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Abstract

Introduction: Expression of fusion oncoproteins generated by recurrent chromosomal 

translocations represents a major tumorigenic mechanism characteristic of multiple cancers, 

including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic 

intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented 

as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes.

Areas covered: This review discusses the role of PAX3-FOXO1 in ARMS tumors. In addition 

to evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights 

therapeutically attractive downstream genes activated by PAX3-FOXO1.

Expert opinion: Oncogenic fusion proteins represent desirable therapeutic targets because their 

expression is specific to tumor cells, but these fusions generally characterize rare malignancies. 

Full development and testing of potential drugs targeted to these fusions are complicated by the 

small numbers of patients in these disease categories. Although efforts to develop targeted 

therapies against fusion proteins should continue, molecular targets that are applicable to a broader 

tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic 

intervention as target-specific rather than tumor-specific will help to circumvent the challenges 

posed by rare tumors and maximize the possibility of developing successful new treatments for 

patients with these rare translocation-associated sarcomas.
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1. Introduction

Sarcomas are a rare, heterogeneous array of mesenchymal tumors that encompass more than 

50 subtypes 1–4 Tumors can arise from bone, cartilage, or connective tissues and present 

virtually anywhere in the body 1,5. While they account for only 1% of all cancers, sarcomas 

are more prevalent in children than adults and represent approximately 13% of malignancies 

affecting patients less than 20 years of age 1, 3.
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Sarcomas have traditionally been divided into two major categories: 1) tumors with 

nonspecific genetic lesions and complex karyotypes; and 2) tumors with simple genetic 

alterations and nearly diploid karyotypes 3, 5. Tumors classified in the second category often 

arise de novo and harbor chromosomal translocations 5. Although non-random 

translocations are generally rare in solid tumors, they are associated with about one-third of 

all sarcomas 6. Indeed, recurrent translocations have been identified in 19 sarcoma subtypes 
2. The majority of these non-random chromosomal translocations generate chimeric 

transcription factors, which aberrantly transactivate target gene expression 2, 5. In Ewing’s 

sarcoma, for example, the common t(11;22)(q24;q12) translocation creates the EWSR1-
FLI1 fusion transcription factor 1. A different mechanism is demonstrated in 

dermatofibrosarcoma protuberans (DFSP) where a COL1A1-PDGFB fusion constitutively 

drives PDGFB expression from COL1A1 regulatory elements 1,2, 5.

Studies of recurrent chromosomal translocations and their associated fusion genes have 

contributed much to sarcoma research from both basic biology and clinical perspectives. 

Gene fusions have not only furthered understanding of sarcomagenesis, but have improved 

diagnosis, as the presence of defined fusion genes can be detected by RT-PCR and FISH 

approaches 7 Moreover, these specific fusion genes provide additional targets for therapeutic 

intervention in sarcoma. While advances in targeted therapy have been made in a few 

categories - for example, PDGFR inhibition by the tyrosine kinase inhibitor imatinib has 

been demonstrated as an effective therapy for DFSP 1, 8 - useful therapies targeting chimeric 

transcription factors remain largely undeveloped.

This review will focus on PAX3-FOXO1, the gene product resulting from the chromosomal 

translocation t(2;13)(q35;q14), in alveolar rhabdomyosarcoma (ARMS). PAX3-FOXO1 in 

ARMS is highlighted as an excellent paradigm to target sarcoma-associated fusion genes 

based on the following: 1) development of skeletal muscle, which is the lineage related to 

ARMS tumors, has been extensively described 9; 2) wild-type PAX3, PAX7 10–14, and 

FOXO1 15–17 as well as resulting chimeric products 18–21 have been well characterized; and 

3) model systems—comprising both cell culture 22–26 and whole animal, including a 

conditional knock-in mouse model of PAX3-FOXO1-induced ARMS 27–30—have been 

developed. Through examination of PAX3-FOXO1, this review will discuss a conceptual 

framework of therapeutic strategies that applies not only to this ARMS-specific gene fusion, 

but also to oncogenic transcription factor chimeras of other sarcoma subtypes.

