken at room temperature for 19
days. At different time intervals, 200 pL aliquots of the solution in the
beaker were taken, replaced with water, and then analyzed using RP-
HPLC.

2.7. Termite field trial

Colonies of C. lacteus (epigeous nesting, mound building) occur near
Beerburrum (26.9686° S, 152.9713° E), southeast Queensland, Australia,
where the work was conducted. C. lacteus is very common in eastern
Australia from Victoria to southern Queensland [46]. Mound-building
termites such as C. lacteus are useful to verify the effects of bait toxi-
cants on the termite colonies due to easy access to their mounds [47, 48].
The mounds were characterized by an outer earthen wall enclosing a
dense woody mass molded reproductive, eggs and larvae, soldiers, and
workers [48]. The mounds we used were about 0.5 m (height) x 1 m
(diameter).

A control-a-cellulose bait comprised of a-cellulose and water at a
weight ratio of 1:4 was presented in a plastic commercial drink bottle.
The bottle was connected to a plastic conduit, 400 mm (length) x 18 mm
(diameter), containing a corrugated cardboard wick (400 mm x 20 mm)
and secured with a hose clamp (control assembly). A 25 mm-diameter
borehole was made about 300 mm above ground level horizontally
into a mound through the external crust into the carton material [48].
The conduit was inserted into the borehole to a depth of 200 mm.
Fire-blanket material (500 mm in a square) and then a black plastic bag
was wrapped around the bottle and conduit and secured with wire. A
treated-a-cellulose bait comprised of a-cellulose and nanocapsule sus-
pension at a weight ratio of 1:4 was similarly presented, connected to the
mound and secured (treated assembly). The bottle varied in size ac-
cording to the amount of fipronil required for delivery. A control- and a
treated-assembly were both installed into each of nine mounds at
different timelines (Table 1). Inspections were conducted fortnightly and
each assembly was inspected visually for termite activity. Where the
opaque bait or termite muddying inside the bottle prevented clear vision,
a TermatracT3i device (Termatrac Pty Ltd., Australia) was used to detect
termite movement in the conduit and inside the bottle. Estimates of bait
removal were problematic and tended to be qualitative.
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Table 1
Details of treatment of 9 Coptotermes lacteus mounds used in the field study.
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Mound No. Initiation date Fipronil conc. (ppm) Fipronil mass (g) Bottle size (L) Monitoring concluded Duration (weeks)
1 25/01/2016 1000* 0.2 0.6 11/06/2016 19
2 16/05/2016 1000* 0.2 0.6 30/08/2016 15
3 1/07/2016 1000* 0.2 0.6 15/09/2016 11
4 21/02/2017 10 0.006 1.25 7/06/2017 15
5 21/02/2017 20 0.012 1.25 7/06/2017 15
6 21/02/2017 100 0.06 1.25 7/06/2017 15
7 22/07/2017 100 0.25 3.0 3/11/2017 14
8 22/07/2017 250 0.25 1.25 3/11/2017 14
9 22/07/2017 500 0.25 1.25 3/11/2017 14

Note: * Fipronil-loaded nanocapsules not coated with poly (ethyleneimine) (PEI).

To monitor colony health, two boreholes with 25 mm in diameter
were made into each mound into the carton material and left empty. The
boreholes were observed a week later and re-drilled if plugged to the
outer edge of the crust by termites. Where a borehole was not plugged to
the outer crust, a metal rod was inserted to determine if the borehole had
been blocked at the inner edge of the crust: if so, it was re-drilled. Control
bottles with apparently little a-cellulose bait remaining were replaced
(without removing the conduit from the mound) from time-to-time,
allowing for continuous monitoring of colony health. Mounds 1, 2 and
3 were destructively sampled with a mattock on 11%™ June, 2016, 30™
August, 2016 and 15" September 2016, respectively. The mounds were
progressively destroyed and visually inspected for live termites to just
below ground level. Two boreholes were drilled into the remaining
mounds 4-9 on 30" July 2018 and inspected on 3™ August 2018 to
monitor colony health many months after treatment. Mound 4 was

(A) (B)

Cell suspension

v

Cell lysis

v

Nucleic-acids precipitation

v

Protein-contaminants precipitation

v

D4S2-protein precipitation

v

D4S2-precipitate rinsing

v

D4S2-precipitate solubilization

v

Buffer exchange

Pure D4S2-protein solution

destructively sampled on 9" August 2018.
3. Results and discussion
3.1. Production of recombinant catalytic modular proteins

