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Abstract

As agriculture industrializes, concentrated animal feeding operations (CAFOs) are becom-

ing more common. Feces from CAFOs is often used as fertilizer on fields. However, little is

known about the effects manure has on the soil microbiome, which is an important aspect of

soil health and fertility. In addition, due to the subtherapeutic levels of antibiotics necessary

to keep the animals healthy, CAFO manure has elevated levels of antibiotic resistant bacte-

ria. Using 16s rRNA high-throughput sequencing and qPCR, this study sought to determine

the impact of swine CAFO manure application on both the soil microbiome and abundance

of select antibiotic resistance genes (ARGs) and mobile element genes (erm(B), erm(C),

sul1, str(B), intI1, IncW repA) in agricultural soil over the fall and spring seasons. We found

the manure community to be distinct from the soil community, with a majority of bacteria

belonging to Bacteroidetes and Firmicutes. The soil samples had more diverse communities

dominated by Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia, and unclas-

sified bacteria. We observed significant differences in the soil microbiome between all time

points, except between the spring samples. However, by tracking manure associated taxa,

we found the addition of the manure microbiome to be a minor driver of the shift. Of the mea-

sured genes, manure application only significantly increased the abundance of erm(B) and

erm(C) which remained elevated in the spring. These results suggest bacteria in the manure

do not survive well in soil and that ARG dynamics in soil following manure application vary

by resistance gene.

Introduction

In the past two decades, agriculture has become more industrialized and has shifted toward

fewer but larger farm operations. Swine production is no exception to this trend; in the US,

nearly three-quarters of swine are grown in concentrated animal feeding operations (CAFOs)
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containing over 5,000 pigs each [1]. Manure from swine CAFOs is often used as an organic fer-

tilizer on fields to improve soil quality. Organic fertilizer provides nitrogen enrichment,

increases soil organic matter, and is often thought to be a better alternative than synthetic fer-

tilizer [2, 3]. The manure microbiome can influence the soil microbiome through direct com-

petition and transfer of antibiotic resistance genes (ARGs) [4]. However, our knowledge of

these processes is limited.

The soil microbiome has been linked to overall soil quality because it is involved in nutrient

cycling, helps maintain soil water content, and influences soil acidity [5–8]. Manure applica-

tion can impact the soil microbiome by increasing available nutrients or by introducing the

manure microbiome [9, 10]. However, it is unclear how much of a role the introduction of the

manure microbiome plays in altering the soil microbiome as members of the manure micro-

biome may not compete well in the soil environment [11, 12]. While previous studies have

found that organic manure application significantly alters the soil microbiome, we still do not

fully understand the extent to which manure application shifts the soil microbiome or the

duration of the shift [9, 13, 14].

Manure from CAFOs has also been shown to be a reservoir of antibiotic resistant bacteria

due to the use of subtherapeutic levels of antibiotics in the feed [15–19]. Because of high levels

of antibiotic resistant bacteria in manure, manure application has been shown to significantly

increase the abundance of ARGs in soil [20–24]. From the soil, ARGs can be dispersed into

surrounding waterways via runoff and drainage [25–27]. As ARGs may be transferred to path-

ogenic bacteria in the environment through horizontal gene transfer, agricultural dissemina-

tion of ARGs into the environment may perpetuate the current increase of antibiotic

resistance, which is a public health threat as the number of antibiotics available becomes more

limited [15, 28, 29].

In the present study, we investigated the impact of swine CAFO manure fertilization on

both the soil microbiome and the abundance of antibiotic resistance and mobile element genes

over the fall and spring seasons. The effect of manure fertilization on the soil microbial com-

munity was explored by using 16S rRNA gene high-throughput sequencing. qPCR was

employed to determine the relative abundances and dynamics of select antibiotic resistance

and mobile element target genes (erm(B), erm(C), sul1, str(B), intI1, IncW repA) from soil sam-

ples over the fall and spring season. These genes were chosen because they represent resistance

to a variety of antibiotics commonly used in the swine industry, including the CAFO in this

study, and because they overlap ARGs investigated in several studies, most specifically with

those used by Marti et al., allowing for us to begin building comparisons across environments

[23]. The present study found that manure application may not be a significant factor in alter-

ing the soil community over a five-month period but does affect the gene abundance of select

resistance genes.

Materials and methods

Study site

Manure, manure line, and field soil samples were taken from a swine CAFO farm located near

Grinnell, IA (41.5896, -92.7569). Permission was granted by the land owner for sample collec-

tion. The CAFO houses approximately 6,500 hogs. Manure was collected in a pit below the

CAFO for a year before application. The year before sampling the following antibiotics were

dispensed in the feed according to a feeding regimen for growing swine, which included: tia-

mulin, chlortetracycline, sulfamethazine, penicillin, lincomycin, and tylosin phosphate. When

infections arose in the barn, swine were additionally treated with penicillin and cycline, sepa-

rately supplied in water, and 60 swine had Indoflex shots to treat illness.

Manure impact on bacterial community and ARGs in soil
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The agricultural field sampled is a flat section of land at the bottom of the field that slopes

up to the farm buildings. The field was split into two sites with each site centered around a tile

line that empties into the stream positioned next to the field. The field is primarily silt loam

soil (https://websoilsurvey.sc.egov.usda.gov/) [30]. Soil samples were collected before manure

application on November 8, 2016. Manure was applied on the corn field for the 2017 growing

season on November 12, 2016 at a rate of 4,127 gallons per acre, and the manure was sampled

at this time. Manure was injected into knife lines running parallel through the field, and after

2–3 weeks the entire field is tilled. The samples collected just after application, on November

15, 2016, are from the injection lines referred to as “manure lines” and from soil in between

the injection lines “soil”. After tilling samples were collected from the mixed soil on February

17, 2017 and March 22, 2017. There were no samples available on this site that had not been

impacted by animal manure.

Sample collection

For field soil and manure line samples, soil cores were taken at random locations within each

site using a T-sampler sterilized with 70% ethanol between samplings. Samples were contained

in a sterile bag and mixed by hand to homogenize the sample. Samples were then transported

to the lab and refrigerated within one hour of collection and stored frozen at -20˚C. Data from

the two sites were combined for analysis for each respective sample type and date.

DNA extraction

For 16S community analysis, DNA was extracted from 250 mg of soil and 250 μl of manure

samples using the MagAttract Powersoil DNA EP Kit (384) (Qiagen, Germantown, MD)

according to the manufacturer’s instructions. DNA was extracted from ten manure samples,

twelve manure line samples from each site, and twelve soil samples from each site for every

sampling date.

For qPCR, DNA was extracted from 250 mg of soil and 250 μl of manure samples using the

DNeasy PowerSoil Kit (Qiagen, Germantown, MD) using the manufacturer’s instructions

with one modification: the samples were placed on a Mini-Beadbeater (Biospec Products, Bar-

tlesville, OK) for 140 seconds to homogenize. In total, DNA was extracted from ten manure

samples, ten manure line samples from each site, and 10 soil samples from each site for every

sampling date.

16S rRNA community analysis

The V4 region of the 16S rRNA gene was amplified using the Earth Microbiome Project prim-

ers (F: 5’GTGYCAGCMGCCGCGGTAA3’, R: 5’GGACTACNVGGGTWTCTAAT3’; fwd-bar-

coded: 515FB-806RB) and standard protocol [31]. Samples were indexed and sequenced using

Illumina MiSeq (Illumina, San Diego, CA) producing 250-bp paired-end reads. Sequences

were processed with MOTHUR (version 1.39.5) [32] according to standard operating proce-

dure (http://www.mothur.org/wiki/MiSeq_SOP) [33]. Briefly, paired sequences were joined,

primers were trimmed, and sequences were screened. The SILVA 16S rRNA sequence data-

base (Release 132) was used for reference alignment and the RDP 16S rRNA reference (http://

rdp.cme.msu.edu) for taxonomic classification [34, 35]. The VSEARCH algorithm in

MOTHUR was used to filter chimeras. The OptiClust algorithm in MOTHUR was used to

cluster processes sequences into operational taxonomic units (OTUs) using a 97% sequence

similarity cutoff [36]. For the purposes of this study, only sequences associated with bacteria

were used for analysis.

