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Abstract

Genome-scale single-cell biology has recently emerged as a powerful technology with important 

implications for both basic and medical research. There are urgent needs for the development of 

computational methods or analytic pipelines to facilitate large amounts of single-cell RNA-Seq 

data analysis. Here, we present a detailed protocol for SINCERA (SINgle CEll RNA-Seq profiling 

Analysis), a generally applicable analytic pipeline for processing single-cell data from a whole 

organ or sorted cells. The pipeline supports the analysis for the identification of major cell types, 

cell type-specific gene signatures, and driving forces of given cell types. In this chapter, we 

provide step-by-step instructions for the functions and features of SINCERA together with 

application examples to provide a practical guide for the research community. SINCERA is 

implemented in R, licensed under the GNU General Public License v3, and freely available from 

CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html.
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1. Introduction

Single cells are the fundamental units of life. Recent advances in high-throughput cell 

isolation and sequencing at the single-cell level enable studying individual transcriptomes of 

large numbers of cells in parallel, providing new insights into the diversity of cell types, rare 

cells and cell lineage relationships that has been difficult to resolve in genomic data from 

bulk tissue samples [1, 2, 3, 4, 5, 6, 7, 8]. While the single cell research field is still in its 

early stages, it has already made a strong impact on many fields in biology and led to great 

improvements in our fundamental understanding of human diseases [9, 10, 11, 12, 13, 14, 

15, 16, 17]. We believe that the demand of single cell analytic tools will continue to grow in 

the future as broad applications of single cell transcriptomics in biological and medical 

researches.
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While the future of single-cell next-generation sequencing based genomic/transcriptomic 

studies is promising, it comes with new and specific analytical challenges including the 

identification and characterization of unknown cell types, handling the confounding factors 

such as batch and cell cycle effects, and addressing the cellular heterogeneity in complex 

biological systems, just to name a few [18, 19, 20, 21, 22]. Recently, a number of methods 

specifically designed for single-cell RNA-Seq (scRNA-Seq) analysis have been introduced 

including BackSPIN [15], SNN-Cliq [23], and RaceID [24] for cell cluster identification; 

scLVM [22] for confounding factor handling; Seurat [25] for spatial reconstruction of 

scRNA-Seq data, cell cluster identification, and expression pattern visualization; SAMstrt 

[26] and SCDE [20] for single-cell differential expression analysis; and Monocle [21], 

Wanderlust [27], SCUBA [28], Waterfall [29], StemID [16], and SLICE [30] for extracting 

lineage relationships from scRNA-Seq and modeling the dynamic changes associated with 

cellular biological processes. Here, we present SINCERA [31], a top-to-bottom single cell 

analytic tool set designed for the practical usages of the research community. Specifically, 

the pipeline enables investigators to analyze scRNASeq data using standard desktop/laptop 

computers to conduct data filtering, normalization, clustering, cell type identification, gene 

signature prediction, transcriptional regulatory network construction, and identification of 

driving forces (key nodes) for each cell type. We have successfully applied SINCERA to 

multiple scRNA-Seq datasets from normal developmental lung and various pathological 

states from both mouse and human, demonstrating SINCERA’s general utility and accuracy 

[31, 32, 33].

2. Materials

The entire SINCERA pipeline was implemented in R. The execution requires the following 

hardware and software.

1. A standard desktop or laptop computer with Windows, Mac OS X, or Linux 

operating system.

2. R statistical computing environment (version 3.2.0 or later) from The 

Comprehensive R Archive Network (https://cran.r-project.org/).

3. Install R and Bioconductor packages into the R environment, including Biobase 

[34], ROCR [35], RobustRankAggreg [36], G1DBN [37], igraph [38], ggplot2 

[39], ggdendro (https://cran.r-project.org/web/packages/ggdendro), plyr [40], and 

zoo [41].

4. Download SINCERA scripts from https://research.cchmc.org/pbge/sincera.html.

3. Methods

SINCERA consists of four major analytic components: preprocessing, cell type 

identification, gene signature prediction, and driving force analysis (Fig 1). The pipeline 

takes RNA-Seq expression values (e.g., FPKM [42] or TPM [43]) from heterogeneous single 

cell populations as inputs, and it outputs a clustering scheme of cells, differentially 

expressed genes for each cell cluster, enriched cell type annotations for each cluster, refined 

cell type-specific gene signature, and cell type-specific rankings of transcription factors. 
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SINCERA is a comprehensive toolset with a variety of options for key analytic steps, many 

of which can be run independently of one another. To facilitate ease of reference for 

beginner users, we have marked essential steps with *. In the rest of this chapter, we dissect 

the functional features of SINCERA into the four components and describe the usages of 

each component step by step. R functions in SINCERA are depicted in italic font.