We previously used SurSi peptide (M 3.6 kDa) to synthesize silica
nanocapsules for termite control in a laboratory setting [24]. However,
peptides are too costly for large-scale production unless they are
re-designed as recombinant proteins to enable production in microbial
cell factories [49]. In this paper, we produced and used recombinant
catalytic modular D4S2 protein (M 13.3 kDa) [44], in lieu of SurSi pep-
tide, as the key ingredient to catalyze the formation of silica nano-
capsules for termite field trials. We had designed D4S2 by genetically
combining both the surface-active module DAMP4 protein [50] and the
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Fig. 2. Production of recombinant catalytic modular protein D4S2 based on selective thermochemical precipitation. (A) Process-flow diagram of the purification of
D4S2 protein. (B) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the supernatant samples obtained after: (1) cell lysis; (2) nucleic-
acids precipitation; (3) protein-contaminants precipitation; (4) D4S2-protein precipitation; (5) D4S2 protein-precipitate rinsing; (6) D4S2 protein-precipitate solu-
bilization; and (7) buffer exchange. M: Marker. (C) The purity of final product D4S2 protein as characterized using a reversed-phase high-performance liquid

chromatography (RP-HPLC).
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silicification module of the SurSi peptide [36]. In this way, D4S2 can be
produced renewably and cost-effectively in industrially-relevant bacteria
Escherichia coli (E. coli) [44, 45]. Furthermore, the modular design allows
D4S2 to be isolated and purified from E. coli using a scalable,
non-chromatographic approach, that is, selective thermochemical pre-
cipitation [45, 51, 52, 53] (Fig. 2A). This is because of the inclusion of
four-helix bundled DAMP4 protein within D4S2 that enables D4S2 to
retain its stability and solubility at 90 °C in the presence of 1 M sodium
sulfate while most protein contaminants are precipitated [54]. Compared
to chromatography-based methods that are widely used for purifying
high-value biopharmaceutical products [49], chromatography-free
methods offer cheaper, shorter cycle period and higher purification
yield. We obtained up to 0.39 g of D4S2 protein with high purity in one
purification cycle (Fig. 2A) after scaling up the purification procedure to
almost 14 times more than that of our smaller-scale attempt [45].
Additionally, the resultant D4S2 yield was 4 times higher than that of the
chromatography-based method [44]. The purified D4S2 was in a correct
molecular weight and high purity as demonstrated qualitatively in the
SDS-PAGE (Fig. 2B). RP-HPLC analyses confirmed the quality of the
purified D4S2 (Fig. 2C). Such amount of D4S2 was sufficient to synthe-
size up to 250 mL suspension of silica nanocapsules encapsulating
approximately 0.25 g fipronil for the treatment of one termite mound
(Table 1).

3.2. Synthesis and characterization of silica nanocapsules

For termite field trials, we synthesized and used both uncoated silica
nanocapsules (SNC) and poly(ethyleneimine) (PEI)-coated silica nano-
capsules (SNC-PEI) which were pre-loaded with fipronil insecticide
(Fig. 3A). The purified D4S2 protein aforementioned was used as the key
ingredient for producing the nanoemulsion-templated silica
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—> —>
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PEl-coated
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nanocapsules as it has two important functionalities [44]: (1) the protein
could facilitate the formation of oil-in-water (O/W) nanoemulsions and
subsequently stabilize the nanoemulsions by its adsorption on the
nanoemulsion surfaces; and (2) the protein attached on the nano-
emulsion surfaces could then attract silica precursor available in bulk
solutions and catalyze the formation of silica shells surrounding the
nanoemulsions. The use of protein D4S2 enabled the silicification reac-
tion to occur at neutral pH, room temperature and without using any
toxic reagents, which is in contrast to the silica nanocapsules synthesized
using chemical-based surfactants [27]. To synthesize these SNCs,
oil-in-water (O/W) nanoemulsions were first generated and used as a
template for silica nanocapsules. Fipronil was solubilized in Miglyol oil at
its maximum solubility 10 g/L and then mixed with D4S2 protein solu-
tion by ultrasonication to form nanoemulsions containing 10% (v/v) oil
phase, enabled by high surface activity of D4S2 [44]. Diameters of the
resultant nanoemulsions were 220 £+ 19 nm with a size dispersity (D) of
0.210 + 0.05 (Fig. 3B) and positive zeta potential (56 + 3 mV) (Fig. 3C)
which was due to the positively-charged lysine and arginine residues
within D4S2 that projected toward bulk solutions. These cationic and
polar properties of nanoemulsion surfaces attracted the silica precursor
TEOS available in the bulk solutions and catalyzed the formation of silica
shell encapsulating the nanoemulsion templates [44]. Spherical oil-core
silica-shell nanocapsules with a diameter of 368 + 20 nm and shell
thickness of 60 + 3 nm were formed (Fig. 3D (i)). The nanocapsules had
negative zeta potentials (—31 + 3 mV) due to the deprotonation of
interfacial silanol group (SiO ™) at near-neutral pH. To coat silica nano-
capsules, branched-chain polymer PEIL, which is positively charged, was
added to the nanocapsule suspension at near-neutral pH and allowed to
self-assemble onto the nanocapsules through electrostatic interactions.
The excess, unadsorbed PEI was removed by centrifugation of the
nanocapsule suspension, removing the supernatant, and repeated
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Fig. 3. Synthesis and characterization of silica nanocapsules using oil-in-water nanoemulsions as a template. (A) Fipronil-loaded nanoemulsions stabilized by D4S2
protein (i); addition of tetraethoxysilane (TEOS) formed oil-core silica-shell nanocapsules (SNC) (ii); and addition of poly(ethyleneimine) (PEI) produced PEI-coated
silica nanocapsules (SNC-PEI) (iii). (B) Size distribution as measured by dynamic light scattering (DLS). (C) Changes of zeta potentials. (D) Morphology of SNC and
SNC-PEI as visualized by transmission electron microscopy (TEM) (scale bars are 500 nm). The arrows are drawn as an example showing the boundary of the sil-