Manure impact on bacterial community and ARGs in soil
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Statistical analysis and data visualization were carried out in R (version 3.5.0) (https://www.

r-project.org/). The package phyloseq (version 1.24.2) was used for rarefying and data cleaning

[37]. The packages ape (version 5.1) [38], dplyr (version 0.7.6) [39], and reshape2 (version

0.8.7) [40] functions were used in data transformations. Both alpha diversity indices and rela-

tive phyla abundance were produced in phyloseq and analyzed using ANOVA from the pack-

age vegan (version 2.5–2) [41]. NMDS ordination was produced and analyzed using the

ADONIS function, which is equivalent to a PERMANOVA, using the vegan package. DEseq2

was used to calculate differential abundance of OTUs after singletons were removed (version

1.20.0) [42]. The package ggplot2 (version 3.0.0) [43] was used for visualization along with

RColorBrewer (version 1.1–2) [44].

qPCR for gene targets

Quantitative Real-Time PCR amplification was performed using an Applied Biosystems Ste-

pOnePlus Real-Time PCR System (ThermoFisher, Waltham, MA). The primers used in this

study are described in Table 1, and were obtained from Integrated DNA Technologies in Cor-

alville, IA.

Plasmids containing erm(C) target DNA fragment were provided by the Howe Lab at Iowa

State University [24]. Plasmids containing all other target DNA fragments for every primer

were provided by Marti et. al [23]. Plasmids were transformed into Escherichia coli One Shot

TOP10 Cells (Thermofisher, Waltham, MA) using the manufacturer’s instructions and were

extracted using the Wizard Plus SV Minipreps DNA Purification System (Promega, Madison,

WI) following the manufacturer’s instructions. Plasmid copy number was calculated using the

NanoDrop One Microvolume UV-Vis Spectrophotometer (ThermoFisher, Waltham, MA).

The cultivated plasmids were used for standard curves consisting of 10-fold samples.

Each reaction was prepared using 12.5 μl of Takyon ROX SYBR serial dilutions that

spanned the range of the target gene amplification from environmental MasterMix blue dTTP

(Eurogentec, Fremont, CA) for SYBR green PCR and PrimeTime Gene Expression Master

Mix (Integrated DNA Technologies, Coralville, IA) for TaqMan PCR. Two microliters of tem-

plate DNA and deionized water were added to reach a final volume of 25 μl. Every sample,

including a no template DNA control of DNA free water, was run in triplicate. A melting

curve afterwards was used to check the purity of the SYBR green assay qPCR product.

Gene abundance analysis

The quantification thresholds and cycle were determined using the StepOne Software (Version

2.0.2) (Applied Biosystems). Standard curves were generated using linear regression analysis

of the quantification cycle versus the amount of template DNA. A regression goodness of fit

(r2) of above 0.9 was needed for the qPCR run to be used in analysis. Amplification efficiency

was calculated from the linear regression as described previously [50]. Amplification efficiency

between 90% and 110% was needed in order for the qPCR run to be used in analysis. Limit of

detection (LOD) and limit of quantification (LOQ) were determined by serial dilutions of

known plasmid amounts. The LOD was the lowest dilution that was distinguishable from the

no template control. The LOQ was the lowest dilution that stayed within one standard devia-

tion of the linear regression line and was distinguishable from the no template control. Gene

target copy number was calculated using the standard curve and each gene abundance is

expressed as a ratio of targeted gene copy per total rrnS gene copy in the reaction.

GraphPad Prism 7 (GraphPad Software, Inc.) was used for statistical analysis and the results

were visualized in R. Gene abundances were compared using Kruskal-Wallis test with Dunn’s

test for multiple comparisons using Luby et al.’s method to compensate for LOD and LOQ
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abundances [24]. Briefly, samples with gene abundance below the specified LOQ and above

the LOD were assigned the average of the LOQ and LOD for analysis. Sample abundances

below the LOD were assigned a value of one for analysis. This does not alter statistical signifi-

cance because Kruskal-Wallis is a non-parametric rank based test.

Results

Sample collection

Manure, soil, and manure line samples were obtained from a swine CAFO located near Grinnell,

IA. Ten manure samples were taken directly from the lagoon beneath the swine CAFO at the

same time of its application onto the field, November 12, 2016. Soil samples were obtained from

two sites from a commercial agricultural field. Data from the two sites were combined for analy-

sis for each respective sample type and date. Twelve soil samples were taken from each site at

four time points: fall pre-manure application (November 8, 2016), fall post-manure application

(November 15, 2016), spring time 1 (February 17, 2017) and spring time 2 (March 22, 2017).

General description of DNA sequences

There was an average of 28,129 sequences per an individual soil or manure sample. Sequences

were rarefied to 19,239 reads for analysis (the lowest sampling depth of this experiment that

Table 1. qPCR primers and probes used in this study.

Name Sequence (5’!3’)a Annealing Temp

(C)

Final primer concn

(nM)

Target Reference

Universal

bacteria

59 300 rrnS gene [45]

BACT1369F CGGTGAATACGTTCYCGG

PROK1492R GGWTACCTTGTTACGACTT

TM1389F HEX-CTTGTACACACCGCCCGTC-BHQ1

erm(B) 65 200 Erythromycin resistance gene locus B [46]

ermB-F AAAACTTACCCGCCATACCA

ermB-R TTTGGCGTGTTTCATTGCTT

erm(C) 62 200 Erythromycin resistance gene locus C [47]

ermC-F AATCGTGGAATACGGGTTTGC

ermC-R CGTCAATTCCTGCATGTTTTAAGG

sul1 64 200 Sulfamethazine resistance gene 1 [23]

sul1-F GACTGCAGGCTGGTGGTTAT

sul1-R GAAGAACCGCACAATCTCGT

str(B) 61 300 Streptomycin phosphotransferase B [48]

strB-F ATCGCTTTGCAGCTTTGTTT

strB-R ATGATGCAGATCGCCATGTA

strB-P HEX-ATGCCTCGGAACTGCGT-BHQ1

intI1 62 200 Integrase class 1 [49]

Int1F2 TCGTGCGTCGCCATCACA

Int1R2 GCTTGTTCTACGGCACGTTTGA

IncW repA 61 300 repA gene from plasmid incompatibility

group W

[23]

IncW-F GGCCATCGTATCAACGAGAT

IncW-R ATTGGTGCGCTCAAAGTAGC

IncW-P HEX-AGCTGGCTTAGTCGGCTACA-BHQ1

a HEX, 2’, 4’, 5’, 7’-tetrachloro-6-carboxy-4,7-dichlorofluorescein succinimidyl ester; BHQ1, black hole quencher 1.

https://doi.org/10.1371/journal.pone.0220770.t001
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provided adequate taxa coverage), and samples below the rarefying depth were discarded. Rar-

efaction curves suggest that the rarefying depth covered the dominant taxa. After rarefying,

125 out of 130 samples remained, representing a total of 2,404,875 reads, 25,514 Operational

Taxonomic Units (OTUs) at 97% similarity, and 33 phyla. The sequences have been deposited

in NCBI repository with the accession no. SRP158016.

Characterization of bacterial communities

Using 16S rRNA gene high-throughput sequencing, the microbial community structure of the

samples was characterized (Fig 1). The manure community was unique compared to the soil

communities having significantly more members from the Bacteroidetes and Firmicutes phyla

than the soil communities (P<0.05), while also having significantly lower percentages of the

remaining phyla compared to soil and manure line samples (P<0.05). Although the most

abundant phyla stayed fairly consistent in soil samples across our study (Fig 1), we did observe

significant changes with specific phyla. Soil prior to manure application had significantly more

candidate division WPS-1 OTUs than all of the other soil and manure line samples (P<0.01).