3.1. Preprocessing

The preprocessing steps include data transformation and normalization, prefiltering cells 

with low quality, and prefiltering genes with low expression abundancy and selectivity as 

described below.

1. *The analysis starts with running the construct function to create an R S4 object, 

which will hold all the data and analysis results. The function takes two 

parameters as inputs: “exprfile” and “samplefile”. The “exprfile” specifies the 

full path to a gene expression profile matrix where rows are genes and columns 

are individual cells (see Note 1). The “samplefile” parameter specifies the full 

path to a table that contains a single column describing the sample information 

(e.g., biological replicates or batch difference) of individual cells. Figure 2 shows 

the required formats of the two input files.

2. The CCHMC single cell core inspects each individual cell under microscope 

after capture and prior to lysis. This quality control (QC) step is important in 

filtering out libraries made from empty wells or wells with excess debris. In 

addition, we run the filterLowQualityCells function of SINCERA to further 

identify and remove low quality cells. The key parameters of running this 

function include: “min.expression”, which specifies the minimum expression 

value for a gene to be considered an expressed gene, and “min.genes”, which 

specifies the lower bound of the number of expressed genes in a cell. This 

function identifies and removes cells with few expressed genes. The default value 

for the “min.expression” parameter is 1 FPKM/TPM and for the “min.genes” 

parameter is 500.

3. Use filterContaminatedCells function to remove potential contaminated cells 

based on the coexpression of known marker genes of two distinct cell types, such 

as the coexpression of mouse lung epithelial marker Epcam and mouse lung 

endothelial cell marker Pecam1. Users can specify the marker genes of the first 

cell type and of the second cell type in the “markers.1” and “markers.2” 

parameter, respectively. This step can repeat multiple times. For each cell type, 

we suggest using only highly specific markers for contamination detection.

4. *Use prefilterGenes function to filter out non- or low-expressed genes, as well as 

genes that are expressed in less than a certain number of cells per sample 

preparation. By default, genes expressed (>5 FPKM/TPM) in less than two cells 

will be filtered out by this function.

5. *Use expr.minimum function to set a minimum expression value. As part of the 

preprocessing step, we transformed FPKM/TPM values less than or equal to 

Guo and Xu Page 3

Methods Mol Biol. Author manuscript; available in PMC 2019 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.01–0.01 in order to eliminate “zero”s from the follow up data transformation 

and analysis. The default minimum value is 0.01 FPKM/TPM.

6. Run batch.analysis function to identify batch differences. This function plots the 

quantiles of gene expression in individual cells from different batches, and 

compares the distribution of gene expression among batches using MA plot, Q–

Q plot, and cell correlation and distance measure [31].

7. *Normalization methods are applied to reduce batch effect and enable expression 

level comparisons within or across sample preparations. SINCERA provides 

both gene level and cell level normalizations. For gene level normalization, 

normalization.zscore function is applied to each gene expression profile for per-

sample z-score transformation (see Note 2). For cell level normalizations, we use 

the trimmed mean. If starting with normalized expression data (e.g., FPKM or 

TPM), cell level normalization is not always necessary.

8. *Run cluster.geneSelection function to select genes with a certain level of 

expression specificity for cell type identification. This specificity filter [31] 

removes genes unselectively expressed across all cell types (e.g., housekeeping 

genes) and keeps genes with a certain degree of cell type selective expression. 

The default specificity threshold is set as 0.7. The main purpose of this step is to 

select expression profiles that are potentially informative about cell types/states 

and remove genes that may increase noise in the cell type identification step (see 
Note 3).

3.2. Cell Type Identification

Cell clustering and cell type identification is a key step in the pipeline and directly 

influences all downstream analysis. SINCERA starts with an unsupervised hierarchical 

clustering of the cells using the selected expression profiles. Use of an unsupervised 

hierarchical clustering approach does not impose prerequisite external biological knowledge, 

nor does it require preset knowledge of the number of clusters; therefore, it is capable of 

discovering novel cell types. Multiple iterations using more than one clustering methods are 

usually required for cell cluster refinement (see Note 4).

1. *Run cluster.assignment function to assign cells to initial clusters. The default 

algorithm uses hierarchical clustering with average linkage, Pearson’s correlation 

based distance measurement, and z-score transformed expression values of the 

selected genes.

