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Abstract

In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, 

such as generating a vaccine, have not yet been successful. The high price tag associated with 

current treatment options for chronic infection and the spike in new infections concurrent with 

growing opioid abuse are strong motivators for developing effective immunization and 

understanding neutralizing antibodies’ role in preventing infection. Humanized mice—both human 

liver chimeras as well as genetically humanized models—are important platforms for testing both 

possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of 

ways humanized mouse technology can be employed in pursuit of learning how HCV infection 

can be prevented.
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1 Introduction

1.1 A Brief History of Hepatitis C Virus (HCV)

Just over three decades ago, hepatitis C virus (HCV) was still an unnamed entity, 

presumably responsible for the growing number of viral hepatitis cases not caused by the 

two hepatitis viruses known at the time, hepatitis A (HAV) and hepatitis B (HBV). Even 

with screening the blood supply for HAV and HBV, cases of transfusion-associated hepatitis 

not caused by these two viruses were still observed in the mid-1970s [1, 2]. The cause of this 

disease, nebulously described as non-A-non-B hepatitis (NANBH), remained unknown until 

the early 1980s when experiments in chimpanzees at least determined that a transmissible 

agent was in fact at play [3–6]. However, testing for this agent in patients, let alone isolating 

it, remained impossible until 1989 when ongoing efforts finally resulted in the isolation and 

characterization of the NANBH virus, now termed HCV [7].

Once identified, assays were rapidly developed to test patients and the blood supply for 

HCV [8], making blood transfusions safer and allowing for improved epidemiological data 

regarding the virus’ prevalence. By 1992, the incidence of HCV in the US blood supply was 

brought down to effectively zero. Since then, treatment options for HCV have undergone 

numerous evolutions, from the early days of interferon-α2b to pegylated interferon, the 

advent of ribavirin, and, since 2011, an array of direct-acting antivirals (DAAs). The arsenal 

of treatments now available for HCV patients have a lower incidence of side effects and cure 

rates of 90%+ for most genotypes.
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1.2 The Continued Need for an HCV Vaccine

While highly encouraging, these achievements in understanding and treating HCV can 

distract from the fact that HCV continues to remain a potent global health problem, even in 

the developed nations where so many of these milestone findings occurred. An estimated 

71.1 million people worldwide are infected with HCV and are thus at heightened risk for 

severe liver disease, including cirrhosis, fibrosis, and hepatocellular carcinoma (HCC) [9]. 

While approximately 15–45% of individuals clear their initial HCV infection, the remaining 

55–85% become chronically infected [10–12]. Since the resultant liver disease from chronic 

infection progresses over many years, patients can go decades after the initial infection event 

before experiencing symptoms. Thus, these individuals can unknowingly be transmitters 

during this prolonged period. The Centers for Disease Control and Prevention (CDC) 

estimates that in the USA alone, 3.5 million people are infected with HCV and anywhere 

from 40% to 85% of these individuals are unaware [13]. These numbers may even be 

underestimated due to bias in the populations included in the surveys [14]. Due to the 

presence of HCV in the blood supply prior to 1992 and the lack of knowledge concerning 

the virus in the 1970s and 1980s, the CDC has recommended that all individuals born 

between 1945 and 1965 be tested for HCV as the prevalence of HCV antibodies in these 

individuals is four times higher than the general population [13].

Besides these increased incidences of chronic HCV infection in the aging baby boomer 

population, there has been a rise in acute HCV infections amongst a much younger 

population. Data collected from 2006 to 2012 found a growing number of injection drug 

users (IDUs)—predominantly white and 30 years or younger living in nonurban areas of 

central Appalachia—presenting with acute HCV infection upon admission to substance 

abuse treatment facilities [15]. Amongst IDUs around the world, including in other 

developed nations, HCV is considered hyperendemic, with mid-point prevalence estimates 

of HCV antibodies present in 60–80% of IDUs in 25 different countries, including Japan 

(65%), China (67%), the UK (51%), and the USA (73%) [16]. In fact, mathematical 

estimates of the number of transmissions stemming from an individual infected with 

genotypes 1a, 3a, or 4a (i.e., those seen more among IDUs and typical of trends in HCV 

infection in the Western world) range from 12 to 24.5 [17].

The well-lauded cure now available for HCV is unfortunately not available for all with HCV, 

underscoring the need for preventive measures such as a vaccine [18]. The extreme cost of 

these drug regimens—upward of $80,000—makes a worldwide rollout to all HCV patients 

unfeasible. In the USA, a large percentage of individuals with chronic HCV, such as IDUs 

and aging individuals infected pre-1992 via blood transfusion, rely on government-funded 

programs like Medicare and Medicaid. Unable to handle widespread coverage of the 

exorbitant drug costs, these services have set restrictions, such as sobriety requirements and 

the need for advanced liver disease progression, to limit patient eligibility [19]. These 

barriers only add to future healthcare costs as untreated individuals can transmit HCV over a 

longer period. Furthermore, a focus on curing patients only with severe liver disease is 

poorly misplaced, as treatment cannot undo the extreme liver damage and probability of 

developing liver cancer associated with these later stages.
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This widespread prevalence of HCV, compounded by the inaccessibility of the most 

effective treatments, has made a vaccine as necessary as ever before. The holy grail of the 

HCV field, vaccine development, has faced many challenges, especially since besides 

humans, HCV only robustly infects chimpanzees. With the increased restrictions on 

chimpanzee use in biomedical research and the official inclusion of captive chimpanzees on 

the US Fish and Wildlife Services Endangered Species list, researchers now face additional 

funding challenges and ethical issues. Thus, to continue HCV vaccine development and 

related research on neutralizing antibodies (NAbs), immunocompetent small animal models 

are greatly needed.

