
Best Practices for Benchmarking Germline Small Variant Calls in 
Human Genomes

Peter Krusche1, Len Trigg2, Paul C. Boutros3, Christopher E. Mason4, Francisco M. De La 
Vega5, Benjamin L. Moore1, Mar Gonzalez-Porta1, Michael A. Eberle6, Zivana Tezak7, Samir 
Lababidi8, Rebecca Truty9, George Asimenos10, Birgit Funke11, Mark Fleharty12, Brad A. 
Chapman13, Marc Salit14,*, Justin M Zook15,*, Global Alliance for Genomics and Health 
Benchmarking Team

1Illumina Cambridge Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex, 
CB10 1XL, UK 2Real Time Genomics, Level 1, South Bloc, 19 Knox St. Hamilton. New Zealand 
3Ontario Institute for Cancer Research, Toronto, Ontario, Canada 4Weill Cornell Medicine, New 
York, NY 5Department of Biomedical Data Science, Stanford University School of Medicine, 
Stanford, CA 6Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 7Center for Devices and 
Radiological Health, FDA, Silver Spring, MD 8Office of Health Informatics, Office of the 
Commissioner, FDA, Silver Spring, MD 9Invitae, 1400 16th St, San Francisco, CA 94103 
10DNAnexus, 730 Market St Suite 2100, San Francisco, CA 94103 11Veritas Genetics, 99 Conifer 
Hill Dr, Danvers, MA 01923 12Broad Institute, 415 Main Street, Cambridge, MA 02142 13Harvard 
T.H. Chan School of Public Health Bioinformatics Core, 655 Huntington Ave, Boston, MA 02115 
14Material Measurement Laboratory, Joint Initiative for Metrology in Biology, National Institute of 
Standards and Technology, Stanford, CA 15Material Measurement Laboratory, National Institute of 
Standards and Technology, 100 Bureau Dr, MS8301, Gaithersburg, MD 20899

Abstract

Standardized benchmarking methods and tools are essential to robust accuracy assessment of NGS 

variant calling. Benchmarking variant calls requires careful attention to definitions of performance 

metrics, sophisticated comparison approaches, and stratification by variant type and genome 

context. To address these needs, the Global Alliance for Genomics and Health (GA4GH) 

Benchmarking Team convened representatives from sequencing technology developers, 

government agencies, academic bioinformatics researchers, clinical laboratories, and commercial 
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technology and bioinformatics developers for whom benchmarking variant calls is essential to 

their work. This team addressed challenges in (1) matching variant calls with different 

representations, (2) defining standard performance metrics, (3) enabling stratification of 

performance by variant type and genome context, and (4) developing and describing limitations of 

high-confidence calls and regions that can be used as “truth”. Our methods are publicly available 

on GitHub (https://github.com/ga4gh/benchmarking-tools) and in a web-based app on 

precisionFDA, which allow users to compare their variant calls against truth sets and to obtain a 

standardized report on their variant calling performance. Our methods have been piloted in the 

precisionFDA variant calling challenges to identify the best-in-class variant calling methods within 

high-confidence regions. Finally, we recommend a set of best practices for using our tools and 

critically evaluating the results.

Introduction

Next generation sequencing (NGS) technologies and analysis methods have rapidly evolved 

and are increasingly being used in research and clinical settings. The ability to detect DNA 

variants began in the last third of the 20th century when recombinant DNA technology 

facilitated the identification and characterization of human genes. Due to the high cost of 

sequencing technologies, early diagnostic applications were limited to screening patient 

samples for established pathogenic variants. Clinical heterogeneity and overlapping 

presentations can complicate accurate diagnosis based on clinical symptoms alone, which 

often resulted in the need for sequential testing approaches (diagnostic odysseys). While 

some focused tests are still in use today, large gene panels including tens to hundreds of 

genes, often accommodating sets of diseases with clinical overlap, are the most common 

application for NGS today, with exome and genome sequencing rapidly gaining popularity 

in the research and medical genetics communities.1,2 An output of these tests is a list of 

variant calls and their genotypes, often in variant call format (VCF), and benchmarking these 

calls is an important part of analytical validation.

Robust, sophisticated, and standardized benchmarking methods are critical to enable 

development, optimization, and demonstration of performance for sequencing and analysis 

tools. This is especially important for clinical laboratories developing sequencing-based tests 

for medical care. Efforts such as the Genome in a Bottle Consortium and Platinum Genomes 
Project have developed small variant “truth” sets for several well-characterized human 

genomes from publicly available cell lines and DNA.3-6 A “truth” set was also recently 

developed from a “synthetic-diploid” mixture of two haploid hyditaform mole cell lines not 

currently in a public repository.7 A framework for benchmarking non-complex small variant 

calls in the exome was developed previously as a web-based tool GCAT.8 However, 

comparing variant calls from any particular sequencing pipeline to a truth set is not a trivial 

exercise. First, benchmarking must consider that variants may be represented in multiple 

ways in the commonly used variant call format (VCF).9-12 When comparing VCF files 

record by record, many of the putative differences are simply different representations of the 

same variant. Secondly, definitions for performance metrics such as true positive (TP), false 

positive (FP), and false negative (FN), which are key for the interpretation of the 

benchmarking results, are not yet standardized. Lastly, due to the complexity of the human 

Krusche et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2019 November 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://github.com/ga4gh/benchmarking-tools


genome, performance can vary across variant types and genomic regions, which inevitably 

increases the number of benchmarking statistics to report.