2. *Run plotMarkers function to check the quality of the obtained clustering 

scheme and inspect the expression patterns of a number of known markers across 

cell clusters. A scattered and/or overlapping expression pattern of cell type 

marker genes across different cell clusters may suggest a low quality clustering 

scheme. In this case, we recommend using cluster.assignment function with a 

different parameter setting to redefine cell clusters. This process may need to be 

iterated several times to achieve better separation.
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3. Run the cluster.permutation.analysis function to perform a cluster membership 

permutation analysis [31] to determine cluster significance. SINCERA 

implements several quality control or internal validation steps; this is one of 

them, used to check quality of clustering schemes.

4. *Once cell clusters have been defined, use cluster.diffgenes function to identify 

differentially expressed genes in each cluster. For each cell cluster, this function 

uses one-tailed Welch’s t test or Wilcoxon test to compare the gene expression in 

a given cell cluster to the corresponding gene expression in all other cells, and 

genes with p-value less than a threshold are identified as differentially expressed 

genes for the cluster. One can also choose binomial or negative-binomial 

probability test in this step.The default threshold is 0.05.

5. Next, run celltype.enrichment function to predict cell type for each cluster (see 
Note 5). SINCERA has built a precompiled cell type and gene association table 

using experimental expression data obtained from EBI expression atlas (https://

www.ebi.ac.uk/gxa). Cell type prediction is based on the enrichment of cell type 

annotations significantly associated with differentially expressed genes of the 

given cluster using a one-tailed Fisher’s exact test.

6. Once cell clusters have been defined, use plotMarkers function to visualize the 

expression patterns of known cell type markers in order to cross validate the 

predicted cell type, i.e., to check whether they are selectively expressed in their 

defined cell clusters.

7. Run celltype.validation function to perform a rank-aggregation-based 

quantitative assessment of the consistency between mapped cell type and the 

expression pattern of known cell type marker genes. Figure 3 demonstrates the 

application of SINCERA to identify major cell types at E16.5 mouse lung and to 

validate the cell type assignment using known markers.

3.3. Cell Type-Specific Signature Gene Analysis

We define cell type-specific gene signature as a group of genes uniquely or selectively 

expressed in a given cell type. Once cell types have been defined, the analysis proceeds with 

the identification of cell type-specific gene signatures using the following functions.

1. Collect positive and negative marker genes for each mapped cell type. Use 

setCellTypeMarkers function to add the collected markers into SINCERA.

2. *Run the signature.prediction function to predict cell type signature genes. The 

basic level of prediction defines differentially expressed genes of the given cell 

type as the signature genes. For more advanced prediction, the 

signature.prediction function uses four features [31] to define cell type-specific 

signature genes, including common gene metric (genes shared by the cluster 

cells), unique gene metric (genes selectively expressed in the cluster cells), test 

statistic metric (group mean comparison between cluster cells and all the other 

cells), and synthetic profile similarity (genes correlating with the model profile 

of the given cluster). When the marker genes of a cell type are available, the 
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signature.prediction function uses a logistic regression model to integrate the 

four metrics for ranking prediction of cell-specific signatures [31]. Nevertheless, 

marker genes may not be always available, especially for novel cell types. In 

such cases, the signature.prediction function predicts signature by using 

additional filters to refine differentially expressed genes, including a frequency 

filter and a fold change filter. The frequency filter selects genes expressed in at 

least a certain percentage of the cells within the defined cluster. The fold change 

filter selects genes with a certain degree of average expression enrichment in the 

given cluster compared to the cluster with its second highest average expression. 

The default frequency and fold change threshold is 30% and 1.5, respectively.

3. Use plotHeatmap function to visualize the expression of the predicted signature 

genes across cell types (clusters). This allows a visual inspection of the selective 

expression of the predicted signature genes in the defined cell types.

4. Run signature.validation function to validate the signature prediction using a 

repeated random subsampling approach [31]. Essentially, this approach validates 

the predicted signature by assessing its classification accuracy in distinguishing 

the cells of the given cell type from cells of other types.

3.4. Cell Type-Specific Key Regulator Prediction

Identification of the key regulators controlling cell fate is essential for understanding 

complex biological systems. SINCERA utilizes a transcriptional regulatory network (TRN) 

approach to establish the relationships between transcription factors (TFs) and target genes 

(TGs) based on their expression-based regulatory potential and identify the key TFs for a 

given cell type by measuring the importance of each node in the constructed TRN.