2. Rhabdomyosarcoma (RMS) Family of Tumors

RMS is a heterogeneous family of pediatric soft tissue tumors associated with the skeletal 

muscle lineage 31. Although rare in adults, RMS is the most common pediatric soft tissue 

sarcoma, accounting for approximately 50% of all soft tissue sarcomas in children and 

adolescents 32, 33. With an annual incidence of 4.5 cases per million children in the United 

States, which corresponds to roughly 350 new cases per year, RMS represents about 3–4% 

of all childhood malignancies 33–35.

Alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) 

constitute the two major histopathologic subtypes of RMS. These two variants are not only 
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histologically distinguishable, they are also associated with clinically distinct phenotypes 
32, 36. ARMS accounts for 20–30% of RMS, affects children as well as adolescents and 

young adults, and tends to occur in the extremities and trunk 32, 33, 36. In contrast, ERMS 

represents 70–80% of all RMS cases 32, 33. Typically presenting in patients less than 10 

years of age, ERMS predominantly occurs in the head and neck and genitourinary tract 36. 

ARMS is clinically more aggressive than ERMS and is associated with an unfavorable 

prognosis, which is partially attributable to its propensity for early dissemination, poor 

response to therapy, and frequent relapses following therapy 21, 31, 32, 37, 38. The 5-year 

overall survival for ARMS is ~50% compared to ~75% for ERMS 34

2.1 Molecular Genetics of ARMS

The considerable clinical and pathologic dissimilarities between ARMS and ERMS reflect 

genetic differences between these RMS subtypes. In contrast to 11p15.5 allelic loss and 

point mutations that occur frequently in ERMS 32, 33, 39–44, recurrent chromosomal 

translocations characterize 70–80% of ARMS tumors 33, 45. Two specific translocations are 

unique to ARMS tumors: the majority of ARMS cases harbor the common translocation, 

t(2;13)(q35;q14), whereas a smaller subset of ARMS harbor a variant translocation, t(1; 13)

(p36;q14) 7, 33, 45. In these translocations, PAX3 is the gene rearranged on chromosome 2 46, 

and PAX7 is the gene rearranged on chromosome 1 19 (Figure 1). PAX3 and PAX7 encode 

highly homologous members of the paired box family of transcription factors. Structurally, 

both proteins contain N-terminal DNA binding domains, which are comprised of paired box 

and homeobox motifs, and C-terminal transcriptional activation domains 11, 32. The gene 

located at the chromosome 13 locus in these translocations is FOXO1, encoding a member 

of the O subfamily of forkhead box transcription factors 18, 19, 32. FOXO1 contains a 

forkhead DNA binding domain at its N-terminus and a transcriptional activation domain at 

its C-terminus 6.

The 2;13 and 1;13 translocations break within the seventh intron of PAX3 or PAX7 and 

within the first intron of FOXO1 32. Chimeric genes are thereby generated and encode 

chimeric proteins consisting of the PAX3 or PAX7 N-terminal DNA binding domain fused 

to the FOXO1 C-terminal transactivation domain 20, 32 (Figure 1). PAX3/PAX7 and FOXO1 

coding sequences are fused in-frame, creating functional—albeit aberrant—transcription 

factors. PAX-FOXO1 fusion proteins are discussed in greater detail below.

Molecular pathology studies of the chimeric products reveal that ~60% of ARMS tumors are 

PAX3-FOXO1-positive, ~20% are PAX7-FOXO1-positive, and ~20% are fusion-negative 
45,47 These studies thus confirm that there is a subset of histologically defined ARMS 

tumors that are negative for the hallmark translocations generating PAX3-FOXO1 or PAX7-

FOXO1 33. In rare cases, alternative translocations, such as t(2;2)(p23;q35) and t(2;8)

(q35;q13), result in fusion of PAX3 to nuclear receptor coactivator genes NCOA1 and 