In the context of performance metrics, two critical performance parameters that are 

traditionally required for clinical tests are sensitivity (the ability to detect variants that are 

known to be present or “absence of false negatives”, which we call “recall” in this work) and 

specificity (the ability to correctly identify the absence of variants or “absence of false 

positives”, which we replace with “precision” in this work).13 The shift from focused 

genotyping tests to genome sequencing enables the detection of novel sequence variants, 

which has fundamental implications on how these diagnostic performance parameters need 

to be determined. Early professional guidelines call for the use of samples with and without 

known pathogenic variants to determine sensitivity and specificity, which was appropriate 

when genetic testing interrogated only targeted, previously identified variants. This approach 

remains valid for sequencing-based testing, but now constitutes an incomplete evaluation, 

since it does not address the ability to detect novel variants. To predict performance for 

novel variants, it is important to maximize the number and variety of variants that can be 

compared to a “gold standard” in order to establish statistical confidence values for different 

types of variants and genome contexts, which can then be extrapolated to all sequenced 

bases.14-17 While this problem already existed for Sanger sequencing tests, the power and 

scope of NGS technologies presents a different scale of challenges for fit-for-purpose test 

validation. Laboratories that performed Sanger sequencing prior to transitioning to NGS 

were often able to utilize previously analyzed specimens to establish analytical performance 

of NGS tests; however, this approach is practically limiting, poses severe challenges for 

other laboratories, and is completely infeasible as test sizes increase from a few genes to the 

exome or genome. Guidelines were recently published for validating clinical bioinformatics 

assays.18 These guidelines highlight the utility of reference materials for benchmarking 

variant calls, as well as the importance of stratifying performance by variant type and 

genome context.

To address the needs for using reference materials to benchmark variant calls in a 

standardized, robust manner, we present the work of the Global Alliance for Genomics and 

Health (GA4GH) Benchmarking Team. This team, open to all interested parties, includes 

broad stakeholder representation from research institutes and academia, sequencing 

technology companies, government agencies, and clinical laboratories, with the common 

goal of driving towards the standardization of variant calling benchmarking. In particular, 

we describe the available reference materials and tools to benchmark variant calls, and 

provide best practices for using these resources and interpreting benchmarking results.

Results

Our goal was to standardize the variant benchmarking process such that (1) the methods 

used to compare callsets assess the accuracy of the variant and genotype calls independent of 

different representations of the same variant, (2) primary performance metrics are 

represented in the most commonly used binary classification form (i.e., TP, FP, FN, and 

statistics derived from these), (3) calculation of performance metrics is standardized such 
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that they can be compared more easily across methods, and (4) performance metrics can be 

stratified by variant type and genome context.

We discuss the technical challenges presented by comparing VCF files accurately and 

describe our solution to implement such comparisons. We focus on the use case where we 

have a call set that can be used as “truth” (e.g., Genome in a Bottle or Platinum Genomes) 

and would like to benchmark a single-sample query VCF against this dataset. The inputs to 

this comparison are a truth callset (in VCF format), and a set of confident regions (in BED 

format) for the truth set. The confident regions indicate the locations of the genome where, 

when comparing to the truth callset, variants that do not match the truth callset should be 

false positives and variants missed in the truth callset should be false negatives. Furthermore, 

our inputs include a query callset in (g)VCF format, a reference FASTA file and optionally 

stratification regions to break out variant calling performance in particular regions of the 

genome or to restrict comparisons to a genomic subset (e.g. exons / regions captured by 

targeted sequencing). For more details see SI A. We developed a framework for standardized 

benchmarking of variant calls (Fig. 1), which addresses the challenges discussed in detail in 

the following sections.

Variant representation

The primary challenge with comparing two VCF files is handling complex variant 

representations correctly. In a VCF file, we describe two haplotype sequences by means of 

REF-ALT pairs and genotypes. These variant calls do not always uniquely represent the 

same haplotype sequences. Alignments are not always unique even when using a fixed set of 

gap and substitution scores; different variant calling methods may produce different variant 

representations. While some of these differences can be handled using pre-processing of 

VCF files (e.g. variant trimming and left-shifting), others cannot be fixed easily. As a result 

we cannot compare VCF files accurately by comparing VCF records and genotypes directly. 

Approaches were developed to standardize indel representation by means of left-shifting and 

trimming the indel alleles.19,20 These methods determine the left-most and right-most 

positions at which a particular indel could be represented in a VCF file (Fig. 2a). These 

methods work well when considering each VCF record independently. However, when 

multiple VCF records are used to represent a complex haplotype, normalization methods can 

cause errors and more sophisticated comparison methods are required (Fig. 2b-d). Different 

types of variant representation challenges are detailed in Supplementary Information E.

When benchmarking, these variant representation differences can also give rise to different 

notions of giving partial credit for variant calls. One example is where we may have called 

only one SNV in an MNP with the correct genotype. When assigning TP/FP/FN status on a 

per-VCF-record basis, a variant caller that chooses to represent calls using single MNP 

records would not get credit for calling this SNV correctly since the overall MNP record 

does not reproduce the correct haplotype. Another example would be phasing switch-errors: 

a choice needs to be made whether to use phasing-aware benchmarking for a particular 

evaluation. Handling these cases is important since adding phasing information provides 

additional information to the users of a variant caller, but may lead to FPs / FNs when 

running a benchmarking comparison when comparing to a method which does not provide 
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phasing information and outputs all alleles in decomposed form for maximum credit in the 

benchmarking comparison. Our tools attempt to give partial credit when possible, and we 

generally recommend using vcfeval as the comparator to provide the most partial matches.

Matching Stringencies and Defining Performance Metrics

Due to the inherent complexity of the human genome, and the challenge that genotype 

comparisons do not cleanly fall in a binary classification model, TP, FP, and FN can be 

defined in different ways. Our reference implementation for benchmarking uses a tiered 

definition of variant matches, a standardized VCF format for outputting matched variant 

calls, and a common counting and stratification tool (see SI A). We consider three types of 

variant matches from most to least stringent: (1) “genotype match”, for which only sites with 

matching alleles and genotypes are counted as TPs, (2) “allele match”, for which any site 

with matching alleles is counted as TP, even if genotypes differ, and (3) “local match”, for 

which any site in the query with a nearby truth variant is counted as a TP, even if alleles and 

genotypes differ. “Genotype match” is used by our current tools to calculate TP, FP, and FN.