After manure application, manure line soil had significantly more Firmicutes than the rest of

the soil sample dates (P<0.01). The manure line also had significantly more Proteobacteria

than the soil four months after manure application (P<0.05). Fall post-manure soil had signifi-

cantly more unclassified bacteria than pre-manure, manure line, and spring time 2 soil

(P<0.05). The spring soil samples had significantly more Verrucomicrobia than the rest of the

soil samples but were not significantly different between each other (P<0.01).

Bacterial community α-diversity

The alpha diversity, the diversity within each sample type, was determined using the Chao1

and Shannon diversity indices (Fig 2). Alpha diversity was significantly lower in the manure

compared to the soil and manure line samples. In both the alpha diversity measures, there was

an insignificant difference in diversity between fall pre-manure and post-manure soil. There

was a significant decrease in diversity between pre-manure and spring time 1 soil, but no sig-

nificant difference between pre-manure and spring time 2 soil diversity. The manure line

alpha diversity was similar to the soil alpha diversity. However, the difference between fall pre-

manure soil and manure line diversity was significant using the Shannon index, but not using

Chao1.

Community comparisons (β-diversity)

The NMDS ordination and PERMANOVA were utilized to compare the bacterial community

between samples. Pairwise PERMANOVA showed that the manure community was signifi-

cantly different than the soil and manure line samples (P<0.001). While the soil and manure

line community compositions shared the same dominant phyla, pairwise PERMANOVA,

which considers the whole community composition, showed that the bacterial community dif-

fered significantly between all soil and manure line samples, except for the spring samples

(P<0.001, Fig 3). Both time and sample type were significant factors in the difference of micro-

biome composition between soil and manure line samples (P<0.05). Sample date explained

27.6% of the variance while type of sample explained 0.023% of variance.

Dispersion of manure OTUs

To determine if the changes in the soil community post-manure application were due to the

addition of OTUs from manure, 104 OTUs significantly more abundant (P<0.05) in manure
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than pre-manure soil were identified and tracked (S1 Table). The manure associated OTUs

were used as indicators of dispersion from the manure microbiome and their changes in abun-

dance between pre-manure soil and post-manure soil samples were measured. In the manure

line samples immediately following manure application, 57 of the 104 identified manure asso-

ciated OTUs were significantly elevated from pre-manure soil abundance (Fig 4). In the soil
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samples taken in between injection lines, only seven manure associated OTUs were signifi-

cantly elevated in the fall post-manure soil from pre-manure soil. In both the spring sampling

dates, the same three manure associated OTUs were significantly more abundant than pre-

manure soil. Of the three OTUs that remained elevated in the spring, two were of the Proteo-

bacteria phylum and one was of the Firmicutes phylum.

Of the 104 OTUs identified as being significantly more abundant in manure than pre-

manure soil, 69 were only present in manure and not in pre-manure soil. These OTUs were

also tracked. Thirty-eight of the manure specific OTUs were found in the manure line. Only

one manure specific OTU, a Proteobacteria belonging to the genus Pseudomonas, remained in

the fall post-manure soil. This same OTU was the only OTU present in manure and not pre-

manure soil that remained significantly elevated in both spring soil samples. Pseudomonas are
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https://doi.org/10.1371/journal.pone.0220770.g002
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known to be well adapted to soil and agricultural environments along with many also living as

opportunistic pathogens. We propose this OTU could have the ability to grow and survive in

both animal and soil environments.

Resistance gene and mobile genetic element abundance

Along with the community characterization, we investigated if the abundance of antibiotic

resistance genes and mobile genetic elements in soil were significantly enriched by manure

−0.50

−0.25

0.00

0.25

−0.4 0.0 0.4 0.8

NMDS1

N
M

D
S

2

fall post−manure soil fall pre−manure soil manure line spring 1 soil spring 2 soil

Fig 3. Comparison of community composition between soil and manure line samples. Community composition varied significantly between all samples

except between the spring samples. Spring time 1 and spring time 2 soil are combined as spring soil. Clustering is based on nonmetric multidimensional

scaling analysis of samples according to Bray-Curtis distances. Manure was excluded from the NMDS plot to show variation of soil samples.

https://doi.org/10.1371/journal.pone.0220770.g003

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0220770.g003
https://doi.org/10.1371/journal.pone.0220770


application, as it is possible that even if manure bacteria do not survive in the soil, they may be

able to pass along their ARGs to members of the soil microbiome. Abundances of target ARGs

and mobile genetic elements were measured in samples relative to 16S rRNA gene. Every gene

was detected in at least one sample of every sample type. Manure generally had the highest

abundances of the target genes. However, relative abundances of each gene varied considerably

in all samples and the abundance pattern of each gene was unique (Fig 5).

erm(B) and erm(C) had similar dynamics after manure application, with significantly higher

abundance in fall post-manure soil and manure line samples compared to pre-manure soil.

erm(C) abundances remained significantly higher in both spring sampling dates compared to

pre-manure soil. However, erm(B) abundance lowered to pre-manure levels in the spring time
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Fig 5. Relative abundance of target genes to 16S rRNA copy number. Different letters indicate significant differences (P<0.05). n = 10

for manure. n = 20 for soil samples.

https://doi.org/10.1371/journal.pone.0220770.g005
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1 soil, but abundance was significantly elevated again from pre-manure soil in the spring time

2 soil to a level similar to post-manure soil abundance.

The other gene targets were not significantly increased following manure application (Fig

5). sul1 abundance decreased in the fall post-manure soil and remained at a lower level

throughout the spring samples. Abundance of str(B) was similar in all the samples, except

there was a significant decrease in the soil three months after manure application where str(B)
abundance was mostly below the limit of quantification. Like str(B), all the fall soil, manure,

and manure line samples had similar abundances of intI1. However, there was a significant

decrease in abundance of intI1 in both the spring sample dates. IncW repA abundance signifi-

cantly dropped in soil and manure line after manure application and stayed significantly low-

ered throughout the spring.

Discussion

Utilizing high throughput sequencing and quantitative PCR, this study characterized changes

in the microbial community and resistance gene abundance following the application of swine

manure in the soil of a commercial Iowa farm. The soil microbiome significantly changed

throughout the experiment. However, the addition of the manure microbiome likely had lim-

ited influence on soil community composition as the microbes in the manure had short persis-

tence in the soil. A similar trend was observed for ARGs as the target antibiotic resistance and

mobile genetic element genes did not display uniform dynamics in response to manure appli-

cation. These results suggest the response of the soil microbiome to manure amendment is

complex and dependent on many environmental factors.

Soil microbiome dynamics

High throughput 16S rRNA sequencing was employed to characterize the bacterial micro-

biome of manure and of the farmland prior to and following manure application. The domi-

nant phyla of both the manure and soil microbiomes in this study were generally characteristic

of microbiomes described in prior studies [6, 9, 21, 51–54]. Both the soil alpha diversity and

phyla composition were fairly consistent across all sampling dates. Unlike our results, some

studies have found that manure amendment increases soil diversity and significantly changes

the abundance of the major phyla after manure application [55, 56]. Other studies have found

no change in alpha diversity and phyla composition of the bacterial community after manure

application [57, 58]. Sample date was a significant factor in microbiome composition suggest-

ing that the microbiome composition changes throughout time.

Our results are comparable to numerous other studies which have found manure applica-

tion to significantly alter the microbe community in soils [9, 59–61]. Studies that have exam-

ined the soil community response after manure application longitudinally have found results

similar to the present study in that the soil microbiome shifted away from the community

prior to manure application [61, 62]. Two long-term studies found that 40 years of annual

manure application significantly altered the soil microbiome compared to control soil [14, 63].