ica shells.
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Fig. 4. Release profile of fipronil from (A) uncoated silica nanocapsules (@SNC)
and (B) poly(ethyleneimine)-coated silica nanocapsules (lISNC-PEI) in to water.

washing with a HEPES buffer solution. At this stage, the zeta potential of
the silica nanocapsules was reversed to positive (55 + 4 mV) (Fig. 3C),
demonstrating the successful adsorption of PEI which led to the forma-
tion of PEI-coated silica nanocapsules. Reversal of surface charges as
indicated by zeta potentials aforementioned is characteristic of poly-
electrolyte layer growth on colloidal templates which had also been
observed by others [55]. Additional layer of PEI slightly increased the
nanocapsule diameter (Fig. 3B) to 372 + 13 nm with the total shell
thickness of 65 + 3 nm (Fig. 3D (ii)). Both SNC and SNC-PEI were stable
in water as there were no significant changes in size and dispersity for
over 20 days. This physical stability was likely contributed by high zeta
potentials of the nanocapsules (Fig. 3C) which facilitated repulsive
forces, hence, preventing aggregation.

3.3. Sustained release of fipronil in water

The dissolution of fipronil in the oil phase prior to the formation of
nanoemulsion core and subsequent shell formation led to the high effi-
ciency of fipronil encapsulation. Approximately 97% of initial fipronil in
the oil phase can be encapsulated in either SNC or SNC-PEI Further, the
cumulative release of fipronil from both SNC and SNC-PEI in water was
investigated and compared for a period of 19 days (Fig. 4). The release of
fipronil from the silica nanocapsules can fit well to the Higuchi model
[4]. Fipronil release from SNC was considerably slow with 10 + 2% on
day 3 and followed by a gradual release to 25 & 3% on day 19. As we
demonstrated previously, the presence of silica shells provided a diffu-
sional barrier to fipronil release [4, 24, 36]. Compared to SNC, fipronil
released from SNC-PEI was much slower with only 3 + 1% on day 19. The
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Heliyon 5 (2019) e02277

additional layer of branched polymer like PEI on silica shells seems to
further inhibit the diffusion of fipronil out from the silica nanocapsules.
The role of PEI at nanoparticle interfaces to suppress the release of
encapsulated actives has also been observed mainly in the area of drug
delivery [56, 57]. The delayed release of the encapsulated fipronil was
expected to provide ample time for the worker termites to forage the bait
toxicants, carry them back into the mound, and then distribute them to
the other termite castes (e.g., soldier, queen, etc) within the mound. If the
worker termites were drop-dead directly after foraging the baits, the
living termites could sense the presence of dead termites and, as a result,
they would seal off or avoid the treated area and protect themselves [58].
Therefore, it was hypothesized that all termites within the mound could
have time to receive the baits and thus continuously being exposed to
fipronil at gradually increased concentrations until colony elimination
could be achieved.