In Table 1, we enumerate the types of matches that are clear TP, FP, and FN as well as 

various kinds of partial matches that may be considered TP, FP, and/or FN depending on the 

matching stringency, and how they are counted by our tools. Our tools calculate TP, FP, and 

FN requiring the genotype to match, but output additional statistics related to how many of 

the FPs and FNs are allele matches (FP.GT) or local matches (FP.AL). Note that we have 

chosen not to include true negatives (or consequently specificity) in our standardized 

definitions. This is due to the challenge in defining the number of true negatives, particularly 

for indels or around complex variants. In addition, precision is often a more useful metric 

than specificity due to the very large proportion of true negative positions in the genome.

To reconcile the comparison methods and metrics discussed above into a simple summary, 

we have implemented in hap.py a standardized report that can be generated from the tabular 

output of the benchmarking workflow.21 An example of the metrics and plots displayed in 

such a report is shown in Fig. 3. Definitions and formulas for all performance metrics, 

including derived metrics such as precision and recall, are detailed in the Online Methods 

and Supplementary Table 1.

Benchmark callsets

Benchmarking of variant calls requires a specific genome and an associated set of calls that 

represent the “right answers” for that genome. Such call sets have the property that they can 

be used as “truth” to accurately identify false positives and negatives. That is, when 

comparing calls from any sequencing method to this set of calls, at least half (and ideally 

more) of the putative false positives and false negatives should be errors in the method being 

assessed. Because it is treated as the truth, this benchmark set will be referred to in this 

manuscript as the “truth” set, but other terms used for this include the “gold-standard” set, 

the “high-confidence” set, the “reference callset,” or “benchmarking data.”

We describe three sources of benchmark callsets in detail in the Online Methods. Briefly, the 

Genome in a Bottle Consortium (GIAB) is an ongoing public-private-academic consortium 

Krusche et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2019 November 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



hosted by the National Institute of Standards and Technology (NIST) to perform 

authoritative characterization of a small number of broadly consented and disseminated 

human genomes. Currently, five human genomes are available as NIST Reference Materials 

with benchmark small variant and reference calls for approximately 90% of GRCh37 and 

GRCh38.4,6,23 In addition to the benchmarking data produced by the GIAB consortium, 

Illumina Platinum Genomes (PG) has also created a benchmarking data set for small 

variants (SNVs and Indels) using the 17-member pedigree (1463) from Coriell Cell 

Repositories that includes the GIAB pilot sample NA12878/HG001.5 This pedigree includes 

11 children of the parents (NA12877 and NA12878), producing a fully phased dataset that 

allows to validate the accuracy of variant calls through genetic inheritance patterns. Finally, 

a new “synthetic-diploid” benchmark callset was created from long read assemblies of the 

CHM1 and CHM13 haploid cell lines, in order to benchmark small variant calls in regions 

difficult to analyze with short reads or in diploid genomes, which are currently excluded 

from the GIAB and Platinum Genomes high-confidence regions.7 A current limitation is that 

CHM1 and CHM13 cell lines are not available in a public repository.

Example comparisons

Lessons from PrecisionFDA Challenges

The PrecisionFDA team held two challenges in 2016, with participants publicly submitting 

results from various mapping/variant calling pipelines (more information at https://

precision.fda.gov/challenges/).. While both challenges asked participants to analyze short 

read WGS datasets, the first “Consistency” challenge used a sample with high-confidence 

calls already available (HG001/NA12878) and the second “Truth” challenge used a sample 

without high-confidence calls yet available (HG002 from GIAB, made available by GIAB 

upon the close of the challenge).

Note that both the “truth” sets and the comparison methodology in the truth challenge were 

newly introduced, with GA4GH comparison methodology, truth sets, and variant calling 

methods under active development. The challenge results available on precisionFDA should 

be considered only initial evaluation, with the rich data set resulting from the challenge 

inviting further exploration. It is especially critical to recognize that performance metrics 

indicate performance for the “easier” variants and regions of the genome, so that precision 

and recall estimates are higher than if more difficult variants and regions were included. It is 

likely that some methods will perform worse than other methods for easier variants while 

performing better for harder variants (e.g., methods using a graph reference or de novo 

assembly may do better calling in regions not assessed like the MHC or large insertions, 

while not performing as well for easier variants because the methods are less mature). It is 

also important to manually curate a subset of FPs and FNs to ensure they are actually FPs 

and FNs and to understand their cause. Interestingly, stringency of matching can also 

significantly influence performance metrics. For example, Figure 4 shows how the number 

of FP indels for the assembly-based fermikit submission is much higher than the RTG 

submission when counting genotype errors as FPs, but the number of FPs is lower for 

fermikit when matching only the allele or performing distance-based matching. Additional 

Krusche et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2019 November 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://precision.fda.gov/challenges/
https://precision.fda.gov/challenges/


information about relative strengths and weaknesses of the pipelines could also be gained 

through stratification, as discussed in the next section.

Stratification illuminates challenging regions sequenced with and without PCR 
amplification

Our team has defined a large number of regions of different genome contexts (e.g., GC 

content and repeats of different sizes and types) to enable users to stratify performance and 

understand strengths and weaknesses of a particular method. As an example of using 

stratification, we compare recall and precision in different genome contexts for whole 

genome sequencing assays with and without a PCR amplification step. Table 2 shows that 

indel recall and precision are lower when using PCR amplification than when using PCR-

free sequencing. Stratification highlights that this difference almost entirely results from 

PCR-related errors in homopolymers and tandem repeats, since performance is similar when 

excluding variants that occur within 5bp of homopolymer sequences longer than 5bp and 

tandem repeats longer than 10bp. Performance in regions with low GC content is similar, but 

PCR results in lower SNV and indel recall where GC content is > 85%.

Further stratification by type of repeat can illuminate particularly challenging genome 

contexts. For example, when sorting strata by recall, indels in 51-200 bp AT dinucleotide 

tandem repeats have substantially lower recall and precision than all other strata for both 

PCR and PCR-free results. Also, 86 out of 114 truth indels in 51-200 bp AT dinucleotide 

tandem repeats are compound heterozygous, and 89% fall outside the high-confidence 

regions, so our stratification and benchmarking methods help illuminate that these appear to 

be highly polymorphic and difficult variants to characterize.