The soil microbiome composition and function have been shown to be very sensitive and, in a

majority of studies, never fully recovers from disturbances [64, 65]. These differing results sug-

gest that the response of the soil microbiome to manure amendment may depend on factors

like regional soil characteristics and weather [66]. Our study was conducted on farm soil just

before and following seasonal frost, ice and snow, which likely impacted dispersion of

microbes and microbial survivorship over a three-month winter period.

The significant differences of the bacterial community between soil before and after manure

application and between manure line and soil suggest that the introduction of the manure
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microbes could be a source of the change. To determine the impact of the addition of the

manure microbes on the soil microbiome, OTUs significantly more abundant in the manure

microbiome compared to the pre-manured soil were measured in post-manure soil samples.

About half of the manure associated OTUs, most of which were present in manure and absent

in pre-manure soil, were significantly elevated in the manure line samples suggesting that part

of the soil microbiome shift is due to the addition of bacteria originating from manure. How-

ever, almost all of the manure associated OTUs returned to pre-manure levels of abundance

by the spring which suggests that the influence of dispersion originating from the manure

microbiome is temporary. The fall post-manure soil samples, which had low levels of manure

associated OTUS, were taken between injection lines and thus were not in direct contact with

manure. Nutrient addition from manure application may be another major factor in shifting

the soil microbiome [67], but the limited duration of the manure associated bacteria in the soil

combined with the fact that there was no pattern in the phyla abundance changes suggests that

it is unlikely that manure was the sole driving factor in the soil microbiome shifts throughout

the time points measured. Analysis at the family level follows what was observed at the phyla

level with no clear patterns beyond the significant differences between soil and manure (S1

Fig). Previous studies have found that manure-associated bacteria had only a temporary effect

on soil the microbiome and suggested that most manure-associated bacteria are not well

adapted to survive in soil [68, 69]. In a microcosm study, Rieke et al. found that most manure

associated OTUs which elevated in soil after manure application began to decrease in soil after

24 days [70]. However, it is possible that the manure microbiome is instead dispersing to else-

where in the environment. Other factors like temperature, soil moisture, and soil pH can also

have significant effects on microbiomes [6, 71]. Future research should determine the environ-

mental characteristics that contribute to the composition of the soil microbiome.

Dynamics of ARGs and mobile genetic elements abundance

Abundance of select antibiotic resistance and mobile element target genes were measured to

determine their dynamics in soil after manure application. Gene target abundances in almost

all the soil samples were low. Within samples ARG abundances varied considerably, which is

consistent with the heterogeneous nature of soil and previous studies [6, 72, 73]. Each gene dis-

played a unique abundance pattern across time points. An increase in gene abundance can be

either from the direct addition of bacteria originating from manure, from the proliferation of

bacteria already in the soil, or from the spread of genes due to horizontal gene transfer [23,

74]. Likewise, a decrease in gene abundance may be attributed to either the natural decay of

the genes or spread of genes to other parts of the environment due to factors such as precipita-

tion and temperature [4, 25, 75–81]. A recent study by Wang and colleagues, determined that

after 26 years of manure application, there was not a large accumulation of ARGs in the soils

studied and the low fold increases found in ARGs were not consistent across all types of ARGs

[66].

The antibiotic resistant gene abundance patterns in the present study may be connected to

the previous antibiotic exposure of the hogs. The abundance of erm(B), erm(C), and sul1 all

increased after manure application. The manure producing hogs were given sulfamethazine,

which sul1 provides resistance, and the macrolide tylosin phosphate, which both erm(B) and

erm(C) may provide cross resistance [82, 83]. Abundance of sul1 has also been previously

shown to be positively correlated with the amount of sulfonamide in soil [84]. The hogs were

not given any streptomycin or other aminoglycosides of which str(B) provides resistance to

[85]. It is important to note that str(B) was still detected in all samples. This may mean the str
(B) abundances may be a result of naturally occurring antibiotics present in the soil or from a
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previous course of antibiotics, as resistance is known to persist for years after antibiotics have

been administered [86, 87]. However, Udikovic-Kolic et al. found that cow manure amend-

ment increased ARG abundance independent of the previous antibiotic exposure of the

manure producing cows suggesting that ARGs may be enriched rather than introduced from

manure application [22]. It is unknown whether the changes in gene abundance in this study

were directly due to the addition of manure or due to other environmental factors. The exten-

sive use of manure fertilizer along with grazing animals made us unable to obtain control soil

that had no animal impact.

ARGs are often found to be linked to mobile element genes in the environment. The genes

intI1, an integrase gene which allows exogenous genes to be inserted in the genome [88], and

IncW repA, which assists in replication of plasmids carrying resistance genes [89], did not increase

in abundance after manure application in our study. However, other studies have found both

ARGs and mobile element genes to be increased following manure application [90, 91]. Recent

work by Zhao and colleagues has found a link between the presence of metals in soils and ARGs

and mobile element gene selection, a new factor to consider for horizontal gene transfer [92].

To our knowledge, the present field study is the first of its kind to examine soil after manure

application from a swine CAFO in Iowa, but many studies have shown trends of increase in ARG

abundance in soil after manure application [23, 24, 90, 91, 93, 94]. Marti et al. measured the

abundance of five of the six genes in the present study in an agricultural field for 304 days after

manure application and compared abundance to soil that had no manure exposure [23]. Their

measured abundance dynamics of erm(B), str(B), and IncW repA in manure applied soil were

similar to the present study and the abundances of the genes were significantly elevated from con-

trol soil [23]. Unlike this study, the abundance of sul1 and intI1 in Marti et al. both seemed to be

significantly increased by manure application [23]. The differences observed across studies are

likely due to many confounding factors including differences in antibiotics given to the animals

that produced the manure, water availability, bacterial community composition, and soil pH.

The present study found that the fate of gene abundances depends on the gene. Two genes,

erm(B) and erm(C), were significantly elevated in abundance in the spring 2 sampling. erm(B)
remained elevated through all time points, while erm(C) was below quantification at spring time

1 and returned to elevated levels at spring time 2. The other four target genes were either at a sim-

ilar or a lower abundance than pre-manure soil. Marti et al., which followed five of the genes in

this study, suggests an offset time of at least one growing period is necessary to allow abundance

to safely return to pre-application conditions [23]. In another study, soils treated with swine

manure returned to ARG levels in untreated soil within 20 days [95]. However, another study

found significantly elevated levels of ARGs in soil after 25 years of swine manure application [58],

which can be contrasted with Wang et al. who found relatively low fold changes after 26 years of

manure application [66]. Studies have shown that gene abundances are sensitive to factors like

soil type [96], application type [97], and the presence of plants [98]. Further studies are needed to

better characterize the fate and dynamics of ARGs following manure application, especially

because the results of this study suggest that abundance generalizations cannot be made across

genes and ARGs have been shown to have different rates of dissipation [73]. Additionally, future

research may be able to link certain resistance genes to specific taxa in the environment.
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(P<0.05).

(DOCX)

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 14 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220770.s001
https://doi.org/10.1371/journal.pone.0220770


S1 Table. Relative abundance of manure associated OTUs.

(DOCX)

Acknowledgments

The authors would like to thank J. Jones, H. Allen, and N. Ricker of the USDA for their assis-

tance with sequencing. We thank the Topp lab for providing control vectors for several resis-

tance genes and a mobile element gene. The authors thank D. Hoksbergen for providing

access to the study site. The authors also thank H. O’Neill, K. Vorhies, and S. Young for their

assistance with DNA extractions. The authors are very appreciative to the many Grinnell Col-

lege students who helped with sampling.

Author Contributions

Conceptualization: Adina Howe, Shannon Hinsa-Leasure.

Data curation: Edward Lopatto, Alfredo Colina, Shannon Hinsa-Leasure.

Formal analysis: Edward Lopatto, Alfredo Colina, Shannon Hinsa-Leasure.