3.4. Silica nanocapsules as bait toxicants against termite colonies in fields

As a proof of concept, efficacies of the fipronil-loaded silica nano-
capsules were investigated against termite colonies in fields. To achieve
this, either SNC or SNC-PEI containing fipronil were formulated with
a-cellulose and then used as bait toxicants for feeding the termite col-
onies (Table 1). In an individual termite mound, the bait toxicant along
with a control bait (a-cellulose and water only) were connected using
separate containers to the termite mound via a plastic conduit (Fig. 5A).
The use of bait systems takes advantage of the termite eusociality [59]
where worker termites, due to their anatomical and behavioral special-
izations, forage to feed the other termite castes within the colony that do
not and cannot forage on their own. The baiting technique is also
beneficial as the pesticides are contained in food matrices which are
confined within an impervious bait station and then administered in
localized sites [60, 61], and any remaining baiting materials can be
removed and properly disposed of after the control actions have been
completed [62]. In this preliminary field trials, our aims were to: 1)
determine whether the bait toxicant could be relocated into a colony of
C. lacteus; and 2) eliminate that colony. Different fipronil concentrations
of 1,000, 500, 250, 100, 20 and 10 ppm were exposed to 9 mound col-
onies of C. lacteus (Froggatt) in three trials (Fig. 5B).

Based on the initial assumption of 1 million termites in one mound,
200 mg of fipronil would be sufficient to treat a mound with a dose of 0.1
pg/termite. Mounds 1-3 were treated with bait toxicants containing SNC
loaded with 200 mg of fipronil (<1000 ppm) (Table 1, Fig. 6A). In
contrast to the control baits in all the termite mounds, only treated baits
in Mound 1 were relocated by termites into the mound. Two boreholes
were made in the mound to monitor the colony health which has been
normally applied in Australian mound-building wood-feeding termites
[48, 63, 64, 65]. The boreholes into Mound 1 were blocked weekly by the
termites until week 18. On week 19, there was no repair on the boreholes
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3. SNC-PEI

600 F
400 2. SNC-PEI
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1 2 3 4 5 6 7 8 9
Mound number

Fig. 5. (A) Representative of the arrangement of untreated and treated a-cellulose baits connected to a termite mound of Coptotermes lacteus in fields near Beerburrum,
southeast Queensland, Australia. (B) Three trials subjecting the baits treated with either silica nanocapsules (SNC) or PEl-coated silica nanocapsules (SNC-PEI)
containing a varied amount of fipronil insecticide to the nine mounds of termite colonies of C. lacteus in the fields.
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(A) Trial 1, a-cellulose + SNC containing 1000 ppm fipronil
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(B) Trial 2, a-cellulose + SNC-PEI containing 10-100 ppm fipronil
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Fig. 6. Summary of the outcome of the termite field trials conducted in this study. (A) Trial 1, a-cellulose + SNC containing 1000 ppm fipronil. (B) Trial 2, a-cellulose
-+ SNC-PEI containing 10-100 ppm fipronil. (C) Trial 3, a-cellulose + SNC-PEI containing 100, 250, 500 ppm fipronil.

in Mound 1, and small black ants (tufted tyrant ants Iridomyrmex sp.)
were present in the boreholes. No repair to the mechanical damage on a
termite mound usually indicates a decline of termite colony in the mound
[48, 63, 64, 65]. Therefore, Mound 1 was then destructively sampled. A
putrid stench emanated from the mound with the ants were present
throughout the exposed parts of the mound indicating a large number of
termites were eliminated, and no live termites were observed in the
original mound above the ground level. Initially, we thought that we had

successfully eradicated the colony. However, after digging the under-
ground level of Mound 1 on the several weeks following week 19,
thousands of healthy-looking termites were found with no ants in this
zone. We suspected that live termites sensed the danger when they found
accumulated dead termites in the mound, so they took an emergency
move and relocated to the underground level. This initial trial taught us
two lessons: (1) the fipronil release was not slow enough, so before the
bait was distributed to the whole colony, or more accurately to the
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termite queen, they noticed the danger and left their mound to survive;
(2) termites are very intelligent with a highly organized and coordinated
society.