1.3 Surrogate Viruses for HCV

Although this chapter will focus on altering mice to support HCV infection and provide a 

platform for developing vaccines and therapeutics, the inverse approach, whereby HCV or 

related hepaciviruses are altered to use in small animal models, is also worth noting. Early 

efforts to find an HCV surrogate utilized the hepacivirus George Barker virus B (GBV-B), 

which can infect small nonhuman primates such as tamarins [20–23], marmosets [24], and 

owl monkeys [25]. However, in these animals, GBV-B does not always replicate to robust 

levels and often causes acute infection instead of the more common persistent infection 

associated with HCV [24–26]. Chimeric GBV-B viruses containing, for example, parts of 

the HCV genome encoding the structural [27] or non-structural [28] proteins have had 

greater success in achieving persistent infection in marmosets, but the utility of such models 

for vaccine development and drug testing remains unclear.

Over the past few years, enhanced sequencing efforts have identified viruses like HCV that 

also belong to the Hepacivirus genus of the Flaviviridae family. These related hepaciviruses 

are naturally occurring in a diverse range of species [29], including horses [30], bats [31], 

cattle [32, 33], black-and-white colobus monkeys [34], sharks [35], and a variety of rodents 

[36–38] (but none as of yet in Mus musculus). The genome organization of HCV and these 

other recently discovered hepaciviruses is similar, but the sequence divergence is substantial. 

For example, at the amino acid level, rodent hepaciviruses (RHVs) have 70.4% sequence 

diver-gence from HCV nonstructural proteins, with even greater diver-gence when 

comparing structural proteins [37]. Very recently, a RHV isolated from wild Norway rats in 

New York City [38], RHV-nr-1, was successfully used to infect both immunocompromised 

and immunocompetent laboratory mice, resulting in persistent or acute hepatotropic 

infection, respectively [39]. Thus, conventional laboratory mice do hold promise for 

studying the immunological response to hepaciviruses, especially if viral mutants are 

identified that can establish chronic infection in immunocompetent mice. However, their 

utility for vaccine development may be limited given the substantial antigenic divergence of 

these viruses from HCV. Chimeric RHVs could be constructed in which (parts of) the 

structural and/or nonstructural proteins are replaced, but such approaches have proven 

difficult as observed for HCV/GBV-B chimeras that are substantially impaired in their 

replicative fitness. Nonprimate hepaciviruses (NPHVs), which infect horses, are most 

closely related to HCV, even more so than GBV-B or primate hepaciviruses [34, 37]. 

However, the obvious difficulties of working in such a nontraditional research model have 

made NPHVs less than ideal as an HCV surrogate. With the continued efforts to sequence 
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the viromes of diverse species, including other nonhuman primates, it is possible that more 

hepaciviruses will be uncovered. Until then, other approaches have focused on viral 

adaptation to facilitate study of HCV infection in mice. For example, the HCV strain Jc1 

(genotype 2a) was successfully adapted to use murine CD81 via mutations in E1 and E2, 

permitting viral uptake in murine hepatocytes both in vitro and in vivo [40, 41].

1.4 Humanizing Mice to Study HCV

Mice have a long history of use in biomedical research, but they naturally do not support 

HCV infection. However, the plethora of tools and reagents available to study these animals 

and the relative ease in performing genetic manipulations have made mice suitable 

candidates for a variety of humanization procedures. This has allowed researchers to not 

only infect humanized mice with HCV but has also created new opportunities for studying 

vaccines and broadly neutralizing antibodies (bNAbs) in vivo. In this chapter, we will 

broadly describe the approaches available for generating genetically humanized mice or 

human liver chimeric mice and more specifically the ways to perform and assess HCV 

infection in such models. As vaccination regimens and antibody treatments are highly 

individualized to specific experiments, we will present an overview of how these methods 

have been successfully utilized to test HCV immunization approaches in these models.

2 Materials

Before proceeding with any work involving humanized mice and/or human pathogens, 

please see Note 1.

2.1 Mouse Strains

Note that all mice expressing HCV entry factors, specifically human CD81, OCLN, 

SCARB1 and CLDN1 should be on a reporter background enabling activation of a cellularly 

encoded luciferase gene that can be activated by Cre recombinase (i.e., FVB.129S6 (B6)-

Gt(ROSA)26Sortm1(Luc)Kael/J [42]).

Expression of HCV entry factors in these mice can be accomplished in various ways:

1. Vector-mediated (e.g., adenoviral) expression of HCV entry factors (described in 

[43]).

2. HCV entry factor transgenic mice (described in [44, 45]).

3. HCV entry factor knockin mice (described in [46]).

2.2 BiCre-Jc1 Generation

1. pBi-nlsCre-Jcl construct (described in [44]).