NCOA2, respectively 48. Most cases in this PAX3-FOXO1 and PAX7-FOXO1-negative 

subset show no detectable rearrangements involving PAX3, PAX7, or FOXO1, providing 

evidence for bona fide fusion-negative ARMS cases 49. Interestingly, fusion-negative ARMS 

demonstrates genetic changes characteristic of ERMS, which is consistent with the similar 

expression patterns 50 and clinical outcomes 51 of fusion-negative ARMS and ERMS cases.
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2.2 PAX-FOXO1 Oncogenicity

The PAX-FOXO1 fusion products have altered expression, subcellular localization, and 

function, compared to wild-type PAX3, PAX7, or FOXO1. Both PAX-FOXO1 fusion 

proteins are expressed at higher levels than their wild-type PAX counterparts; PAX7-FOXO1 

overexpression results from gene amplification while PAX3-FOXO1 overexpression occurs 

via copy number-independent enhanced transcription 52. In contrast to the wild-type FOXO1 

protein that can shuttle between the nucleus and cytoplasm, the PAX3- or PAX7-FOXO1 

protein is localized exclusively in the nucleus. Finally, these fusion proteins activate 

transcription of target genes 10–100 fold more potently than wild-type PAX3 and PAX7 
32, 53, 54

Numerous studies have demonstrated the oncogenic capacity of the PAX3/PAX7-FOXO1 

fusion protein. In chicken embryo fibroblasts and murine NIH 3T3 fibroblasts, ectopic 

expression of PAX3-FOXO1, but not wild-type PAX3, resulted in transformation as 

evidenced by focus formation and anchorage-independent growth in soft agar 55–57 Based on 

these early studies, PAX3-FOXO1 appears to function as a dominant-acting oncogene 36. 

This fusion likely contributes to tumorigenesis through several mechanisms 58. The finding 

that an engineered PAX3-KRAB repressor suppressed the oncogenicity of Rh30 ARMS 

cells in vitro and in vivo, supports the hypothesis that PAX3-FOXO1’s aberrant 

transcriptional activity lies at the heart of its oncogenic potential 59.

Despite early reports demonstrating the transformative capacity of the PAX3-FOXO1 fusion 
55–57, additional studies revealed that PAX3-FOXO1 is generally not sufficient for complete 

oncogenic transformation 33, 58, 60. Ectopic expression of PAX3-FOXO1 alone failed to 

result in transformation of human myoblasts or murine mesenchymal stem cells 25, 61. In 

fact, high expression levels of PAX3-FOXO1, comparable to endogenous fusion expression 

levels in human ARMS tumor cells, were found to be anti-proliferative in immortalized 

murine cell lines62.

In collaboration with added genetic lesions, PAX3-FOXO1 expression is capable of 

transforming human and murine cells to recapitulate ARMS tumors 33, 58. For example, 

immortalized human myoblasts expressing PAX3-FOXO1 were transformed upon 

introduction of MYCN 61. Similarly, p53 inactivation was required in PAX3-FOXO1-

expressing murine mesenchymal stem cells to elicit ARMS-like tumor formation when 

injected into immunocompromised mice 25. Human skeletal muscle myoblasts stably 

expressing PAX3-FOXO1 can produce ARMS-like tumors after addition of TERT and 

MYCN and loss of CDKN2A 26.In studies of a mouse model using a conditional PAX3-
FOXO1 knock-in allele, ARMS formed at low frequency, but addition of conditional Trp53 
or Cdkn2a inactivation increased ARMS tumor incidence, providing further evidence that 

the PAX3-FOXO1 fusion requires accompanying genetic lesions for ARMS pathogenesis 27

Although PAX3-FOXO1 and PAX7-FOXO1 are virtually indistinguishable in structure 
31,PAX3-FOXO1 expression portends an especially unfavorable outcome relative to PAX7-

FOXO1 63. In recent analyses of a cohort of fusion-positive RMS, PAX7-FOXO1 fusion 

status demonstrated a statistically significant association with improved overall survival 

(p=0.0012) 63. The poorer prognosis associated with PAX3-FOXO1-positive tumors coupled 
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with the ARMS- specific nature of PAX3-FOXO1 expression make this oncogenic chimera a 

very appealing therapeutic target. It is worth noting that, to date, most functional studies 

have concentrated on PAX3-FOXO1, though many findings can be extended in conception 

to include PAX7-FOXO1. This review will focus on molecular therapeutic strategies to 

abrogate oncogenic activity driven by the PAX3-FOXO1 fusion in ARMS.