Funding acquisition: Shannon Hinsa-Leasure.

Investigation: Edward Lopatto, Alfredo Colina, Shannon Hinsa-Leasure.

Methodology: Edward Lopatto, Jinlyung Choi, Shannon Hinsa-Leasure.

Project administration: Shannon Hinsa-Leasure.

Resources: Shannon Hinsa-Leasure.

Supervision: Jinlyung Choi, Lanying Ma, Adina Howe, Shannon Hinsa-Leasure.

Writing – original draft: Edward Lopatto.

Writing – review & editing: Edward Lopatto, Jinlyung Choi, Lanying Ma, Adina Howe, Shan-

non Hinsa-Leasure.

References

1. Agriculture USDA. Census of Agriculture 2017. Available from: https://www.nass.usda.gov/

Publications/AgCensus/2017/index.php.

2. Das S, Jeong ST, Das S, Kim PJ. Composted cattle manure increases microbial activity and soil fertility

more than composted swine manure in a submerged rice paddy. Front Microbiol. 2017; 8:1702. https://

doi.org/10.3389/fmicb.2017.01702 PMID: 28928727

3. Meng L, Ding W, Cai Z. Long-term application of organic manure and nitrogen fertilizer on N2O emis-

sions, soil quality and crop production in a sandy loam soil. Soil Biol Biochem. 2005; 37(11):2037–45.

4. Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, et al. Fate and transport of anti-

biotic residues and antibiotic resistance genes following land application of manure waste. J Environ

Qual. 2009; 38(3):1086–108. https://doi.org/10.2134/jeq2008.0128 PMID: 19398507

5. Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial

communities to agriculture: implications for primary productivity and soil health indicators. Front Plant

Sci. 2016; 7:990. https://doi.org/10.3389/fpls.2016.00990 PMID: 27462326

6. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev

Microbiol. 2017; 15(10):579–90. https://doi.org/10.1038/nrmicro.2017.87 PMID: 28824177

7. Yarwood RR, Rockhold ML, Niemet MR, Selker JS, Bottomley PJ. Impact of microbial growth on water

flow and solute transport in unsaturated porous media. Water Resour Res. 2006; 42(10).

8. Morales VL, Parlange JY, Steenhuis TS. Are preferential flow paths perpetuated by microbial activity in

the soil matrix? A review. J Hydrol. 2010; 393(1):29–36.

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220770.s002
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://doi.org/10.3389/fmicb.2017.01702
https://doi.org/10.3389/fmicb.2017.01702
http://www.ncbi.nlm.nih.gov/pubmed/28928727
https://doi.org/10.2134/jeq2008.0128
http://www.ncbi.nlm.nih.gov/pubmed/19398507
https://doi.org/10.3389/fpls.2016.00990
http://www.ncbi.nlm.nih.gov/pubmed/27462326
https://doi.org/10.1038/nrmicro.2017.87
http://www.ncbi.nlm.nih.gov/pubmed/28824177
https://doi.org/10.1371/journal.pone.0220770


9. Hamm AC, Tenuta M, Krause DO, Ominski KH, Tkachuk VL, Flaten DN. Bacterial communities of an

agricultural soil amended with solid pig and dairy manures, and urea fertilizer. Appl Soil Ecol. 2016;

103:61–71.

10. Stocker MD, Pachepsky YA, Hill RL, Shelton DR. Depth-dependent survival of Escherichia coli and

enterococci in soil after manure application and simulated rainfall. Appl Environ Microbiol. 2015; 81

(14):4801–8. https://doi.org/10.1128/AEM.00705-15 PMID: 25956764

11. Unc A, Goss MJ. Transport of bacteria from manure and protection of water resources. Appl Soil Ecol.

2004; 25(1):1–18.

12. Sun R, Zhang X-X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical

fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil

Biol and Biochem. 2015; 88:9–18.

13. Hartmann M, Frey B, Mayer J, Mader P, Widmer F. Distinct soil microbial diversity under long-term

organic and conventional farming. ISME J. 2015; 9(5):1177–94. https://doi.org/10.1038/ismej.2014.210

PMID: 25350160

14. Soman C, Li D, Wander MM, Kent AD. Long-term fertilizer and crop-rotation treatments differentially

affect soil bacterial community structure. Plant Soil. 2017; 413(1):145–59.

15. Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS. The potential role of concen-

trated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ

Health Perspect. 2007; 115(2):313–6. https://doi.org/10.1289/ehp.8837 PMID: 17384785

16. Barton MD. Antibiotic use in animal feed and its impact on human healt. Nutr Res Rev. 2000; 13

(2):279–99. https://doi.org/10.1079/095442200108729106 PMID: 19087443

17. Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic

resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A. 2013; 110(9):3435–40. https://doi.

org/10.1073/pnas.1222743110 PMID: 23401528

18. Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Micro. 2014; 5:334.

19. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in anti-

microbial use in food animals. Proc Natl Acad Sci U S A. 2015; 112(18):5649. https://doi.org/10.1073/

pnas.1503141112 PMID: 25792457

20. Zhou X, Qiao M, Wang F-H, Zhu Y. Use of commercial organic fertilizer increases the abundance of

antibiotic resistance genes and antibiotics in soil. Environ Sci Pollut Res Int. 2017; 24(1):701–10.

https://doi.org/10.1007/s11356-016-7854-z PMID: 27752947

21. Xiong W, Wang M, Dai J, Sun Y, Zeng Z. Application of manure containing tetracyclines slowed down

the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Ecotoxi-

col Environ Saf. 2018; 147:455–60. https://doi.org/10.1016/j.ecoenv.2017.08.061 PMID: 28898804

22. Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J. Bloom of resident antibiotic-resistant bac-

teria in soil following manure fertilization. Proc Natl Acad Sci U S A. 2014; 111(42):15202–7. https://doi.

org/10.1073/pnas.1409836111 PMID: 25288759

23. Marti R, Tien YC, Murray R, Scott A, Sabourin L, Topp E. Safely coupling livestock and crop production

systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application

of swine or dairy manure? Appl Environ Microbiol. 2014; 80(10):3258–65. https://doi.org/10.1128/AEM.

00231-14 PMID: 24632259

24. Luby EM, Moorman TB, Soupir ML. Fate and transport of tylosin-resistant bacteria and macrolide resis-

tance genes in artificially drained agricultural fields receiving swine manure. Sci Total Environ. 2016;

550:1126–33. https://doi.org/10.1016/j.scitotenv.2016.01.132 PMID: 26874610

25. Hruby CE, Soupir ML, Moorman TB, Shelley M, Kanwar RS. Effects of tillage and poultry manure appli-

cation rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe

soils. J Environ Manage. 2016; 171:60–9. https://doi.org/10.1016/j.jenvman.2016.01.040 PMID:

26874615

26. Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibi-

otic resistance genes. Environ Sci Technol. 2012; 46(21):11541–9. https://doi.org/10.1021/es302657r

PMID: 23035771

27. McMurry SW, Coyne MS, Perfect E. Fecal coliform transport through intact soil blocks amended with

poultry manure. Plant Soil Sci Faculty Pub. 1998; 27(1):86–92.

28. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome

of soil bacteria and human pathogens. Science. 2012; 337(6098):1107–11. https://doi.org/10.1126/

science.1220761 PMID: 22936781

29. Norrby SR, Nord CE, Finch R, European Society of Clinical M, Infectious D. Lack of development of

new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis. 2005; 5(2):115–9.

https://doi.org/10.1016/S1473-3099(05)01283-1 PMID: 15680781

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 16 / 20

https://doi.org/10.1128/AEM.00705-15
http://www.ncbi.nlm.nih.gov/pubmed/25956764
https://doi.org/10.1038/ismej.2014.210
http://www.ncbi.nlm.nih.gov/pubmed/25350160
https://doi.org/10.1289/ehp.8837
http://www.ncbi.nlm.nih.gov/pubmed/17384785
https://doi.org/10.1079/095442200108729106
http://www.ncbi.nlm.nih.gov/pubmed/19087443
https://doi.org/10.1073/pnas.1222743110
https://doi.org/10.1073/pnas.1222743110
http://www.ncbi.nlm.nih.gov/pubmed/23401528
https://doi.org/10.1073/pnas.1503141112
https://doi.org/10.1073/pnas.1503141112
http://www.ncbi.nlm.nih.gov/pubmed/25792457
https://doi.org/10.1007/s11356-016-7854-z
http://www.ncbi.nlm.nih.gov/pubmed/27752947
https://doi.org/10.1016/j.ecoenv.2017.08.061
http://www.ncbi.nlm.nih.gov/pubmed/28898804
https://doi.org/10.1073/pnas.1409836111
https://doi.org/10.1073/pnas.1409836111
http://www.ncbi.nlm.nih.gov/pubmed/25288759
https://doi.org/10.1128/AEM.00231-14
https://doi.org/10.1128/AEM.00231-14
http://www.ncbi.nlm.nih.gov/pubmed/24632259
https://doi.org/10.1016/j.scitotenv.2016.01.132
http://www.ncbi.nlm.nih.gov/pubmed/26874610
https://doi.org/10.1016/j.jenvman.2016.01.040
http://www.ncbi.nlm.nih.gov/pubmed/26874615
https://doi.org/10.1021/es302657r
http://www.ncbi.nlm.nih.gov/pubmed/23035771
https://doi.org/10.1126/science.1220761
https://doi.org/10.1126/science.1220761
http://www.ncbi.nlm.nih.gov/pubmed/22936781
https://doi.org/10.1016/S1473-3099(05)01283-1
http://www.ncbi.nlm.nih.gov/pubmed/15680781
https://doi.org/10.1371/journal.pone.0220770


30. Soil Survey Staff NRCS, United States Department of Agriculture. Web Soil Survey 2017. Available

from: https://websoilsurvey.sc.egov.usda.gov/.

31. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of ampli-

con marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016; 34

(9):942–9. https://doi.org/10.1038/nbt.3601 PMID: 27454739

32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-

source, platform-independent, community-supported software for describing and comparing microbial

communities. Appl Environ Microbiol. 2009; 75(23):7537–41. https://doi.org/10.1128/AEM.01541-09

PMID: 19801464

33. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequenc-

ing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequenc-

ing platform. Appl Environ Microbiol. 2013; 79(17):5112–20. https://doi.org/10.1128/AEM.01043-13

PMID: 23793624

34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene

database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41(Data-

base issue):D590–6. https://doi.org/10.1093/nar/gks1219 PMID: 23193283

35. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA

sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73(16):5261–7. https://doi.

org/10.1128/AEM.00062-07 PMID: 17586664

36. Westcott SL, Schloss PD. OptiClust, an improved method for assigning amplicon-based sequence data

to operational taxonomic units. mSphere. 2017; 2(2).

37. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of

microbiome census data. PloS One. 2013; 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

PMID: 23630581

38. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinfor-

matics. 2004; 20(2):289–90. https://doi.org/10.1093/bioinformatics/btg412 PMID: 14734327.

39. Wickham HF R. dplyr: A Grammar of Data Manipulation. R package version 0.7.6. 2015.

40. Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007; 21(12).

41. Oksanen J, Blanchet G, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, et al. Vegan: community ecol-

ogy package. R package version 2.5–2. 2018. Available from: https://CRAN.R-project.org/package=

vegan.

42. Love MH W.; Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with

DESeq2. Genome Biol. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

43. Wickham H. ggplot2: Elegant graphics for data analysis: Springer-Verlag New York; 2016.

44. Neuwirth E. RColorBrewer: ColorBrewer Palettes. 2014.

45. Suzuki MT, Taylor LT, DeLong EF. Quantitative analysis of small-subunit rRNA genes in mixed micro-

bial populations via 5’-nuclease assays. Appl Environ Microbiol. 2000; 66(11):4605–14. https://doi.org/

10.1128/aem.66.11.4605-4614.2000 PMID: 11055900

46. Knapp CW, Dolfing J, Ehlert PA, Graham DW. Evidence of increasing antibiotic resistance gene abun-

dances in archived soils since 1940. Environ Sci Technol. 2010; 44(2):580–7. https://doi.org/10.1021/

es901221x PMID: 20025282

47. Koike S, Aminov RI, Yannarell AC, Gans HD, Krapac IG, Chee-Sanford JC, et al. Molecular ecology of

macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associ-

ated with swine production. Microb Ecol. 2010; 59(3):487–98. https://doi.org/10.1007/s00248-009-

9610-0 PMID: 19924466

48. Walsh F, Ingenfeld A, Zampicolli M, Hilber-Bodmer M, Frey JE, Duffy B. Real-time PCR methods for

quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. J

Microbiol Methods. 2011; 86(2):150–5. https://doi.org/10.1016/j.mimet.2011.04.011 PMID: 21549164

49. Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J, et al. Impacts of anthropo-

genic activity on the ecology of class 1 integrons and integron-associated genes in the environment.

ISME J. 2011; 5(8):1253–61. https://doi.org/10.1038/ismej.2011.15 PMID: 21368907

50. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: mini-

mum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55

(4):611–22. https://doi.org/10.1373/clinchem.2008.112797 PMID: 19246619

51. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al. In-feed antibiotic effects on the

swine intestinal microbiome. Proc Natl Acad Sci U S A. 2012; 109(5):1691–6. https://doi.org/10.1073/

pnas.1120238109 PMID: 22307632

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 17 / 20

https://websoilsurvey.sc.egov.usda.gov/
https://doi.org/10.1038/nbt.3601
http://www.ncbi.nlm.nih.gov/pubmed/27454739
https://doi.org/10.1128/AEM.01541-09
http://www.ncbi.nlm.nih.gov/pubmed/19801464
https://doi.org/10.1128/AEM.01043-13
http://www.ncbi.nlm.nih.gov/pubmed/23793624
https://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
http://www.ncbi.nlm.nih.gov/pubmed/17586664
https://doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pubmed/23630581
https://doi.org/10.1093/bioinformatics/btg412
http://www.ncbi.nlm.nih.gov/pubmed/14734327
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1128/aem.66.11.4605-4614.2000
https://doi.org/10.1128/aem.66.11.4605-4614.2000
http://www.ncbi.nlm.nih.gov/pubmed/11055900
https://doi.org/10.1021/es901221x
https://doi.org/10.1021/es901221x
http://www.ncbi.nlm.nih.gov/pubmed/20025282
https://doi.org/10.1007/s00248-009-9610-0
https://doi.org/10.1007/s00248-009-9610-0
http://www.ncbi.nlm.nih.gov/pubmed/19924466
https://doi.org/10.1016/j.mimet.2011.04.011
http://www.ncbi.nlm.nih.gov/pubmed/21549164
https://doi.org/10.1038/ismej.2011.15
http://www.ncbi.nlm.nih.gov/pubmed/21368907
https://doi.org/10.1373/clinchem.2008.112797
http://www.ncbi.nlm.nih.gov/pubmed/19246619
https://doi.org/10.1073/pnas.1120238109
https://doi.org/10.1073/pnas.1120238109
http://www.ncbi.nlm.nih.gov/pubmed/22307632
https://doi.org/10.1371/journal.pone.0220770


52. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phy-

logenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J.

2012; 6(5):1007–17. https://doi.org/10.1038/ismej.2011.159 PMID: 22134642

53. Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WG. Pyrosequencing reveals the influ-

ence of organic and conventional farming systems on bacterial communities. PloS One. 2012; 7(12):

e51897. https://doi.org/10.1371/journal.pone.0051897 PMID: 23284808

54. Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS. Changes in Bacterial Community Struc-

ture of Agricultural Land Due to Long-Term Organic and Chemical Amendments. Microb Ecol.2012; 64

(2):450–60. https://doi.org/10.1007/s00248-012-0025-y PMID: 22419103

55. Zhen Z, Liu H, Wang N, Guo L, Meng J, Ding N, et al. Effects of manure compost application on soil

microbial community diversity and soil microenvironments in a temperate cropland in China. PloS One.