1. Run drivingfoce.selectTFs function to select candidate transcription factors for 

the prediction. The function selects the union of cell type-specific differentially 

expressed TFs (e.g., p-value of one-tailed Welch’s t test <0.05) and commonly 

expressed TFs (e.g., expressed in at least 80% of the cell type) as candidates. 

Note that here we do not require a key regulator for a given cell type to be 

differentially expressed in the cell type.

2. Use drivingforce.selectTGs function to select cell type-specific differentially 

expressed genes or signature genes as candidate target genes (TGs).

3. Use drivingforce.inferTRN function to infer a TRN using the cell type-specific 

expression patterns of the selected candidate TFs and TGs. The “edge.threshold” 

parameter is used to select significant TF-TF or TF-TG interactions (see Note 6) 

for building the network. The default threshold is set to 0.05 (see Note 7).

4. Use drivingforce.rankTFs function to rank TFs based on their importance to the 

inferred TRN (see Note 8). Top ranked TFs are predicted as key regulators 

(driving force) for the given cell type. Figure 4 demonstrates of usingSINCERA 

to predict key TFs in E16.5 mouse lung epithelial cells.
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4. Notes

1. The pipeline takes aligned and quantified RNA-Seq expression values (e.g., 

FPKM or TPM) as inputs. Functions related to sequencing data mapping, 

alignment, quantification, and annotation are not part of the pipeline, and they 

can be processed using widely available software such as Tophat [44, 45], BWA 

[46], Cufflinks [42], and RSEM [43].

2. We noticed that, typically, in a scRNA-Seq dataset, individual genes can have 

different levels of baseline expression, which means that a cell type selective 

marker may have nonzero expression in cells other than its defined cell type, but 

its expression amplitude is usually much higher in the selective cell type than in 

other cell types. The normalization.zscore function scales the expression of 

individual genes using a z-score transformation in order to better reveal their 

major expression patterns and suppress the unnecessary variations associated 

with the scRNA-Seq data. Performing within-sample z-score transformation is 

based on the assumption that cell type distribution is roughly the same among 

replicates. If this assumption cannot be guaranteed (e.g., there is a large batch 

difference among different replicates), a global z-score transformation should be 

used. Of note, the z-score transformed expression values are mainly used in the 

cell type identification step and the visualization of gene expression patterns, but 

not in differential expression analysis.

3. The cluster.geneSelection function also provides other criteria for informative 

gene selection, including coefficient of variance and average expression across 

all cells, which have been utilized in existing scRNA-Seq analyses [12, 22]. The 

specificity.thresholdSelection function in SINCERA can be used to determine the 

specificity threshold. This function measures the per-sample specificity of a set 

of ribosomal genes based on Ribosome pathway annotation (KEGG PATHWAY: 

hsa03010), and then chooses a criterion that can filter out at least 95% of the 

ribosomal genes.

4. We compared multiple clustering algorithms using a variety of independent 

scRNA-Seq datasets [31] and showed that hierarchical clustering, while may not 

always be the best way, is generally applicable and easy to use. Therefore, 

hierarchical clustering is suitable for biologists to use as one of the tools for 

initial cell clustering identification [31]. In addition to the default clustering 

method, we also include hierarchical clustering with ward linkage [47], 

consensus clustering [48, 49], and tight clustering [50] as optional cluster 

determination methods in the pipeline. Users can choose different clustering 

methods for cell cluster identification by setting the “clustering.method” 

parameter in the cluster.assignment function. For advanced users, comparing 

different methods and adjusting parameters to achieve optimized results are 

encouraged.

5. The cell cluster identification and cell type assignment are the bottlenecks in 

current scRNA-Seq analysis. It requires us to extract cell type relevant 
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information from multiple sources, including the expression patterns of known 

marker genes and functional annotations enriched by the cluster specific 

differentially expressed genes. Knowledge integration by an expert is usually 

required to determine the cell type of a given cell cluster at the end. To our 

knowledge, there are multiple tools for gene sets enrichment analysis, e.g., 

DAVID [51] and ToppGene [52], but lack of tools for cell type enrichment 

analysis. To facilitate the general usage of the pipeline, we implemented 

celltype.enrichment function in SINCERA as an attempt to automate the cell 

type prediction. The current version of cell type annotations is based on the open 

source gene expression data from EBI Expression Atlas (https://www.ebi.ac.uk/

gxa); bias and incompleteness from the collection of individual experimental 

sources are inevitable. We recommend the use of it for initial cell type screening, 

together with functional enrichment analysis using cluster specific differentially 

expressed genes, and curation and knowledge integration by experts to refine the 

cell type mapping. We foresee that single cell transcriptome analyses will largely 

improve cell type prediction by providing a high resolution and unbiased cell 

type separation and associated signature identification for lung and other organs.