2. RNeasy mini kit (Qiagen).

3. T7 RiboMAX™ Express Large-Scale RNA production system (Promega).

4. Huh-7.5.1 cells (Chisari laboratory, The Scripps Research Institute [47]).

5. BTX ECM 830 electroporator (Harvard Apparatus).
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6. Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher Scientific).

7. Stirred cell (Millipore).

8. 0.45 μm bottle-top filter (Millipore).

2.3 IVIS

1. IVIS Lumina II platform (Caliper Lifesciences).

2. D-Luciferin salt (Gold Biotechnology).

3. 0.2 μm filter (Thermo Fisher Scientific).

4. Isoflurane (TW Medical).

5. 28G × ½ insulin syringes (BD Biosciences).

2.4 Quantifying HCV RNA

1. ZR Viral RNA kit (Zymo Research).

2. Nuclease-Free Water (Luminex).

3. HCV primers for PCR (ordered from Integrated DNA Technologies).

4. Reverse Transcriptase (Luminex).

5. MultiCode ISOlution (Luminex).

6. Titanium Taq (Clontech).

7. HCV standard (homemade; RNA in vitro-transcribed from the plasmid, 

pIDTBlue, containing the Jc1-RNA sequence 

“GGCUCCAUCUUAGCCCUAGUCACGGCUAGCU-

GUGAAAGGUCCGUGAGC” as cloned by Integrated DNA Technologies).

8. LightCycler 480 Real-Time PCR System (Roche Applied Sciences).

9. MultiCode Analysis Software v1.6.5 (Luminex).

3 Methods

3.1 Genetically Humanized Mice Can Support HCV Entry

Humanized mice for HCV research are generally created in one of two ways: by expression 

of human factors known to be necessary for part(s) of the HCV life cycle (Fig. 1) or by 

xenotransplantation. In murine cells, HCV replicons are able to replicate, but uptake of cell-

culture produced virus or HCV pseudoparticles is not possible. Human CD81 [48], 

scavenger receptor class B type I (SCARB1) [49], and claudin-1 (CLDN1) [50] were all 

known human entry factors for HCV, but it was the additional identification of human 

occludin (OCLN) [51] as an essential entry factor. The combined expression of these four 

factors, or at a minimum human CD81 and human OCLN, finally led to observed uptake of 

HCV in murine cells in vitro [51]. This work was expanded in vivo to genetically humanize 

mice by adenoviral delivery of human OCLN and human CD81 [43, 44], allowing for HCV 

uptake in the liver of a fully immunocompetent animal. However, viral replication and 
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infectious particle production were not observed in either these mice or those subsequently 

engineered to transgenically express human CD81 and human OCLN in the murine liver 

under the control of an albumin promoter [52]. Only upon blunting the innate immune 

response of these entry factor transgenic mice was the complete HCV life cycle observed as 

evidenced by viral RNA in both the serum and liver [52].

To express HCV entry factors by adenovirus, high particle numbers are delivered to mice (in 

this case, a Cre reporter strain of choice as described below) with the goal of widespread 

expression of these factors in the murine hepatocytes. cDNA encoding human CD81, 

SCARB1, CLDN1 or OCLN can been cloned into individual pAdEasy AV5 adenoviral 

vectors (Agilent) (for details see [43]). Alternatively, instead of expressing each factor in 

individual vectors, the cDNA of CD81 and SCARB1 or CLDN1 and OCLN can instead be 

linked by a sequence encoding the 2A self-cleavage peptide to ensure the four factors are 

separate proteins following translation [53].

Although these models have been extremely useful for studying HCV infection in vivo, 

CD81 and OCLN are expressed only in hepatocytes and at supraphysiological levels. To 

overcome these drawbacks, knockin mice were recently generated that harbor CD81 and 

OCLN alleles minimally humanized so that the second extracellular loops of these two 

proteins match the relevant human sequence important for HCV entry [46]. These mice 

develop normally without apparent defects, express CD81 and OCLN at physiological levels 

across a variety of tissues, and support uptake of HCV to a similar extent as in the two 

models described above.

In stark contrast to the above studies in genetically humanized mice, where completion of 

the HCV life cycle required a dampened innate immune response, one group has 

successfully demonstrated persistent HCV infection in genetically humanized mice with an 

intact immune response. Here, human CD81 and OCLN were once more expressed under an 

albumin promoter but in an ICR background [45]. As genetically humanized 

immunocompetent C57BL/6 mice have not previously become viremic in similar 

experiments [44, 52], the authors point to differences in the expression of interferon-

stimulated genes (ISGs) and host factors such as ApoE and miR-122 upon HCV infection as 

possibly responsible. While these findings are striking, genetic manipulations of ICR mice, 

an outbred strain, present additional technical challenges that further research will need to 

overcome.