3. Targeting PAX3-FOXO1

3.1 Regulating PAX3-FOXO1 Expression

3.1.1 RNA Interference and Antisense Technologies—While PAX3-FOXO1 

expression is typically not sufficient for full oncogenic transformation 33, 58, 60, the fusion 

protein plays a necessary and fundamental role in ARMS tumorigenesis 64. Indeed, reduced 

cellular proliferation, decreased motility and invasion, and increased myogenic 

differentiation were observed upon PAX3-FOXO1 depletion 64 These phenotypic effects can 

be attributed to PAX3-FOXO1, as depletion of the oncogenic chimera was achieved by 

siRNA specifically targeting the PAX3-FOXO1 fusion 64 Furthermore, in another study that 

selectively decreased expression of PAX3-FOXO1 using shRNA directed against the PAX3-

FOXO1 fusion point, PAX3-FOXO1-expressing human myoblast-derived tumor cells and 

ARMS cells displayed significantly reduced proliferation rates and transformation 

capabilities coupled with elevated myogenic differentiation relative to cells transduced with 

control shRNA 61.

PAX3-FOXO1 may also be required for cell survival, though findings are not as conclusive 

as those described above. Antisense oligonucleotide- or siRNA-mediated depletion of 

PAX3-FOXO1 induced apoptosis, suggesting that the fusion protein is essential in cell 

viability 65, 66. The caveat is that these approaches 65, 66 were directed toward 5’ PAX3 

sequences and thereby targeted wild-type PAX3 as well as the fusion, thus compromising a 

definitive interpretation of PAX3-FOXO1 as anti-apoptotic.

The anti-tumor effects of PAX3-FOXO1 depletion provide proof of principle for therapeutic 

strategies designed to abrogate PAX3-FOXO1 expression. Although additional technological 

advances are required, siRNA/shRNA approaches targeting the oncogenic PAX3-FOXO1 

fusion may become a viable method for therapy. Despite existing limitations that impede full 

clinical translation of antisense therapeutics 67, antisense oligonucleotide-mediated depletion 

of PAX3-FOXO1 is a potential therapeutic alternative. In a related study, antisense 

oligodeoxynucleotide treatment against EWSR1-FLI1 in Ewing’s sarcoma induced tumor 

regression 68. Moreover, EWSR1-FLI1-targeting antisense oligonucleotides loaded onto 

nanosphere-chitosan resulted in efficient and tumor-specific delivery of the antisense 

oligonucleotides 69.

3.1.2 Other Translational or Post-Translational Mechanisms—Preliminary 

studies of RMS cell lines in vitro identified camptothecin as a selective chemotherapeutic 

agent in ARMS 70. Camptothecin is a topoisomerase I inhibitor, and its derivatives topotecan 

and irinotecan have both been evaluated for their utility in RMS in Phase II clinical trials, 

though neither significantly improved survival 32. Interestingly, the sensitivity of ARMS 

cells to camptothecin appeared to depend not on topoisomerase I, but on the transcriptional 
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activity of PAX3-FOXO1, as ectopic expression of PAX3-FOXO1 in ERMS cells increases 

sensitivity to campothecin 70. Further studies revealed that camptothecin reduces PAX3-

FOXO1 transactivation by decreasing its protein expression. Camptothecin-mediated 

downregulation of fusion protein levels was not attributable to AKT dephosphorylation, p53 

function, or reduced PAX3-FOXO1 mRNA expression. Collectively, these data suggest that 

camptothecin may enhance degradation of the PAX3-FOXO1 fusion protein, and 

camptothecin is thus postulated to modulate PAX3-FOXO1’s ubiquitination status 70. 