Based on the lessons from the first trial, we decided to decrease the
fipronil concentration and further slow its release in Trial 2, allowing
sufficient time for the worker termites to relocate and distribute the bait
toxicants to the whole colony. In this case, we reduced the fipronil con-
centration from 200 mg (1000 ppm) to 6-60 mg (~10-100 ppm), and
coated the SNC with PEL. Mounds 4-6 were treated with bait toxicants
containing SNC-PEI with varying amounts of fipronil at 6, 12, and 60 mg
(~10, 20, 100 ppm), respectively (Table 1, Fig. 6B). In contrast to Trial 1,
bait toxicants containing SNC-PEI were relocated into all three mounds in
Trial 2, indicating less resistance. However, termite activities were
observed in all baits, and boreholes continued to be blocked to the
exterior edge of the mound crust until work on these mounds was
concluded (week 15) when most of the baits were consumed. Two strikes
with the mattock on 9™ August 2018 revealed live C. lacteus soldier and
worker termites in Mound 4. Termites in Mounds 4-6 were not elimi-
nated by the treatment. This concentration range was too low to exhibit
any toxic effect on the termite colonies especially with the very slow
fipronil release from SNC-PEL

In Trial 3, the fipronil concentration was increased to 250 mg but with
different amounts of a-cellulose to achieve final fipronil concentrations of
100, 250 and 500 ppm in the bait. Mounds 7-9 were treated with bait
toxicants containing SNC-PEI with 100, 250 and 500 ppm fipronil,
respectively (Table 1, Fig. 6C). About 75% of the bait toxicants appeared
to have been removed into Mound 7 on week 8, whereas only a small
amount of baits was relocated into Mounds 8 and 9. We found three dead
alates on the inside moist wall of the treated bait container in Mound 8
during week 10. About 100 dead worker termites were seen in the con-
trol bait container in Mound 9 on week 12. However, termite wings were
also found around Mound 9 which indicated recent swarming demon-
strating that the termites behaved normally in the mound despite its
exposure to bait toxicants. Overall, termite colonies in Mounds 7-9 were
not eliminated by the treatment.

For many years there has been much research conducted seeking
biological control of subterranean termites. Whilst the causal organisms
tested have been many and varied, certain strains of the entomopatho-
genic fungus Metarhizium anisopliae (Metsch.) Sorokin have been of
particular interest. Experimental work in the laboratory seemed prom-
ising, but field studies invariably failed to eliminate the termite colony.
These data were reviewed by Chouvenc and Su [66], particularly with
regard to Coptotermes spp. They showed that due to multilevel disease
resistance mechanisms, the incidence of an epizootic within a group of
termites is unlikely: the three major mechanisms were grooming, cellular
encapsulation, and gut antifungal activity. Similarly, in extensive labo-
ratory work, Su [67] and Chouvenc [58] showed that Coptotermes for-
mosanus Shiraki and Coptotermes gestroi (Wasmann), respectively, avoided
or sealed off areas treated with fipronil. Our fieldwork had similar results
in that whilst the bait toxicants were relocated into some of the mounds,
colony elimination did not occur. We suspected that the failures to
eliminate termite colonies in fields were attributable to the different
amounts of bait toxicants consumed by individual termites when the baits
were distributed within the colonies, and those who consumed a large
quantity of the baits might be drop-dead and thus encouraging other
living termites in the mound to seal off. This would be consequently
negating the sustained release effects of the silica nanocapsules. As a
result of this work, we have shelved further endeavors to use our bait
toxicant delivery systems for termite control. We caution others interested
in producing a novel termite bait toxicant to be aware of the multilevel
resistance mechanisms of the Coptotermes spp. “superorganism” [68].

4. Conclusions

In this study, we have demonstrated the production of recombinant
catalytic modular proteins D4S2 for the synthesis of silica nanocapsules
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at scales sufficient for conducting termite field trials. Silica nanocapsules
can be preloaded with fipronil prior to the formation of a silica shell at
environmentally friendly reaction conditions, thus achieving the high-
loading capacity of almost 97%. In addition, we showed that silica
nanocapsules can be coated with poly(ethyleneimine) (PEI) through
electrostatic interactions to prolong the sustained release of encapsulated
fipronil. Preliminary studies of both silica nanocapsules and PEI-coated
silica nanocapsules formulated with a-cellulose as bait toxicants against
nine termite colonies in fields were conducted to test their efficacies.
Generally, the untreated a-cellulose bait (as control) was more readily
relocated into the colony than was the treated a-cellulose bait. Never-
theless, most or all, of the treated bait was relocated from bottles in the
Mounds 1, and 4-6, and 75% of the treated bait was relocated in Mound
7. Varying amounts of the baits were removed from the bait containers in
the other mounds. Despite achieving relocation of the baits into a mound,
we were unable to eliminate a colony. It is possible that termite colonies
avoided or sealed off areas treated with the bait toxicants. Further un-
derstanding of the behavior of termites and the resistance mechanism
will be important for future trial experiment design.
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