3.2 Human Liver Chimeric Mice for Studying the Complete HCV Life Cycle

The second broad category of mouse humanization relevant to HCV research involves 

xenotransplantation to generate human liver chimeric mice (Fig. 2) with or without human 

immune system reconstitution. In order to accept engrafted tissue, these mice must be 

immunocompromised and must also have a hepatic environment conducive to the 

proliferation of engrafted cells over endogenous murine cells. The latter condition can be 

met by treating the mice with chemical agents such as tetrachloride or retrorsine, or, more 

typically, by changes at the genetic level. Genetic manipulation was first successfully used to 

induce liver failure in a mouse strain by murine urokinase plasminogen activator 

overexpression driven by the albumin promoter (Alb-uPA) [54]. When backcrossed with a 
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severe combined immunodeficiency strain (SCID), the resultant SCID/Alb-uPA mice could 

be stably engrafted with human hepatocytes that supported HCV infection [55]. To 

overcome some of the disadvantages of this model, including the limited period when 

engraftment can be performed, a strain where the major urinary protein (MUP) promoter 

drives uPA expression is backcrossed with a SCID strain to form SCID/MUP-uPA mice that 

can undergo successful engraftment and HCV infection [56].

Knockout of the liver enzyme fumaryl acetoacetate hydrolase (FAH) has also been pursued 

as a method for causing selective death of endogenous murine hepatocytes. To permit actual 

engraftment, FAH−/− mice were crossed with Rag2−/− IL-2RγNULL mice to create FNRG 

mice [57]. The absence of FAH specifically in the murine hepatocytes results in a buildup of 

toxic metabolites during tyrosine catabolism leaving the engrafted human hepatocytes, 

which still express FAH, at a growth advantage. Importantly, the FAH deficiency in murine 

hepatocytes can be overcome by treatment with the compound 2(2-nitro-4-

trifluoromethylbenzoyl)-1,3 cyclohexanedione (NTBC). NTBC cycling thus permits 

“tunable” liver injury throughout the mouse’s lifespan (for detailed information about 

generating and maintaining these mice see [58]). The level of engraftment corresponds to 

human albumin levels in the mouse’s serum as determined by ELISA. Similarly, 

immunodeficient NOG mice expressing the transgene herpes simplex virus type 1 thymidine 

kinase (HSV-tk) can be treated with ganciclovir for targeted destruction of murine 

hepatocytes, thus allowing engrafted human hepatocytes to proliferate instead [59]. This 

model has also been successfully infected with HCV [60].

These numerous models permit both the stable engraftment of adult human hepatocytes in 

mice as well as sustained HCV infection. However, the immunocompromised nature of these 

mice has limited their utility for studying immune responses to HCV infection and their 

subsequent impact on pathogenesis. Toward this aim, dually reconstituted mice have also 

been generated with engraftment of both human hepatocytes and components of a human 

immune system [61–67]. However, widespread use of these dually engrafted mice has been 

limited due to variation across donors, difficulty in acquiring syngeneic human HSCs and 

hepatocytes, the required technical expertise, and high cost.

3.3 Assessing HCV Entry in Genetically Humanized Mice

Although HCV does not replicate in genetically humanized mice unless the innate immune 

response is blunted, viral entry is still supported. The ability to detect uptake of HCV in 

these mice is necessary to assess the efficacy of NAbs or vaccines on this step of the viral 

life cycle. Mouse lines containing a loxP-flanked stop cassette upstream of a marker (i.e., 

firefly luciferase) are readily available from commercial vendors such as the The Jackson 

Laboratory (Bar Harbor, see below). In the presence of Cre recombinase, the transcriptional 

stop cassette undergoes recombination and is effectively removed, allowing marker 

expression to now occur. Recombinant HCV expressing Cre recombinase can be generated 

(see Subheading 3.3.1) and injected into humanized Cre reporter mice. While below we 

describe the use of a genotype 2a chimera expressing Cre recombinase, this model can also 

be used to test HCV Cre expressing the envelope proteins of other genotypes. Upon entry of 

the virus, the translation of the HCV polyprotein will release the Cre recombinase, which 
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can now move to the nucleus and facilitate recombination of the transcriptional stop cassette. 

In this way, hepatocytes that uptake virus will now express the marker of interest, which, in 

cases such as firefly luciferase, can be detected in vivo.

Examples of commonly used reporter strains available from The Jackson Laboratory (Bar 

Harbor ME) are FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J (also known as R26-LSL-

FLuc) [42] and B6;129-Gt(ROSA)26Sortm1Joe/J (also known as R26-LSL-GNZ) [68] mice 

which, following activation by Cre recombinase, drive expression of firefly luciferase or a 

nuclear EGFP and β-galactosidase fusion protein, respectively.

3.3.1 Production of Bicistronic HCV Expressing Cre Recombinase—The 

sequence of the genotype 2a HCV chimera J6/JFH1 (also known as Jc1) is deposited 

(GenBank accession number: JF343782) and the pBi-nlsCre-Jc1 construct is available upon 

request upon completion of appropriate material transfer agreements.

1. Digest 10 μg of the pBi-nlsCre-Jc1 construct with XbaI to linearize the construct 

for in vitro transcription to produce pBi-nlsCre-Jc1 RNA. To ensure complete 

linearization, assess 5% volume of the digested plasmid by agarose gel 

electrophoresis.

2. Purify the linearized BiCre-Jc1 plasmid and use 1 μg to pro-duce pBi-nlsCre-Jc1 

RNA by in vitro transcription (T7 RiboMAX Express Large Scale RNA 

Production System, Promega).

3. Purify the pBi-nlsCre-Jc1 RNA using method of choice and quantify the 

concentration of viral RNA by NanoDrop.