6. For the transcriptional regulatory network (TRN) construction, we focus on 

identifying the relationships between TF-TF (transcription factor and its partners/

cofactors) and TF-TG (transcription factor and its target genes). The possible 

feedback regulations from target genes to TFs and TF autoregulations are not 

considered in the present implementation of SINCERA. Regulatory relationships 

are established based on first-order conditional dependence of gene expression 

[31], adapted from the inference of first-order conditional dependence Directed 

Acyclic Graph (DAG) in [37].

7. The inferred TRN may consist of multiple connected components. The largest 

connected component (LCC) is the one that has the largest number of nodes 

among all connected components. If the LCC of the inferred TRN is not large 

enough, which means that the number of nodes in LCC is less than a certain 

percentage (e.g., 80%) of the total number of selected TFs and TGs for TRN 

inference, this indicates that the number of interactions is insufficient to build the 

TRN. The drivingforce.inferTRN function needs to be reexecuted with a higher 

threshold to build the TRN using more interactions. The drivingforce.getLCC 
function can be used to assess whether a large enough LCC exists in the inferred 

TRN.

8. To identify cell type-specific driving force, we measure and rank the importance 

of TFs in the cell type-specific TRN based on the integration of six TF 

importance metrics, including degree centrality, closeness centrality, 

betweenness centrality, disruptive fragmentation centrality, disruptive connection 

centrality, and disruptive distance centrality. Details about the six metrics can be 

found in Guo et al. [31]. Individual metrics provide local views of the importance 

of a node to the network, and their integration can provide a better global view of 

the node importance in the network. In the current setting, only the TFs in the 
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LCC of the inferred TRN are included in the TF ranking, and only the LCC is 

used to calculate the values of the six metrics for each TF.
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FIG 1. 
Schematic flow of the SINCERA protocol (Adapted from Fig. 1 in Guo et al. [31])
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FIG 2. 
Formats of the input files to the SINCERA pipeline. (a) Format of expression profile table. 

(b) Format of sample description table. The number of rows in the sample description table 

is the same as the number of cells in the expression profile table. Both files are tab delimited 

text files
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FIG 3. 
Identification and validation of major lung cell types at E16.5 mouse lung (Adapted from 

Figs. 2 and 3 in Guo et al. [31]). (a) Cells (n = 148) from two sample preparations from fetal 

mouse lung at E16.5 [31] were assigned into nine clusters via hierarchical clustering using 

average linkage and centered Pearson’s correlation. Each color represents a distinct cell 

cluster, labeled as C1–C9. The rectangles represent single lung cells from the first 

preparation and the ellipses consist of single cells from a second independent preparation. 

Connection lines indicate the z-score correlation between the two cells ≥0.05. The blue lines 

connect cells within the same preparation, while the red lines connect cells across 

preparations. (b) Expression patterns of representative known cell type markers were used to 

validate the correct assignment of major lung cell types at E16.5. Expression levels were 

normalized by per-sample z-score transformation. (c) Receiver Operating Characteristic 

curves of the rank-aggregation-based validation showed a high consistency between the cell 

type assignments and the expression patterns of known cell type-specific markers
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Fig. 4. 
Prediction of E16.5 mouse lung epithelial specific driving force (Adapted from Fig. 6 and 

Table 1 in Guo et al. [31]). (a) Rank importance of transcription factors (TFs) in the largest 

connected component (LCC) of epithelial specific transcriptional regulatory network (TRN). 

The sizes of the TF nodes are proportional to their average-ranked node importance. The 

LCC of epithelial TRN is comprised of 348 nodes and 432 edges. The nodes in red are TFs 

and the nodes in grey are differentially expressed genes in epithelial cells and are not TFs. 

The edges were established using the first-order conditional dependence approach described 

in the Guo et al. [31] with a cutoff at 0.05. (b) Top 20 predicted key TFs for lung epithelial 

cells at E16.5 based on the integration of six TF importance metrics. DC ranking based on 

degree centrality, CC ranking based on closeness centrality, BC ranking based on 

betweenness centrality, DFC ranking based on disruptive fragmentation centrality, DCC 
ranking based on disruptive connection centrality, DDC ranking based on disruptive distance 

centrality. All ranks are in decreasing order of the TF importance values. TFs in bold font 

are associated with lung-related mouse phenotypes. TRN is plotted using cytoscape 2.8 

(http://www.cytoscape.org/)
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