2014; 9(10):e108555. https://doi.org/10.1371/journal.pone.0108555 PMID: 25302996

56. Chen X, Li Z, Liu M, Jiang C, Che Y. Microbial community and functional diversity associated with differ-

ent aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years.

J Soil Sediments. 2015; 15(2):292–301.

57. Riber L, Poulsen PH, Al-Soud WA, Skov Hansen LB, Bergmark L, Brejnrod A, et al. Exploring the imme-

diate and long-term impact on bacterial communities in soil amended with animal and urban organic

waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance.

FEMS Microbiol Ecol. 2014; 90(1):206–24. https://doi.org/10.1111/1574-6941.12403 PMID: 25087596

58. Xie W-Y, Yuan S-T, Xu M-G, Yang X-P, Shen Q-R, Zhang W-W, et al. Long-term effects of manure and

chemical fertilizers on soil antibiotic resistome. Soil Biol Biochem. 2018; 122:111–9.

59. Ding J, Jiang X, Ma M, Zhou B, Guan D, Zhao B, et al. Effect of 35 years inorganic fertilizer and manure

amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl

Soil Ecol. 2016; 105:187–95.

60. Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, et al. The effects of mineral fertilizer and organic

manure on soil microbial community and diversity. Plant Soil. 2010; 326(1):511–22.

61. He J-Z, Zheng Y, Chen C-R, He Y-Q, Zhang L-M. Microbial composition and diversity of an upland red

soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent

approaches. J Soil Sediments. 2008; 8(5):349–58.

62. Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a

long-term fertilizer experiment. Soil Biol and Biochem. 2003; 35(3):453–61.

63. Zhang YH X.; Alexander T. W.; Thomas B. W.; Shi X.; Lupwayi N. Z. Long-term and legacy effects of

manure application on soil microbial community composition. Biol Fertil Soils. 2018; 54(2):269–83.

64. Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, et al. Fundamentals of microbial com-

munity resistance and resilience. Front Microbiol. 2012; 3:417. https://doi.org/10.3389/fmicb.2012.

00417 PMID: 23267351

65. Allison SD, Martiny JB. Colloquium paper: resistance, resilience, and redundancy in microbial commu-

nities. Proc Natl Acad Sci U S A. 2008;105 Suppl 1:11512–9.

66. Wang F, Xu M, Stedtfeld RD, Sheng H, Fan J, Liu M, et al. Long-term effect of different fertilization and

cropping systems on the soil antibiotic resistome. Environ Sci Technol. 2018; 52(22):13037–46. https://

doi.org/10.1021/acs.est.8b04330 PMID: 30375866

67. Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, et al. Soil carbon quality and nitrogen

fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl

Soil Ecol. 2014; 84:62–8.

68. Leclercq SO, Wang C, Sui Z, Wu H, Zhu B, Deng Y, et al. A multiplayer game: species of Clostridium,

Acinetobacter, and Pseudomonas are responsible for the persistence of antibiotic resistance genes in

manure-treated soils. Environ Microbiol. 2016; 18(10):3494–508. https://doi.org/10.1111/1462-2920.

13337 PMID: 27120080

69. Jechalke S, Focks A, Rosendahl I, Groeneweg J, Siemens J, Heuer H, et al. Structural and functional

response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS

Microbiol Ecol. 2014; 87(1):78–88. https://doi.org/10.1111/1574-6941.12191 PMID: 23962048

70. Rieke EL, Soupir ML, Moorman TB, Yang F, Howe AC. Temporal dynamics of bacterial communities in

soil and leachate water after swine manure application. Front Microbiol. 2018; 9:3197. https://doi.org/

10.3389/fmicb.2018.03197 PMID: 30627124

71. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, et al. Direct and indi-

rect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

Ecosphere. 2015; 6(8):art130.

72. Fitzpatrick D, Walsh F. Antibiotic resistance genes across a wide variety of metagenomes. FEMS

Microbiol Ecol. 2016; 92(2).

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 18 / 20

https://doi.org/10.1038/ismej.2011.159
http://www.ncbi.nlm.nih.gov/pubmed/22134642
https://doi.org/10.1371/journal.pone.0051897
http://www.ncbi.nlm.nih.gov/pubmed/23284808
https://doi.org/10.1007/s00248-012-0025-y
http://www.ncbi.nlm.nih.gov/pubmed/22419103
https://doi.org/10.1371/journal.pone.0108555
http://www.ncbi.nlm.nih.gov/pubmed/25302996
https://doi.org/10.1111/1574-6941.12403
http://www.ncbi.nlm.nih.gov/pubmed/25087596
https://doi.org/10.3389/fmicb.2012.00417
https://doi.org/10.3389/fmicb.2012.00417
http://www.ncbi.nlm.nih.gov/pubmed/23267351
https://doi.org/10.1021/acs.est.8b04330
https://doi.org/10.1021/acs.est.8b04330
http://www.ncbi.nlm.nih.gov/pubmed/30375866
https://doi.org/10.1111/1462-2920.13337
https://doi.org/10.1111/1462-2920.13337
http://www.ncbi.nlm.nih.gov/pubmed/27120080
https://doi.org/10.1111/1574-6941.12191
http://www.ncbi.nlm.nih.gov/pubmed/23962048
https://doi.org/10.3389/fmicb.2018.03197
https://doi.org/10.3389/fmicb.2018.03197
http://www.ncbi.nlm.nih.gov/pubmed/30627124
https://doi.org/10.1371/journal.pone.0220770


73. Wang M, Liu P, Xiong W, Zhou Q, Wangxiao J, Zeng Z, et al. Fate of potential indicator antimicrobial

resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Eco-

toxicol Environ Saf. 2018; 147:817–23. https://doi.org/10.1016/j.ecoenv.2017.09.055 PMID: 28958128

74. Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricul-

tural fields. Curr Opin Microbiol. 2011; 14(3):236–43. https://doi.org/10.1016/j.mib.2011.04.009 PMID:

21546307

75. Barkovskii AL, Bridges C. Persistence and profiles of tetracycline resistance genes in swine farms and

impact of operational practices on their occurrence in farms’ vicinities. Water Air Soil Pollut.2012; 223

(1):49–62.

76. Ahmed W, Zhang Q, Lobos A, Senkbeil J, Sadowsky MJ, Harwood VJ, et al. Precipitation influences

pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-

tropical waters. Environ Int. 2018; 116:308–18. https://doi.org/10.1016/j.envint.2018.04.005 PMID:

29754026

77. Di Cesare A, Eckert EM, Rogora M, Corno G. Rainfall increases the abundance of antibiotic resistance

genes within a riverine microbial community. Environ Pollut. 2017; 226:473–8. https://doi.org/10.1016/j.

envpol.2017.04.036 PMID: 28438356

78. Tian Z, Zhang Y, Yu B, Yang M. Changes of resistome, mobilome and potential hosts of antibiotic resis-

tance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water

Res. 2016; 98:261–9. https://doi.org/10.1016/j.watres.2016.04.031 PMID: 27108212

79. Diehl DL, LaPara TM. Effect of temperature on the fate of genes encoding tetracycline resistance and

the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater

solids. Environ Sci Technol. 2010; 44(23):9128–33. https://doi.org/10.1021/es102765a PMID:

21058743

80. Dunivin TK, Shade A. Community structure explains antibiotic resistance gene dynamics over a temper-

ature gradient in soil. FEMS Microbiol Ecol. 2018;94(3).