Conclusions

The GA4GH Benchmarking Team has developed a suite of methods to produce standardized 

performance metrics for benchmarking small germline variant calls. These sophisticated 

tools address challenges in standardizing metrics like recall and precision, comparing 

different representations of variant calls, and stratifying performance by variant type and 

genome context. We have developed a set of best practices for benchmarking variant calls to 

help users avoid common pitfalls and misinterpretations of performance metrics.

Moving forward there will be a continual need for improvements in benchmarking of variant 

discovery methodologies. Technological evolution will enable laboratories to characterize 

increasingly difficult variants and genomic regions, which will require improved 

benchmarks. Simultaneously, this evolution can contribute to improved characterization of 

reference materials through ongoing work by groups like GIAB. For example, the types of 

variants being analyzed will increase in scope: most current benchmarking focuses on 

relatively small variations, and quite different techniques will be needed to consider 

structural variants. In addition to the genotype, allele, and local matching stringencies we 

describe for small variants, comparison tools for structural variants will need to consider 

stringencies for breakpoint matching, size predictions, and inserted sequence predictions.
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Assessment of somatic variants also introduces challenges different from germline variants. 

Different benchmarking approaches are needed to handle somatic issues like assessing the 

accuracy of variant allele frequency. A good germline variant caller will not perform well for 

somatic detection, and vice versa. A global consortium around benchmarking of somatic 

variant detection has been established, called the ICGC-TCGA DREAM Somatic Mutation 

Calling (SMC) group, and has been benchmarking both detection of individual variants and 

of broader processes like subclonal variation.24

Moving forward, groups will also need to modify benchmarking strategies to address 

changes in the way the human genome itself is represented. Today the most common way of 

representing the human genome involves a set of linear chromosomes (e.g., the most 

common usage of GRCh37). There are key advantages to non-linear representations of the 

genome, including ability to recognize copy-number and other polymorphisms directly in 

the reference, and as a result more graphical structures are in development.25 The GRCh38 

build of the human genome makes a key step towards this with its use of ALT loci, which 

provide multiple distinct versions of specific regions of the genome.26 These ALT loci are 

not well-accounted for by most aligners or the benchmarking tools we describe, and their 

impact on benchmarking studies is largely unexplored and likely would require a variety of 

samples with differing ALT alleles. It is likely that the core representation of the genome 

will continue to evolve over time, and benchmarking tools will continue to evolve.

This work provides a framework of principles for further development of benchmarking 

tools to address new challenges in variant calling and other high-throughput measurement 

challenges.

Online Methods

Code availability

All code for benchmarking developed for this manuscript are linked to from the GA4GH 

Benchmarking Team GitHub repository at https://github.com/ga4gh/benchmarking-tools. 

The hap.py benchmarking toolkit is available at https://github.com/Illumina/hap.py.

Variant representation

A variety of approaches have been recently developed to address the challenges in variant 

representation.9-11,21,22 Real Time Genomics (RTG) developed the comparison tool vcfeval, 
which introduced the idea of comparing variants at the level of the genomic haplotypes that 

the variants represent as a way to overcome the problems associated with comparing 

complex variants, where alternative yet equivalent variant representations can confound 

direct comparison methods.9 Variant “normalization” tools help to represent variants in a 

standardized way (e.g., by left-shifting indels in repeats), but they demonstrated that “variant 

normalization” approaches alone were not able to reconcile different representations of 

many complex variants. In contrast, global optimization permits evaluation of alternate 

representations that minimize the number of discrepancies between truth and test set caused 

by differences in representations of the same variant. Similarly, VarMatch was developed to 

resolve alternate representations of complex variants, with additional ability to tune the 
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matching parameters depending on the application.10 Finally, hap.py includes a comparison 

tool to perform haplotype-based comparison of complex variants in addition to sophisticated 

functionality to stratify variant calls by type or region.21 We use the hap.py framework with 

the vcfeval comparison tool in this work.

Variant counting

The GA4GH Benchmarking Team developed consensus definitions and recommendations 

for expressing performance metrics for small germline variant calls. Assessing the 

performance of variant callers does not easily lend itself to the typical binary classification 

performance assessment model of simply determining true and false "positives" and 

“negatives”. Several characteristics of the genome do not fit well in a binary classification 

model:

1. More than two possible genotypes exist at any given location. For SNVs (if 

ignoring phasing), any location can have one of 10 different true genotypes (i.e., 
A/A, A/C, A/G, A/T, C/C, C/G, …). For indels and complex variants, an infinite 

number of possible genotypes exists (e.g., any length of insertion).

2. A number of variant callers distinguish between "no-calls" and homozygous 

reference calls at some genome positions or regions. Some variant callers even 

output partial nocalls, calling one allele but not the other. “No-calls” at a true 

variant site could be treated as false negatives or be excluded from counting.

3. In addition to the challenges comparing different representations of complex 

variants (i.e., nearby SNVs and/or indels) discussed above, there are challenges 

in standardizing counting of these variants. Complex variants can be treated as a 

single positive event or as multiple distinct SNV and indel events when counting 

the number of TP, FP, and FN variants. In addition, only part of a complex 

variant may be called, which poses challenges in defining TP, FP, and FN.

4. Methods for assessing accuracy of phasing have not been fully developed or 

standardized, but accurate phasing can be critical, particularly when multiple 

heterozygous variants exist in a small region (e.g., complex variants).

Matching Stringencies

Due to the inherent complexity of the human genome, TP, FP, and FN can be defined in 

different ways. Our reference implementation for benchmarking uses a tiered definition of 

variant matches, a standardized VCF format for outputting matched variant calls, and a 

common counting and stratification tool (see SI A).