4. As a quality control test, let RNA sit for 30 min on wet ice before running a few 

microliter on an agarose gel to check for degradation (see Note 2). If RNA is of 

sufficient integrity, prepare 5 μg aliquots and store at −80°C for future use, only 

thawing on wet ice immediately before electroporation.

5. As all subsequent steps involve virus production, necessary biosafety precautions 

must be taken (see Note 3). Electroporate the pBi-nlsCre-Jc1 RNA into 

Huh-7.5.1 cells (DMEM containing 5% FBS) as previously described in [43]. As 

an additional control for electroporation efficiency, seed in a 6-well plate some 

cells electroporated with or without viral RNA. Collect these cells 72 h post-

electroporation and assess the percentage of cells positive for NS5A by flow 

cytometry.

6. On the plates of electroporated cells, change the medium to DMEM without FBS 

24 h post-electroporation. Collect supernatants every 6 h starting from 72 h until 

144 h, always replacing the media with serum-free DMEM. Supernatants can be 

pooled and stored at 4°C in a foil-covered container.

7. Filter the pooled supernatants through a 0.45 μm bottle top filter (Millipore). 

Store at least 1 mL of this unconcentrated virus at −80°C to have as a control for 

concentration efficiency in step 8. Concentrate the remaining filtered supernatant 
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using a stirred cell (Millipore). Aliquot the concentrated virus and store at −80°C 

for further use.

8. Thaw an aliquot of both concentrated and unconcentrated virus to determine the 

viral titer (TCID50) on Huh7.5 cells as previously described in [69].

3.3.2 Bioluminescence Imaging to Assess HCV Entry In Vivo—In vivo 

bioluminescence imaging allows for rapid, minimally invasive, longitudinal quantification of 

reporter gene activation in mice expressing at least the minimal HCV entry factors and 

subsequently infected with Bi-nlsCre-Jc1. Luminescence measurements generally ensure 

greater sensitivity through deep tissues and the skin. Here, we outline bioluminescence 

measurements specifically using the IVIS Lumina II platform (Caliper Life Sciences) of 

mice following adenoviral delivery of the four canonical human entry factors and subsequent 

infection with HCV Cre (equivalent imaging plat-forms from other manufacturers could 

conceivably be used). The IVIS Spectrum imager expresses the bioluminescent signal in 

photons per second and displays it as an intensity map. The luminescence, which is the 

consequence of the photon flux emitted by the luciferase-expressing cells, can be measured 

using a region of interest (ROI) tool.

1. Prepare stock solution of D-Luciferin at 15 mg/mL in DPBS (no calcium, no 

magnesium). Filter-sterilize through a 0.2 μm filter, aliquot, and store at −20°C 

for future use.

2. Inject intravenously Rosa26-LSL-Fluc mice with an equal mixture of adenovirus 

encoding all four HCV human entry factors (1011 adenoviral particles per entry 

factor).

3. 24 h following adenoviral entry factor delivery, inject mice intravenously with 2 

× 107 TCID50 Bi-nlsCre-Jc1.

4. 72 h following injection of Bi-nlsCre-Jc1, prepare the animal for in vivo 

bioluminescence imaging. Anaesthetize the animal using an isoflurane vaporizer. 

Inject intraperitoneally appropriate volume (typically ~200 μL) of sterile 15 

mg/mL D-luciferin stock solution (see step 1) so that each animal receives 150 

mg D-Luciferin/kg body weight (equivalent to 10 μL of D-luciferin stock solution 

per gram of body weight). Place mouse in dorsal recumbency (abdomen facing 

up) inside the camera box of the IVIS Spectrum imager.

5. Measure the bioluminescence signal using the IVIS Lumina II in vivo 

bioimaging system. Due to in vivo uptake of D-Luciferin over time, capture 

sequential images of the mice every 5 min until luminescence saturation is 

reached.

3.4 Quantifying HCV RNA in Human Liver Chimeric Mouse Serum

In the case of human liver chimeric mice, reporter genomes are not necessary since HCV 

can robustly replicate to levels detectable in both the liver and serum of a well-engrafted 

animal. Thus full-length genomes such as JFH1 (genotype 2a) can be used for infections. 

HCV replication over time is easily tracked from relatively small blood volumes obtained by 
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submandibular bleedings. Additionally, viral load can be assessed in the mouse’s liver but 

requires perfusion of the organ as described in [58] and subsequent RNA isolation from a kit 

compatible for use with animal tissues. Once the RNA has been isolated, the same procedure 

detailed below for RT-qPCR of HCV RNA isolated from animal serum can be used. The 

method given below is one approach for viral RNA quantification specifically using EraGen 

MultiCode-RTx Technology (Era-Gen Biosciences).

1. Draw approximately 200 μL of whole blood by submandibular bleeding into a 

1.5 mL microcentrifuge tube.

2. Allow the blood to sit upright untouched for 10–20 min at room temperature for 

clotting.

3. Centrifuge the blood for 10 min, 3000 rpm (956 × g), 4°C. Following 

centrifugation, there should clearly be two layers in the tube. Transfer the upper 

layer (serum) to a fresh 1.5 mL microcentrifuge tube (see Note 4).