Ubiquitylation of PAX3-FOXO1 has been demonstrated previously 71, and additional studies 

of camptothecin may provide a paradigm for therapeutic strategies to stimulate proteasomal 

degradation of oncogenic fusion protein.

3.2 Regulating the Phosphorylation Status of PAX3-FOXO1

3.2.1 The C-Terminal FOXO1 Portion—As a member of the FOXO transcription 

factor family, wild-type FOXO1 is regulated by a variety of posttranslational modifications, 

including deacetylation, ubiquitination, and phosphorylation 15. The FOXO1 protein shuttles 

between the nucleus and cytoplasm, with its subcellular localization regulated by the 

canonical PI3K/AKT signaling pathway 15, 16, 31 (Figure 2). Phosphorylation of FOXO1 

confers cytoplasmic sequestration, and dephosphorylation allows nuclear translocation 16 

(Figure 2). While multiple serine/threonine kinases, such as members of the AGC protein 

kinase family 72, CDK1 73, CDK2, CK1, and DYRK1 have been reported to phosphorylate 

FOXO1 at various sites, AKT is regarded as the primary kinase involved in phosphorylation-

dependent modulation of FOXO1 subcellular localization and consequent transcriptional 

activity 15–17 FOXO1 harbors three evolutionarily conserved AKT phosphorylation sites 

located at threonine 24, serine 256, and serine 319 17 Upon activation, AKT translocates to 

the nucleus and directly phosphorylates FOXO1 74–76. AKT-directed phosphorylation at 

these residues appears to have no direct consequences on FOXO1 function, but rather 

facilitates 14–3-3 protein docking and binding, leading to cytoplasmic accumulation of this 

complex 17 (Figure 2). Thus, phosphorylation by AKT indirectly inactivates FOXO1 

transcriptional function.

PAX3-FOXO1 retains two of the three consensus AKT phosphorylation residues found in 

wild-type FOXO1 32. Using a FOXO1 mutant in which threonine 24 was replaced by alanine 

but serines 256 and 319 were unaltered, studies demonstrated that the presence of these two 

AKT phosphorylation sites matching those preserved in the PAX3-FOXO1 chimera are 

sufficient for AKT-mediated cytoplasmic sequestration and inhibition of FOXO1 

transcriptional activity 77 A promising prediction was derived: if serine 256 and serine 319 

in the FOXO1 portion of PAX3- FOXO1 were phosphorylated by AKT, then PAX3-FOXO1 

should be relocalized to the cytoplasm, thereby quelling its ability to aberrantly transactivate 

target gene expression. In HEK293T and NIH 3T3 cells, transfection of PAX3-FOXO1 or a 

form with the two serines mutated, with or without constitutively active AKT, showed no 

effect on PAX3-FOXO1 nuclear localization or transcriptional activity 77. Possible 

explanations are that PAX3-FOXO1 adopts a conformation that precludes phosphorylation 

of relevant FOXO1 residues or that nuclear localization is controlled by N-terminal PAX3 

domains.
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A recent study using murine cell lines derived from conditional PAX3-FOXO1 knock-in 

mice and cultured in low serum provided evidence that PAX3-FOXO1 can be 

phosphorylated by hyperactivated AKT in this setting 78. Phosphorylation rendered PAX3-

FOXO1 transcriptionally inactive but induced no change in nuclear localization of the fusion 

protein 78. The persistent nuclear presence of PAX3-FOXO1 suggests that, even if PAX3-

FOXO1 undergoes phosphorylation, it is not conducive to 14–3-3 protein binding and 

resultant cytoplasmic sequestration.

While interesting, there is no available data to indicate that such AKT hyperactivation—and 

resulting PAX3-FOXO1 inactivation—can be induced in human ARMS tumors. IGF2 is 

overexpressed in human ARMS cells 31, and high phospho-AKT levels were observed in 

human ARMS tumors and cell lines, indicating the presence of endogenous AKT activation 
79. Thus, human ARMS tumors retain PAX3-FOXO1 transcriptional activity despite the 

presence of activated AKT. Regardless of the mechanism conferring fusion protein 

resistance to AKT-mediated regulation in human ARMS, therapeutic approaches would 

likely be ineffective if they aimed at controlling PAX3-FOXO1 subcellular localization or 

transcriptional activity by modulating phosphorylation of the FOXO1 portion.