We consider the following types of variant matches from most to least stringent, with 

“Genotype match” being used by our current tools to calculate TP, FP, and FN:

• Genotype match: Variant sets in truth and query are considered TPs when their 

unphased genotypes and alleles can be phased to produce a matching pair of 

haplotype sequences for a diploid genome. Each truth (and query) variant may be 

replayed onto one of two truth (or query) haplotypes. A maximal subset of 

variants that is replayed to produce matching haplotype sequences forms the TP 
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variants, query variants outside this set are FP, truth variants outside this set are 

FN. The method only considers haploid or diploid samples but could be extended 

to higher ploidy also. Enumerating the possible assignments for haplotype 

generation is computationally expensive. Vcfeval solves this problem using 

global optimization methods supplemented with heuristic pruning. Genotype 

match statistics are the default TP, FP, and FN output by our tools. Genotype 

matching has been implemented in the hap.py tool xcmp and in vcfeval.

• Allele match: Truth and query alleles are counted as TP_AM if they contain any 

of the same (trimmed and left-shifted) alleles. This method is more specific than 

local matching (e.g. repeat expansions must be called with the correct length in 

order to get an allele match), but could also be susceptible to spurious 

mismatches when truth and query variant alleles are decomposed differently. 

Genotype mismatches (FP.GT in Table 1) are considered TPs in this matching 

method. We indicate allele matches in scenarios where variants can be matched 

when ignoring the genotype. Allele match statistics (TP_AM, FP_AM, and 

FN_AM) can be calculated from the GA4GH outputs (which require genotypes 

to match) TP_AM=QUERY.TP+FP.GT; FP_AM=QUERY.FP-FP.GT; 

FN_AM=TRUTH.FN-FP.GT. Allele matching has been implemented in the 

hap.py tool scmp-somatic and in vcfeval with the -squash-ploidy option.

– Note that vcfeval -squash-ploidy and scmp-somatic differ. scmp-
somatic checks if the VCF records give the same alleles after 

normalization and trimming. This will match alleles that overlap on the 

reference as long as they can be matched directly after left-shifting and 

trimming. When comparing somatic variant calls, this is probably the 

best option since technically, every variant could be on a different (low-

frequency) haplotype. vcfeval -squash-ploidy does haplotype-based 

comparison but assumes all variants are hom-alt and there is only one 

haplotype. This will match different representations unless they overlap 

on the reference (which is also possible using xcmp via the force-gt 

command line option in hap.py which changes the GTs before 

comparing).

• Local match: Truth and query variants are counted as TP_LM if their reference 

span intervals are closer than a pre-defined local matching distance, i.e. all 

yellow categories in Table 1 are considered TPs, including “F” matches that are 

within a specified number of basepairs. This approach has previously been 

implemented.7,21 An advantage of this matching method is that it is robust 

towards representational differences. A drawback for many applications is that it 

does not measure allele or genotype accuracy. We use local matches as the lowest 

tier of matching to label variants which are close-by but cannot be matched with 

other methods. Local match statistics (TP_LM, FP_LM, and FN_LM) can be 

calculated from the GA4GH outputs (which require genotypes to match): 

TP_LM=QUERY.TP+FP.GT+FP.AL; FP_LM=QUERY.FP-FP.GT-FP.AL; 

FN_LM=TRUTH.FN-FP.GT-FP.AL. If only local matching is required, this has 

been implemented in the hap.py tool scmp-distancebased.
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A fourth, most stringent matching, which is not yet fully implemented in the GA4GH 

framework, requires phasing information to match:

• Phased genotype match: When VCF files specify phasing information, we can 

compare on a haplotype level: variants will only be matched if they produce 

matching haplotype sequences under phasing constraints. Both vcfeval and 

hap.py’s xcmp method support phased matching when both callsets include 

variants that are globally phased (i.e. specify a paternal and maternal haplotype 

for each chromosome). To our knowledge, no current comparison method 

supports phasesets and local phasing to compare variants. Moreover, assessing 

phasing requires us to consider not only phasing variant accuracy, but also 

completeness of phasing coverage. In our current methods we do not implement 

phased genotype matching beyond the basic support provided by vcfeval and 

xcmp.

Defining True Positives, False Positives, and False Negatives

In Table 1, we enumerate the types of matches that are clear TP, FP, and FN as well as 

various kinds of partial matches that may be considered TP, FP, and/or FN depending on the 

matching stringency, and how they are counted by our tools. Our tools calculate TP, FP, and 

FN requiring the genotype to match, but output additional statistics related to how many of 

the FPs and FNs are allele matches (FP.GT) or local matches (FP.AL). Note that we have 

chosen not to include true negatives (or consequently specificity) in our standardized 

definitions. This is due to the challenge in defining the number of true negatives, particularly 

around complex variants. In addition, precision is often a more useful metric than specificity 

due to the very large proportion of true negative positions in the genome.

Another key question is how to count both matching and mismatching variant calls when 

they are differently represented in the truth dataset and a query. When representing MNPs as 

multiple SNVs, we may count one variant call for each SNV, or only one call in total for the 

MNP record. Similar considerations apply to counting complex records. We approach 

variant counting as follows:

• We count the truth and query VCF files separately. A set of truth records may be 

represented by a different set of query records.

• To get comparable recall, we count both TPs and FNs in their truth 

representation. When comparing different variant calling results to the same 

truthset, these counts will be based on the same variant representation.

• Precision is assessed using the query representation of variants. We give a 

relative precision to the number of truth variants in query representation. If a 

variant caller is consistent about the way it represents variants, this approach 

mitigates counting-related performance differences.

• We implement a “partial credit” mode in which we trim, left-shift and 

decompose all query variant calls before comparison. This resolves the MNP vs. 

SNV comparison issues and also simplifies the variant types we use for 

stratification, rather than having a category of complex variant calls which has 
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results that are difficult to interpret, we account for every atomic indel and SNV 

call independently.

• Variants are stratified into a canonical set of types and subtypes (see SI B).

• When stratification regions are applied, we match variants by their trimmed 

reference span. If any part of a deletion overlaps the stratification region, it is 

counted as part of that stratum. Insertions receive special treatment by requiring 

both the base before and the base after to be captured. Importantly, this 

stratification is performed after comparison to deal appropriately with 

representation issues.