81. Sapkota AR, Curriero FC, Gibson KE, Schwab KJ. Antibiotic-resistant enterococci and fecal indicators

in surface water and groundwater impacted by a concentrated swine feeding operation. Environ Health

Perspect. 2007; 115(7):1040–5. https://doi.org/10.1289/ehp.9770 PMID: 17637920

82. Antunes P, Machado J, Sousa JC, Peixe L. Dissemination of sulfonamide resistance genes (sul1, sul2,

and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob Agents Che-

mother. 2005; 49(2):836–9. https://doi.org/10.1128/AAC.49.2.836-839.2005 PMID: 15673783

83. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics

by target modification. Antimicrob Agents Chemother. 1991; 35(7):1267–72. https://doi.org/10.1128/

aac.35.7.1267 PMID: 1929280

84. Zhao X, Wang J, Zhu L, Ge W, Wang J. Environmental analysis of typical antibiotic-resistant bacteria

and ARGs in farmland soil chronically fertilized with chicken manure. Sci Total Enviro. 2017; 593–

594:10–7.

85. Srinivasan VG B.; Nguyen L.; Headrick S.; Murinda S.; Oliver S. Characterization of antimicrobial resis-

tance patterns and class 1 integrons in Escherichia coli O26 isolated from humans and animals. Int J

Antimicrob Agents. 2007; 29(3):254–62. PMID: 17390416

86. Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM. Factors affecting the

reversal of antimicrobial-drug resistance. Lancet Infect Dis. 2009; 9(6):357–64. https://doi.org/10.1016/

S1473-3099(09)70105-7 PMID: 19467475

87. Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural

environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis.

2013; 13(2):155–65. https://doi.org/10.1016/S1473-3099(12)70317-1 PMID: 23347633

88. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the class 1 integron-integrase

gene as a proxy for anthropogenic pollution. ISME J. 2015; 9(6):1269–79. https://doi.org/10.1038/ismej.

2014.226 PMID: 25500508

89. Fernandez-Lopez R, Garcillan-Barcia MP, Revilla C, Lazaro M, Vielva L, de la Cruz F. Dynamics of the

IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev.

2006; 30(6):942–66. https://doi.org/10.1111/j.1574-6976.2006.00042.x PMID: 17026718

90. Wang M, Sun Y, Liu P, Sun J, Zhou Q, Xiong W, et al. Fate of antimicrobial resistance genes in

response to application of poultry and swine manure in simulated manure-soil microcosms and manure-

pond microcosms. Environ Sci Pollut Res Int. 2017; 24(26):20949–58. https://doi.org/10.1007/s11356-

017-9623-z PMID: 28721626

91. Zhao X, Wang J, Zhu L, Wang J. Field-based evidence for enrichment of antibiotic resistance genes

and mobile genetic elements in manure-amended vegetable soils. Sci Total Environ. 2019; 654:906–

13. https://doi.org/10.1016/j.scitotenv.2018.10.446 PMID: 30453260

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 19 / 20

https://doi.org/10.1016/j.ecoenv.2017.09.055
http://www.ncbi.nlm.nih.gov/pubmed/28958128
https://doi.org/10.1016/j.mib.2011.04.009
http://www.ncbi.nlm.nih.gov/pubmed/21546307
https://doi.org/10.1016/j.envint.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29754026
https://doi.org/10.1016/j.envpol.2017.04.036
https://doi.org/10.1016/j.envpol.2017.04.036
http://www.ncbi.nlm.nih.gov/pubmed/28438356
https://doi.org/10.1016/j.watres.2016.04.031
http://www.ncbi.nlm.nih.gov/pubmed/27108212
https://doi.org/10.1021/es102765a
http://www.ncbi.nlm.nih.gov/pubmed/21058743
https://doi.org/10.1289/ehp.9770
http://www.ncbi.nlm.nih.gov/pubmed/17637920
https://doi.org/10.1128/AAC.49.2.836-839.2005
http://www.ncbi.nlm.nih.gov/pubmed/15673783
https://doi.org/10.1128/aac.35.7.1267
https://doi.org/10.1128/aac.35.7.1267
http://www.ncbi.nlm.nih.gov/pubmed/1929280
http://www.ncbi.nlm.nih.gov/pubmed/17390416
https://doi.org/10.1016/S1473-3099(09)70105-7
https://doi.org/10.1016/S1473-3099(09)70105-7
http://www.ncbi.nlm.nih.gov/pubmed/19467475
https://doi.org/10.1016/S1473-3099(12)70317-1
http://www.ncbi.nlm.nih.gov/pubmed/23347633
https://doi.org/10.1038/ismej.2014.226
https://doi.org/10.1038/ismej.2014.226
http://www.ncbi.nlm.nih.gov/pubmed/25500508
https://doi.org/10.1111/j.1574-6976.2006.00042.x
http://www.ncbi.nlm.nih.gov/pubmed/17026718
https://doi.org/10.1007/s11356-017-9623-z
https://doi.org/10.1007/s11356-017-9623-z
http://www.ncbi.nlm.nih.gov/pubmed/28721626
https://doi.org/10.1016/j.scitotenv.2018.10.446
http://www.ncbi.nlm.nih.gov/pubmed/30453260
https://doi.org/10.1371/journal.pone.0220770


92. Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, et al. Evidence for co-selection of antibiotic resis-

tance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ. 2019;

656:512–20. https://doi.org/10.1016/j.scitotenv.2018.11.372 PMID: 30529954

93. Wu N, Qiao M, Zhang B, Cheng W-D, Zhu Y-G. Abundance and diversity of tetracycline resistance

genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol. 2010; 44

(18):6933–9. https://doi.org/10.1021/es1007802 PMID: 20707363

94. Munir M, Xagoraraki I. Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil. J

Environ Qual. 2011; 40(1):248–55. PMID: 21488514

95. Zhang Y-J, Hu H-W, Gou M, Wang J-T, Chen D, He J-Z. Temporal succession of soil antibiotic resis-

tance genes following application of swine, cattle and poultry manures spiked with or without antibiotics.

Environ Pollut. 2017; 231:1621–32. https://doi.org/10.1016/j.envpol.2017.09.074 PMID: 28964602

96. Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, et al. Effects of long-term manure applications on the

occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field

experiments in south of China. Soil Biol & Biochem. 2015; 90:179–87.

97. Joy SR, Bartelt-Hunt SL, Snow DD, Gilley JE, Woodbury BL, Parker DB, et al. Fate and transport of anti-

microbials and antimicrobial resistance genes in soil and runoff following land application of swine

manure slurry. Environ Sci Technol. 2013; 47(21):12081–8. https://doi.org/10.1021/es4026358 PMID:

24044357

98. Wang FH, Qiao M, Chen Z, Su JQ, Zhu YG. Antibiotic resistance genes in manure-amended soil and

vegetables at harvest. J Hazard Mater. 2015; 299:215–21. https://doi.org/10.1016/j.jhazmat.2015.05.

028 PMID: 26124067

Manure impact on bacterial community and ARGs in soil

PLOS ONE | https://doi.org/10.1371/journal.pone.0220770 August 19, 2019 20 / 20

https://doi.org/10.1016/j.scitotenv.2018.11.372
http://www.ncbi.nlm.nih.gov/pubmed/30529954
https://doi.org/10.1021/es1007802
http://www.ncbi.nlm.nih.gov/pubmed/20707363
http://www.ncbi.nlm.nih.gov/pubmed/21488514
https://doi.org/10.1016/j.envpol.2017.09.074
http://www.ncbi.nlm.nih.gov/pubmed/28964602
https://doi.org/10.1021/es4026358
http://www.ncbi.nlm.nih.gov/pubmed/24044357
https://doi.org/10.1016/j.jhazmat.2015.05.028
https://doi.org/10.1016/j.jhazmat.2015.05.028
http://www.ncbi.nlm.nih.gov/pubmed/26124067
https://doi.org/10.1371/journal.pone.0220770