4. Purify RNA from the plasma using the ZR Viral RNA kit (Zymo Research) or an 

equivalent kit.

5. Quantify the viral RNA copy number by one step RT-qPCR using EraGen 

MultiCode-RTx Technology (EraGen Biosciences). The following primers were 

used for the detection of HCV RNA: 5′-GCTCACGGACCTTTCA-3′ (sense) 

and 5′-GGCTCCATCTTAGCCC-3′ (antisense). For use with EraGen 

MultiCode-RTx Technology, the sense primer requires the following 

modifications, which can be specified upon ordering from oligonucleotide 

providers such as Integrated DNA Technologies at the 5′ end: 6-FAM and int 5-

Methyl dC (iMe-dC).

6. Prepare the reaction for each sample as in Table 1, making sure to also prepare 

serial dilutions of an HCV standard to generate a standard curve.

7. Run the reactions on a LightCycler 480 Real-Time PCR System (or equivalent 

device) using the thermal profile in Table 2.

8. Import the multicomponent data from the run into the MultiCode Analysis 

Software v1.6.5 for analysis.

3.5 Humanized Mice for Designing and Testing HCV Vaccinesand Therapeutic Antibodies

As genetically humanized mice are still immunocompetent and do not support the full HCV 

life cycle, vaccine and therapeutic anti-body studies utilizing these models have largely 

focused on whether viral uptake can be reduced. In contrast, immunodeficient human liver 

chimeric mice have primarily been used for passive immunization studies in which animals 

are infused with antibodies directed against viral antigen(s). Both prophylactic and 

therapeutic studies have been performed in human liver chimeric mice challenged with 

HCVcc or patient-derived sera. The antibodies used for passive immunization, as described 

in several examples below (summarized in Table 3), have been isolated from patient sera or 

from immunocompetent mice injected with HCV or viral components like the envelope 

proteins E1 and/or E2.
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3.5.1 Active Vaccination—As described above, genetically humanized mice remain 

immunocompetent and can thus be utilized for active immunization studies. One such 

approach for active immunization utilizes recombinant vaccinia virus (rVV) as a vector to 

deliver viral genes. Previous work showed that large pieces of pathogen-derived DNA could 

be easily inserted into the VV genome without disrupting viral replication [70, 71]. rVVs 

expressing different HCV genes have been tested in chimpanzees [72–74] and mice [75, 76]. 

In genetically humanized mice expressing human CD81 and human OCLN, injection with a 

rVV expressing HCV genotype 1a C-E1-E2-p7-NS2 resulted in robust antibody production 

against HCV E2 and reduced viral entry following subsequent challenge with different HCV 

genotypes [44]. An alternative to injecting a viral vector to express viral proteins is to inject 

the viral protein itself. Previous efforts to cost-effectively produce large-scale amounts of 

viral protein for clinical applications and the poor results of recombinant vaccine trials in 

humans had made this less appealing. However, a soluble form of E2 with a truncated 

transmembrane domain (sE2) was recently generated that induced NAbs in 

immunocompetent mice with broad, pan-genotypic activity in vitro and could be produced 

to scale in insect cells [53]. Furthermore, genetically humanized mice were protected against 

viral challenge following sE2 immunization.

Active immunization studies in mice, as in other species, can determine the type and 

magnitude of antibody response generated as well as the potential protection provided 

against subsequent viral challenge. In vitro neutralization assays can be performed using the 

sera of mice, which do not have to be genetically humanized, collected multiple weeks after 

immunization to insure sufficient time for antibody production. Sera can then be incubated 

with JFH1 chimeras expressing the structural proteins from multiple HCV genotypes to test 

for their range of neutralization. Additionally, immunized mice can be subsequently 

challenged with HCV in vivo. Here immunization must be performed in one of the reporter 

mouse strains described above and an appropriate HCV genome used (i.e., BiCre-Jc1) in 

order to have a readout of viral uptake since detectable replication levels in the liver and/or 

serum are negligible in these immunocompetent models.

3.5.2 Neutralizing Antibodies—Many of the efforts to identify NAbs capable of 

neutralizing different HCV genotypes predate the use of humanized mouse models. In 

patients, there has been widespread debate about how NAbs may affect HCV replication and 

the nature of their contribution to viral clearance in a given individual (reviewed in [77]). 

Thus, better understanding NAbs has been of great interest in designing both prophylactic 

and therapeutic HCV treatments. With as much as 35% difference between the sequences of 

HCV genotypes [78], the so-called broadly NAbs, able to act against multiple genotypes or 

even the variety of quasispecies present in a single infected individual, are of particular 

interest. This sequence diversity also under-scores the need for HCV treatments with broad, 

pangenotypic activity to lower the risk of viral escape mutants. Prior reliance on in vitro 

systems has only added to the controversy concerning NAbs in patients. Thus, the advent of 

humanized mouse research has provided an additional platform for exploration of NAbs in 

the context ofHCV infection.

Repeated work has shown that HCV NAbs primarily target the mediators of viral entry, the 

HCV envelope proteins E1 and E2 [79–87]. Thus, many efforts to induce a strong NAb 
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response have focused on using recombinant HCV protein(s), primarily E1 and/or E2, to 

generate vaccines. Prior to the availability of humanized mice in the HCV field, such 

vaccines were tested in both nonhumanized rodent models [88–90] and humans [91]. The 

failure of the human recombinant vaccine trials to induce a robust NAb response [91–94] 

and the rise in humanized mouse models for HCV research has heightened interest in both 

generating better recombinant vaccines and understanding NAbs.