Benchmarking metrics report

To reconcile the comparison methods and metrics discussed above into a simple summary, 

we have implemented in hap.py a standardized report that can be generated from the tabular 

output of the benchmarking workflow.21 This report displays the metrics we believe are 

most important in an accessible fashion (Tier 1 metrics), while also allowing to examine the 

data in more detail (Tier 2 metrics). An example for the metrics and plots displayed in such a 

report is shown in Fig. 3.

From the TP, FP, and FN counts defined in Table 1, we calculate:

METRIC.PRECISION = QUERY.TP / (QUERY.TP + QUERY.FP)

METRIC.RECALL = TRUTH.TP / (TRUTH.TP + TRUTH.FN)

We use the count of TPs based on the query representation (QUERY.TP) to calculate 

precision, and we use the count of TPs based on the Truth representation (TRUTH.TP) to 

calculate recall, in order to account best for cases where the Truth may tend to split a 

complex variant into multiple varaints and the Query may combine them into a single 

variant, or vice versa. Definitions and formulas for all performance metrics are detailed in 

Supplementary Table 1.

An alternative to precision is false positive rate (FPR) = FP / megabase.7 It can easily be 

obtained from GA4GH/hap.py extended csv by taking FP / 1e6 * Subset.Size (or 

Subset.IS_CONF.Size, the number of confident bases in each stratification region). Precision 

approximates the probability that a given query call is true, while FPR approximates the 

probability of making a spurious call. Note that we do not define “True negatives” or 

“specificity” because these are not cleanly applicable to genome sequencing. For example, 

there are an infinite number of possible indels in the genome, so there are an infinite number 

of true negatives for any assay.

In addition, the GA4GH Benchmarking framework is able to produce precision-recall 

curves, which are graphical plots that illustrate the performance of a variant quality score of 

a test call set as its discrimination threshold is varied, compared to the reference call set (see 

Figure 4). The curve is created by plotting the precision against the recall at various quality 
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score threshold settings. Commonly used quality scores include QUAL, GQ (genotype 

quality), DP (depth of coverage), and machine-learning derived scores such as VQSLOD 

and AVR. Because some methods use multiple annotations for filtering, precision-recall 

curves can be generated for a particular quality score either before or after removing filtered 

sites. Examining the precision-recall curves for various call-sets has two main advantages. 

Firstly, it allows the user to consider how accuracy is affected through the precision/recall 

trade-off. Secondly, different call sets may have effectively selected different precision/recall 

trade-off criteria, so simply comparing full call set metrics may reflect more about the 

different trade-off points than the call sets themselves at some shared trade-off criteria.

Benchmark callsets

Benchmarking of variant calls requires a specific genome and an associated set of calls that 

represent the “right answers” for that genome. Such call sets have the property that they can 

be used as “truth” to accurately identify false positives and negatives. That is, when 

comparing calls from any sequencing method to this set of calls, >50% of the putative false 

positives and false negatives should be errors in the method being assessed. Because it is 

treated as the truth, this benchmark set will be referred to in this manuscript as the “truth” 

set, but other terms used for this include the “gold-standard” set, the “high-confidence” set, 

the “reference callset,” or “benchmarking data.”

Genome in a Bottle

The Genome in a Bottle Consortium (GIAB) is a public-private-academic consortium hosted 

by the National Institute of Standards and Technology (NIST) to perform authoritative 

characterization of a small number of human genomes to be used as benchmarks. GIAB 

published a benchmark set of small variant and reference calls for its pilot genome, 

NA12878, which characterized a high-confidence genotype for approximately 78% of the 

bases with sequence information (i.e., bases that are not an “N”) in the human genome 

reference sequence (version GRCh37).3 Since this publication, GIAB has further developed 

integration methods to be more reproducible, comprehensive, and accurate, and has 

incorporated new technologies and analysis methods. The new integration process has been 

used to form benchmark small variant and reference calls for approximately 90% of 

GRCh37 and GRCh38 for NA12878, as well as a mother-father-son trio of Ashkenazi 

Jewish ancestry and the son in a trio of Chinese ancestry from the Personal Genome Project 

(v3.3.2 at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/).4,6,23 The five GIAB-

characterized genomes are available as NIST Reference Materials (RMs 8391, 8392, 8393, 

and 8398), which are extracted DNA from a single, homogenized, large growth of cells for 

each genome. These samples are also all available as cell lines and DNA from the Coriell 

Institute for Medical Research. The Personal Genome Project samples are also consented for 

commercial redistribution,23 and several derived products are commercially available, 

including FFPE-preserved and in vitro mutated cell lines, or with DNA spike-ins with 

particular variants of clinical interest. GIAB is continuing to improve the characterization of 

these genomes to characterize increasingly difficult variants and regions with high-

confidence.
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Platinum Genomes

In addition to the benchmarking data produced by the GIAB consortium, Illumina Platinum 

Genomes (PG) has also created a benchmarking data set for small variants (SNVs and 

Indels) using the 17-member pedigree (1463) from Coriell Cell Repositories that includes 

the GIAB pilot sample NA12878/HG001.5 Every sample of this pedigree was sequenced to 

~50x depth on an Illumina HiSeq2000 system. Variant calls were made from this data using 

different combinations of aligners and variant callers. This pedigree includes 11 children of 

the parents (NA12877 and NA12878), producing a fully phased dataset that allows to 

validate the accuracy of variant calls through genetic inheritance patterns. The HiSeq2000 

sequence data used to create these benchmarking calls can be obtained from the Database of 

Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap) under accession 

number phs001224.v1.p1. Additionally, the sequence data for six of the members of this 

pedigree are released through the European Nucleotide Archive (ENA; http://www.ebi.ac.uk/

ena) under accession number ERP001960. The DNA and cell lines for all samples are 

available from the Coriell Institute for Medical Research, and DNA from a single, 

homogeneous batch of NA12878 is also available as NIST Reference Material 8398.

Merged PG and GiaB

Since the two resources mentioned above constitute two different methods for generating 

“truth” call sets for NA12878, we have merged these into a single and more comprehensive 

dataset. Such a “hybrid” truth set can leverage the strengths of each input, namely the 

diversity of technologies used as input to Genome in a Bottle and the robust validation-by-

inheritance methodology employed by Platinum Genomes.