3.2.2 The N-Terminal PAX3 Portion—Compared to phosphorylation of FOXO1, 

kinases, residues, and functional consequences associated with PAX3 phosphorylation are 

poorly understood. Additionally, because wild-type PAX3 is exclusively nuclear 80, 81, 

phosphorylation status of the PAX3 region of PAX3-FOXO1 cannot be exploited using the 

same conceptual subcellular relocalization framework that applied to the fusion’s FOXO1 

portion. In vitro and in vivo studies of murine primary myoblasts revealed serine 201, serine 

205, and serine 209 as the only sites of phosphorylation in wild-type PAX3, and all three 

serine residues are retained in the oncogenic PAX3-FOXO1 fusion 82. CK2 and GSK3P have 

been identified as the kinases that phosphorylate wild-type PAX3 and PAX3- FOXO1 at 

serines 205 and 201, respectively 82, 83. Recently, CK2 was also found to be responsible for 

serine 209 phosphorylation 84

Wild-type PAX3 and PAX3-FOXO1 demonstrate distinct patterns of phosphorylation 

throughout early myogenic differentiation, leading to proposal of separate models for wild-

type PAX3 versus PAX3-FOXO1 fusion phosphorylation 82. It appears that wild-type PAX3 

undergoes GSK3β-mediated phosphorylation at serine 201 only after phosphorylation at 

serine 205 by CK2. Serine 201 phosphorylation subsequently promotes serine 205 

dephosphorylation, as evidenced by the absence of PAX3 species exhibiting simultaneous 

phosphorylation at serines 201 and 205. Phosphorylation at serine 201 persists as 

phosphorylation at serine 209 becomes detectable 82.

Experiments in mouse primary myoblasts and human ARMS cell lines indicate that the 

oncogenic PAX3-FOXO1 fusion is phosphorylated by CK2 at serine 205 followed by 

GSK3β-driven phosphorylation at serine 201. In contrast to wild-type PAX3, however, these 

coincident phosphorylations are then maintained throughout early differentiation, and 

phosphorylation at serine 209 is never detected in PAX3-FOXO1 82. The precise functional 

consequences of each of these phosphorylation events have not yet been elucidated, though 

the notion that an altered phosphorylation status of the 5’ PAX3 portion of PAX3-FOXO1 
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relative to wild-type PAX3 contributes to ARMS is provocative. Mutational analyses of 

PAX3-FOXO1 engineered to mimic wild-type PAX3 phosphorylation patterns and vice 

versa as well as identification and characterization of additional putative phosphorylation 

sites, kinases, and phosphatases involved in PAX3 phosphorylation are needed and may 

inform a new avenue of therapeutic development for ARMS tumors.

Studies of a small-molecule inhibitor have already provided evidence that inhibiting 

phosphorylation of the PAX3 region of PAX3-FOXO1 can have anti-tumorigenic effects in 

ARMS cell lines and xenograft models 85. PKC412, an inhibitor of multiple kinases such as 

PKC, FGFR, AKT, FLT3, CDK1, and c-Kit, is a staurosporine derivative that suppresses 

ARMS proliferation and induces caspase 3-dependent apoptosis in vitro and reduced 

proliferation, increased apoptosis, and inhibited tumor growth in vivo 85. PKC412 treatment 

decreases DNA binding of PAX3-FOXO1, thereby abrogating its transcriptional activity in a 

phosphorylation-dependent mechanism without affecting its nuclear localization 85. Unlike 

the previously described studies identifying three PAX3 serine residues as phosphorylation 

sites 82, investigators here detected six potential phosphorylation residues at serines 187, 

193, 197, 201, 205, and 209. It should be noted that simultaneous mutation of all six serines 

to phosphorylation-mimicking aspartate residues was required to overcome PKC412 

inhibition but was not sufficient to rescue complete transcriptional activity of PAX3-FOXO1 
85, suggesting that PKC412 inhibits fusion protein transactivation potential by mechanisms 

beyond these six phosphorylation events. Despite concerns of potential toxicity from off-

target effects, this study demonstrates that small- molecule-mediated modulation of PAX3-

FOXO1 post-transcriptional modifications, namely phosphorylation, is a promising 

approach for ARMS treatment.