Many promising NAbs previously identified in other platforms have been re-examined in 

human liver chimeric mice. One such study found candidates able to bind HCV E2 

following an extensive search of a phage-display library of antibody antigen-binding 

fragments (Fabs) derived from a chronically infected HCV patient. Select Fabs were used to 

generate recombinant monoclonal anti-bodies (MAbs) that were further tested in vitro. The 

most promising candidates from these assays specifically bound antigenic region 3 (AR3A 

and AR3B) of the HCV envelope glycoprotein E2, and injection of these candidates into 

human liver chimeric (Alb-uPA/SCID) mice was able to protect some from infection with a 

heterologous HCV inoculum from an HCV genotype 1a infected patient [95]. Prophylactic 

administration of high concentrations (200 mg/kg) of antibody AR3A or AR4A was also 

found to protect genetically humanized mice against challenge with genotype 1b or 

genotype 2a cell-culture produced HCV (HCVcc) [81]. AP33 [87, 96] and 3/11 [80], which 

were identified prior to the advent of humanized mice in rodents immunized with E1 and/or 

E2, were also tested for their ability to protect against challenge with patient-derived HCV 

(genotype 1b) in Alb-uPA/SCID mice [97]. Although AP33 and 3/11 recognize overlapping 

epitopes in E2, only AP33 (at 100 mg/kg) demonstrated the ability to protect the humanized 

mice from infection. In line with this work and the growing use of humanized mice for such 

studies, efforts have also been made to better characterize the antigenic regions of full-length 

and soluble E1E2 and the antibody responses they elicit specifically in mice [98]. 

Furthermore, vectored immunoprophylaxis, whereby adenoviruses are used to deliver NAbs, 

has been an approach for mouse studies of pathogens such as HIV, Plasmodium falciparum, 

and influenza [99–102]. This method has also been performed in genetically humanized 

mice expressing the human HCV entry factors as well as in liver chimeric FNRG mice 

[103]. Whether supplied individually or in combination, the NAbs tested were able to block 

HCV entry in the genetically humanized mice and to prevent viremia in liver chimeric 

FNRG mice following viral challenge. Furthermore, in this same study, liver chimeric mice 

already infected with J6/JFH (genotype 2a) were therapeutically treated with NAbs, leading 

to a drop in HCV RNA levels below the limit of detection in the sera.

3.5.3 Host Factors as Antibody Targets—While the majority of work has focused 

on antibodies directed against viral targets, some studies have tested the potential for 

antibodies against host factors as a short-term treatment for patients undergoing liver 

transplantation. Directed against a necessary HCV entry factor, anti-CD81 mAbs (K04 [104] 

and JS81 [105]) have been tested for both their prophylactic and therapeutic abilities in 

human liver chimeric mice. With frequent dosing, K04 treatment started post-HCV 

inoculation could substantially abrogate infection. Prophylactic use of either antibody did 

effectively protect from infection, but a high dose of Ab was required and effects on mouse 

health were observed.

Gaska et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2019 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anti-CLDN1 mAbs have also proven successful as prophylactic treatment against HCV 

infection (mouse-passaged genotype 1b, 104 RNA copies) without any significant side 

effects in human liver chimeric mice [106]. A similar study demonstrated prophylactic 

treatment of human liver chimeric mice with a different anti-CLDN1 mAb followed by a 

“booster” 1 and 5 days post-infection resulted in undetectable HCV RNA in the serum for 

six weeks following infection [107]. Even as the concentration of antibody diminished in the 

sera of these mice, infection with either genotype 1b or genotype 4 sera were prevented. 

Therapeutic administration of anti-CLDN1 mAb was also successful in cohorts of human 

liver chimeric mice chronically infected with one of a variety of HCV genotypes (HCVcc 

Jc1; genotype 2a serum; neutralization escape variant HCVcc VL-JFH1; genotype 4). 

Importantly, this CLDN1-specific mAb displayed no major toxicity or adverse effects in the 

mice.

3.5.4 IgG as a Prophylactic—UV-inactivated HCVcc (J6/JFH1) has also been used 

immunize immunocompetent BALB/c mice (four separate injections at two week intervals), 

resulting in production of anti-E1 and anti-E2 antibodies [108]. Purified IgG from the sera of 

these mice was subsequently used as a prophylactic vaccine in Alb-uPA/SCID mice 1 week 

before infection with HCVcc (J6/JFH1). Infection was effectively inhibited at low doses 

(103 HCV RNA copies), but not at higher challenges of 104 or 105 RNA copies. Broader 

approaches have also been taken using anti-HCV immunoglobulin G (IgG) obtained from a 

chronically infected patient in Alb-uPA-SCID mice to assess its ability to protect against 

challenge with a genotype 1a clone derived from the acute stage of infection in the same 

patient [109]. Passive immunization with the patient IgG was able to confer protection 

against viral challenge, albeit with an extremely homogeneous inoculum.