As a first pass, we have compared the call sets in NA12878 and identified the intersection as 

well as the ones unique to each (Supplementary Figure 2). Next, starting from the union, we 

have used a modified version of the k-mer validation algorithm described in [PG] to validate 

the merged calls (Supplementary Methods). This hybrid benchmark call set includes more 

total variants than either input set (67-333k additional SNVs and 85-90k additional indels), 

allowing us to assess more of the calls made by any sequencing pipeline without a loss in 

precision (see below).

This new benchmarking set represents the first step towards a more comprehensive call set 

that includes both “easy” to characterise variants and those that occur in difficult parts of the 

genome. Despite this significant advance, there remain areas for continued improvement, 

such as adjudication between conflicting calls and the merging of confident regions. We will 

continue to develop this integration method in order to further expand the breadth of 

coverage of this hybrid truth set resource.

Currently, neither PG nor GIAB makes high-confidence calls on chromosome Y or the 

mitochondrial genome. In addition, GIAB currently has chromosome X calls only for 

females, but PG has haploid chromosome X calls for the male NA12877 as well. Hap.py has 

an optional preprocessing step to guess male/female from the truth VCF. For male samples it 

converts haploid 1 GT calls on chrX/Y to 1/1 so that they get compared correctly by xcmp. 
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For vcfeval, haploid 1 GT calls are treated as the same as 1/1, so this conversion is not 

necessary.

Synthetic Diploid

A new “synthetic-diploid” benchmark callset was created from long read assemblies of the 

CHM1 and CHM13 haploid cell lines, in order to benchmark small variant calls in regions 

difficult to analyze with short reads or in diploid genomes, which are currently excluded 

from the GIAB and Platinum Genomes high-confidence regions.7 Because it is based on 

long reads, performance metrics are likely less biased toward any short read sequencing 

technology or informatics method, and it enables benchmarking in regions difficult to map 

with short reads. However, because it currently contains some errors that were not corrected 

in the long reads, it requires a less stringent benchmarking methodology similar to the “local 

match” method described below. It also excludes 1bp indels from performance assessment 

since long read assemblies contain 1bp indel errors, and >50bp indels because these are not 

analyzed. Therefore, it is currently not as useful for assessing accuracy of genotypes or 

accuracy of the exact sequence change predicted in the REF and ALT fields. When using 

GA4GH tools requiring genotypes to match, the majority of FPs and FNs may not be errors 

in the query callset, though work is underway to improve this. Nevertheless, it is likely to be 

complementary to the GA4GH benchmarking strategy by enabling users to assess accuracy 

in more difficult regions that GIAB and Platinum Genomes currently exclude from their 

high confidence regions. In particular, because the truth set was not developed from short 

reads, and errors in the truth may be different from errors in short reads, it may better assess 

of relative performance between short read-based methods, particularly in more difficult 

genomic regions. A current limitation is that CHM1 and CHM13 cell lines are not available 

in a public repository.

PrecisionFDA Challenges

The PrecisionFDA team held two challenges in 2016, with participants publicly submitting 

results from various mapping/variant calling pipelines. While both challenges asked 

participants to analyze short read WGS datasets, the first challenge used a sample with high-

confidence calls already available (HG001/NA12878) and the second one without high-

confidence calls yet available (HG002 from GIAB, made available by GIAB upon the close 

of the challenge).

In the first, “Consistency” Challenge, 30x Illumina WGS of the HG001/NA12878 sample 

was provided from two different sequencing sites, and the VCF file results from 17 

participants were assessed for reproducibility and accuracy against the GIAB v2.19 

Benchmark VCF. It is possible to generate reproducible results without much variability but 

substantial differences from the truth. Additionally, the pipelines that generated the variant 

calls could be tuned to HG001, which, in many situations, was used to train or optimize 

pipelines.

Therefore, in the second, “Truth” Challenge, participants were asked to use their pipelines 

with 50x Illumina WGS to predict variants from at the time yet unknown reference sample 

HG0002/NA24385. Challenge results were compared using two benchmarking comparator 
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tools, RTG Tools vcfeval for Consistency Challenge, and Vcfeval + Hap.py Comparison for 

Truth Challenge (more information at https://precision.fda.gov/challenges/). There were 35 

entries in the Truth Challenge and the responses were submitted and ranked according to 

precision and recall for SNVs and indels vs. the GIAB v3.3.2 high-confidence calls for each 

genome (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/). This was the first time Vcfeval + 

Hap.py GA4GH comparison methodology was applied at scale across the large number of 

entries submitted by pipeline developers. It helped highlight the utility of the tools and the 

need for further development and careful interpretation of results. Based in part on feedback 

from the challenges, an improved benchmarking app “GA4GH Benchmarking” uploaded by 

user peter.krusche is now available on precisionFDA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Benchmarking Best Practices

GA4GH recommendations for best practices for germline variant call 
benchmarking

Benchmark sets Use benchmark sets with both high-confidence variant calls as well as high-
confidence regions (e.g., from GIAB or Platinum Genomes).

Stringency of 
variant 
comparison

Determine whether it is important that the genotypes match exactly, only the alleles 
match, or the call just needs to be near the true variant. For example, if you confirm 
and/or manually curate all variants to ensure you have the correct allele and genotype, 
then local matching may be sufficient. While the default TP, FP and FN require 
genotype and allele matching, the additional metrics FP.GT and FP.AL output by the 
GA4GH tools enable users to calculate performance at different stringencies.

Variant 
comparison 
tools

Use sophisticated variant comparison engines such as vcfeval, xcmp, or varmatch that 
are able to determine if different representations of the same variant are consistent 
with the benchmark call (examples in Fig. 1). Subsetting by high-confidence regions 
and, if desired, targeted regions, should only be done after comparison to avoid 
problems comparing variants with different representations.