3.3 Recognizing PAX3-FOXO1 as a Tumor Antigen

In pediatric sarcomas, translocation fusion products have long been regarded as potential 

tumor antigens 86, 87 In particular, it was hypothesized that tumor-specific peptides spanning 

the translocation breakpoint are proteolytically processed, bound to major histocompatibility 

complex (MHC) class I molecules, and presented on the surface of the tumor cell 86, 87 

Displayed peptides could thereby target tumor cells for recognition and killing by CD8+ 

cytotoxic T cell lymphocytes (CTL) 86, 87 In a pilot study, apheresis fractions of monocytes 

and dendritic cells were pulsed with synthetic peptides comprising the PAX3-FOXO1 fusion 

breakpoint region sequence, and peptide pulsed vaccines were administered with 

interleukin-2 (IL-2) to ARMS patients 88. Vaccination, however, failed to affect clinical 

outcome 88.

In a subsequent study of immunotherapy in ARMS, dendritic cells were pulsed with a 

specific PAX3-FOXO1 fusion protein breakpoint peptide identified to bind HLA-B7 MHC 

class I molecules 89. These dendritic cells were then used to generate a lymphocyte-derived 

human CTL line capable of lysing PAX3-FOXO1 and HLA-B7-expressing ARMS tumor 

cells, but not PAX3-FOXO1 fusion-negative ERMS cells 89. Although this neoantigen is 

specific for only tumor cells expressing the oncogenic fusion protein and thus allows for 

highly targeted immunotherapy, HLA-B7 is expressed in less than 25% of the population, 

suggesting that the majority of ARMS patients is unlikely to benefit from this therapy 89. 
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Other MHC class I molecules, including HLA-A1, HLA-A2, and HLA-A3, have been 

evaluated, but none were found to present neoantigens corresponding to the PAX3-FOXO1 

fusion breakpoint region 90.

The most promising data comes from a more recent pilot study of consolidative 

immunotherapy 91. ARMS patients in remission following multimodal therapy were 

vaccinated with dendritic cells pulsed with PAX3-FOXO1 fusion protein breakpoint peptides 

in combination with autologous lymphocyte infusions with or without IL-2. This 

consolidation therapy regimen was well tolerated, and ARMS patients who received 

immunotherapy demonstrated significantly improved survival compared to those who did 

not 91. Results should be interpreted with caution, however, as patients with rapidly 

progressive disease were excluded from immunotherapy in this study. Therefore, it is likely 

that the observed increase in survival rate is at least partially attributable to patient selection 
91. Nevertheless, immunotherapy represents a plausible strategy to antagonize the PAX3-

FOXO1 oncoprotein. Investigations to optimize cancer immunotherapeutic efficacy, 

including alternative methods for enhancement of antigen immunogenicity and induction of 

dendritic cell maturation, are underway 91.

4. Targeting Downstream Factors of PAX3-FOXO1

Given the uniqueness of PAX3-FOXO1 to ARMS tumors, the oncogenic fusion itself is a 

very desirable therapeutic target. Nearly two decades after its initial characterization 18, 46, 

however, the chimeric transcription factor remains a difficult pharmacological target. Thus, 

it has become necessary to conceive of alternative treatment approaches.

Much progress has been made in recent years to generate a gene expression profile of 

ARMS that is distinct from that of ERMS. Multiple downstream genes activated by PAX3- 

FOXO1 have been identified from this ARMS expression profile, and provide another 

important source of potential targets for therapeutic intervention 4, 30, 66, 92–100. While this 

discussion is not all-inclusive, the presentation below and in Table 1 highlights the most 

therapeutically promising genes downstream of the PAX3-FOXO1 oncoprotein. Our 

selections are strongly based not only on molecular targets that promote ARMS 

tumorigenesis and metastasis, but also on those that contribute to tumor development, 

maintenance, and progression in other cancer categories.