3.6 Conclusions and Future Outlook

In this chapter, we described the numerous applications of humanized mice for assessing 

potential HCV vaccines and therapeutic antibodies. While this work has continued to push 

the field forward, several limitations of these models remain. Studies in immunocompetent, 

genetically humanized mice focus on humoral immunity in the context of an HCV infection 

that is restricted to viral uptake. Genetic humanization allows for a relatively limited number 

of human factors to be expressed. The ever-lengthening list of HCV entry factors thus 

present in an actual patient may provide additional challenges that the mouse model cannot 

fully recapitulate. For human liver chimeric mice, which cannot amount any kind of adaptive 

immune response due to their immunocompromised status, conclusions are also limited. 

However, efforts to combine the benefits of human liver chimeric mice—i.e., studying HCV 

infection past entry into hepatocytes—with the presence of a humanized immune system are 

ongoing. This work will aid in filling the gaps of current models and create a more accurate 

picture of the complex relationship between HCV and the host immune response. 

Furthermore, improved dually reconstituted mice will greatly strengthen our knowledge of 

immunopathogenesis and the downstream liver disease observed in chronically infected 

patients
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4 Notes

1. Researchers must receive approval from their Institutional Animal Care and Use 

Committee (IACUC), Institutional Review Board (IRB), Institutional Biosafety 

Committee (IBC), or the equivalent institutions before proceeding with work 

involving humanized mice and/or human pathogens.

2. When running the in vitro-transcribed RNA on a gel, it is highly recommended 

to also run a 1 kb ladder. If the RNA is of good quality, a bright, single band 

should appear at around 3 kb. Beware of using RNA with excessive smearing as 

this is likely due to degradation and will result in decreased efficiency of 

subsequent steps.

3. All virus work should be performed in a BSL safety level 2 hood. Following 

electroporation, all cuvettes and tips that came into contact with electroporated 

cells need to soak in Vesphene for at least 20 min before disposal.

4. Around 200 μL of whole blood should yield at least 50 μL of plasma, which is a 

sufficient volume for the protocol described here.
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Fig. 1. 
Summary of genetically humanized mice supporting HCV uptake. The minimal factors 

required for HCV uptake in human hepatocytes are CD81, SCARB1, CLDN1, and OCLN, 

with human CD81 and OCLN constituting the minimal set of human factors for entry into 

murine hepatocytes. Thus, fully immunocompetent mice can support viral uptake by 

expressing these factors by adenoviral delivery or by genetic manipulation. The latter 

approach has been further utilized in two ways, transgenic expression of hCD81 and hOCLN 

under the controlof an albumin promoter or knockin of humanized CD81 and OCLN where 

the second extracellular loops of the murine orthologs of these two proteins have been 

altered to facilitate HCV entry. While all these methods have proven successful, the knockin 

model best matches the natural tissue expression and physiological levels of CD81 and 

OCLN, which are expressed only in the liver and at supraphysiological levels in adenovirally 

transduced or transgenic mice
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Fig. 2. 
The generation of human liver chimeric mice for passive immunization against HCV
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Table 1

Reaction conditions for HCV RNA RT-qPCR

Reagents Volume (μL)

Nuclease-free H2O Up to 25

5 × MultiCode ISOlution 5

MMLV reverse transcriptase 0.5

Primer mix (5 μM forward + 5 μM reverse in nuclease-free-H2O) 1

RNA x

Titanium Taq 0.5
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Table 2

Cycling conditions for quantifying HCV RNA in serum

Procedure Temperature, °C Time

Reverse transcription 50 5 min

Hot start 95 3 min

50 cycles 95 5 s

58 10 s
a

72 20 s

Melt Curve 95 15 s

60 1 min

95 15 s
a

a
Data collection must be turned on at these steps for proper analysis in step 8
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Table 3

Summary of HCV immunization studies performed in humanized mice

Expression approach Virus Immunization

Genetically humanized mice Adenovirus HCV-Cre expressing genotypes 1b, 2a, or 4a structural proteins 
[43]

Active

In vitro neutralization assay with chimeric HCVcc panel 
covering all seven HCV genotypes; BiCre-Jc1 (genotype 2a) in 
vivo [52]

Active

HCV-Cre recombinase expressing structural proteins of Con1 
(genotype 1b) or Jc1 (genotype 2a) [80]

Passive

BiCre-Jc1 (genotype 2a) [102] Passive

Mouse Virus Immunization

Human liver chimeric mice uPA/SCID Heterologous HCV inoculum from an HCV genotype 1a 
infected patient [94]

Passive

Patient-derived genotype 1b [96] Passive

H77C (genotype 1a), ED43 (genotype 4) [104]) Passive

Prevention experiments: genotype 1b or genotype 4 HCV-
infected serum; treatment experiments: Jc1 (genotype 2a), VL-
JFH1 (genotype 1b/2a chimera), genotype 2a serum, genotype 4 
serum [106]

Passive

J6/JFH1 (genotype 2a) [107] Passive

Mouse-passaged H77C (genotype 1a) [108] Passive

FNRG PXB-mouse 
(cDNA-uPA/SCID)

H77 (genotype 1a), J6/JFH1 (genotype 2a) [102] Passive

H77S (genotype 1a) [103] Passive

Mouse-passaged HCR6 (genotype 1b) [105] Passive
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