Manual 
curation

Manually curate alignments, ideally from multiple data types, around at least a subset 
of putative false positive and false negative calls in order to ensure they are truly 
errors in the user’s callset and to understand the cause(s) of errors. Report back to 
benchmark set developers any potential errors found in the benchmark set (e.g., using 
https://goo.gl/forms/ECbjHY7nhz0hrCR52 for GIAB or https://github.com/Illumina/
PlatinumGenomes/issues/new for PG).

Interpretation 
of metrics

All performance metrics should only be interpreted with respect to the limitations of 
the variants and regions in the benchmark set. Performance is unknown for variant 
types and genome contexts not well represented in the benchmark set. Performance 
metrics are likely to be lower for more difficult variant types and regions that are not 
fully represented in the benchmark set, such as those in repetitive or difficult-to-map 
regions. When comparing methods, note that method A may perform better in the 
high-confidence regions, but method B may perform better for more difficult variants 
outside the high-confidence regions.

Stratification Performance results should be stratified by variant type. Stratification by genomic 
region should also be considered to gain additional insights into strengths and 
limitations of the sequencing pipeline, as it can highlight regions that are not 
sufficiently represented. Stratification should only be done after comparison to avoid 
problems comparing variants with different representations.

Confidence 
Intervals

Confidence intervals for performance metrics such as precision and recall should be 
calculated.
This is particularly critical for the smaller numbers of variants found when 
benchmarking targeted assays and/or less common stratified variant types and 
regions.

Additional 
benchmarking 
approaches

We recommend using other benchmarking approaches in addition to those discussed 
in this paper to understand performance of a pipeline, including:

• Confirming results found in samples over time

• Synthetic DNA spike-ins with challenging and common clinically 
relevant variants

• Engineering variants into cell lines

• Finding existing samples with challenging and common clinically 
relevant variants

• Simulation methods, such as read simulators, adding variants into real 
reads, and modifying the reference

• Run-specific metrics such as base quality score distributions, coverage 
distributions, etc. can also be useful to identify outlier runs
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Figure 1: 
The GA4GH Benchmarking Team’s reference implementation of a comparison framework, 

annotated with free-floating text describing the team’s innovations. The framework takes in 

a Truth VCF, Query VCF, confident call regions for the Truth and/or Query, and optionally 

BED files to stratify performance by genome context. A standardized intermediate output 

(VCF-I) from the comparison engines allows them to be interchanged and for TP, FP, and 

FN to be quantified in a standard way.
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Fig. 2: 
Four examples of cases where variants can be represented in multiple forms in VCF format. 

(a) Three representations of a deletion in a homopolymer. (b) The insertion can be 

represented as one 4-bp insertion or two 2-bp insertions. (c) An MNP can be represented as 

3 SNVs or one larger substitution. (d) Four different representations of a complex variant. 

Note that representations include phasing information in these examples where it is 

necessary to unambiguously describe the variant. If phasing was not described for these 

variants, it would impossible to normalize their representations, but our sophisticated variant 

comparison tools can determine that they could describe the same two haplotypes.
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Figure 3: 
Example standardized HTML report output from hap.py. (a) Tier 1 high-level metrics output 

in the default view. (b) Tier 2 more detailed metrics and stratifications by variant type and 

genome context. (c) Precision-recall curve using QUAL field, where the black point is all 

indels, the blue point is only PASS indels, the dotted blue line is the precision-recall curve 

for all indels, and the solid blue line is the precision-recall curve for PASS indels.
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Figure 4: 
Matching stringency can affect relative performance of algorithms. Number of false 

positives for two PrecisionFDA Challenge submissions is shown for different matching 

stringencies, showing that the fermikit submission has many more false positives if genotype 

errors are counted as FPs, but that it has fewer FPs if matching only the allele or performing 

distance-based matching. Note that this is intended to illustrate the importance of matching 

stringency and is likely not indicative of the performance of these methods with optimized 

parameters or current versions.
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Table 1:

Contingency table describing the GA4GH definitions of true positive (TP), false positive (FP), false negative 

(FN), allele mismatch (FP.AL), genotype mismatch (FP.GT), and unknown (UNK). Matches counted as FP.GT 

and FP.AL are additionally counted as both FP and FN, since our tool’s default matching stringency requires 

genotypes to match. Query variants outside the Truth bed file are counted as UNK.

Truth

Genotype ref/ref ref/var1 var1/var2 var1/var1
Outside

bed

Query

ref/ref - FN FN FN -

ref/var1 FP TP FP.GT FP.GT UNK

ref/var2 - FP.AL FP.GT FP.AL -

ref/var3 - - FP.AL - -

var1/var2 FP FP.GT TP FP.GT UNK

var1/var3 - - FP.GT - -

var2/var3 - FP.AL FP.GT FP.AL -

var3/var4 - - FP.AL - -

var1/var1 FP FP.GT FP.GT TP UNK

var2/var2 - FP.AL FP.GT FP.AL -

var3/var3 - - FP.AL - -
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Table 2:

Recall and Precision stratified by genomic context (e.g., GC content and tandem repeat (TR) type) and variant 

type for Illumina whole genome sequence assays with and without a PCR step

Genomic context Type Recall
(PCR-free)

Recall
(with-
PCR)

Recall
(PCR
effect)

Precision
(PCR-free)

Precision
(with-PCR)

Precision
(PCR
effect)

All
SNV 98.4 98.4 0 99.9 99.9 0

indel 97.1 85.8 −11.3 99.3 97.6 −1.7

Not in homopolymers or TRs
SNV 98.5 98.6 0.1 99.9 99.9 0

indel 98.4 98.3 −0.1 99.4 99.3 −0.1

In homopolymers or TRs
SNV 97.2 95.6 −1.6 99.9 99.7 −0.2

indel 96.4 78.2 −18.2 99.3 96.3 −3

GC content > 85%
SNV 94.4 84.7 −9.7 100 100 0

indel 97.3 73.2 −24.1 97.3 96.5 −0.8

51-200 bp AT dinucleotide TRs indel 28.0 12.0 −16 64.0 39.0 −25

All 51-200 bp dinucleotide TRs indel 81.0 45.0 −36 94.0 84.0 −10
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