4.1 FGFR4

Fibroblast growth factor receptor 4 (FGFR4) encodes a member of the FGFR family of 

receptor tyrosine kinases (RTK) that is necessary during normal myogenic differentiation 

and injury-induced muscle regeneration, but not in mature, differentiated skeletal muscle 
101–104. In RMS, FGFR4 was identified to be overexpressed at the mRNA and protein levels 
105–108. Analysis of primary RMS tumors revealed a strong correlation of high FGFR4 

expression with PAX3-FOXO1-positive ARMS 37, 107, advanced clinical stage, and lower 

overall survival 109. In functional studies using Rh30 cells, FGFR4 depletion mediated by 

inducible shRNA targeting FGFR4 inhibited proliferation in vitro and reduced proliferation 

and lung metastasis in vivo 109, further suggesting that FGFR4 is oncogenic in RMS. In 

addition, activating mutations in the tyrosine kinase domain of FGFR4 were found in 7.5% 
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of RMS tumors (mostly ERMS) 95, and transduction of murine RMS772 cells with two of 

these FGFR4 mutants resulted in elevated proliferation, invasion, and metastatic capacity 

relative to wild-type FGFR4-transduced cells in vitro and in vivo 109. Recent findings in 

primary mouse myoblasts demonstrated that ectopic expression of a constitutively active 

FGFR4 mutant, but not wild-type FGFR4, is sufficient to contribute to ARMS tumorigenesis 
110.

Subsequent work demonstrated that FGFR4 is a direct transcriptional target of PAX3-

FOXO1 111, elucidating a second, mutation-independent mechanism for FGFR4 activation. 

This additional mechanism of overexpression is consistent with the observation that FGFR4 

expression is higher in ARMS tumors than in PAX3-FOXO1-lacking ERMS tumors 109112. 

Using ChlP-seq, two PAX3-FOXO1 binding sites were identified downstream of FGFR4, 
and functional examination revealed that one of the binding sites is a bona fide PAX3-

FOXO1-dependent enhancer 111. These data solidified the role of FGFR4 as an important 

oncoprotein in RMS—a mutant protein in a subset of ERMS and an overexpressed wild-type 

protein in most fusion-positive ARMS.

As a kinase, FGFR4 is inherently more amenable to pharmacologic inhibition than the 

PAX3-FOXO1 transcription factor. In a very promising finding in vitro, FGFR4 mutant-

expressing RMS772 cells exhibited enhanced sensitivity to FGFR inhibitor PD173074, as 

apoptotic cell death was higher in RMS772 cells transduced with FGFR4 mutants compared 

to those expressing wild-type FGFR4 109. PD173074 also attenuated cell proliferation of 

ARMS and ERMS cell lines overexpressing wild-type FGFR; therefore, FGFR mutations 

are not required for pharmacologic efficacy of PD173074 in vitro 112. In the in vivo setting, 

however, the small-molecule inhibitor was found to have a narrow therapeutic window and 

high toxicity, eliminating PD173074 as a viable option in ARMS therapy 112. Nonetheless, 

FGFR4 is clearly a very attractive candidate for targeted therapy in RMS and especially in 

ARMS.

Given that resources are limited, it is most prudent and efficient to develop targeted therapies 

with applicability to multiple cancer categories. Evidence not only indicated that ARMS 

tumors are likely addicted to the FGFR4 oncogene 109, 112–115, but FGFR4 has also been 

proposed as an oncogene in other tumor types, such as cancers of the liver, pituitary, lung, 

breast, and prostate 116–122. Thus, FGFR4 represents a prime target for pharmacologic 

intervention, particularly in the adjuvant setting. Other small-molecule inhibitors targeting 

FGFRs, including AZD4547 and AZ12908010, have already been developed and are 

undergoing preclinical and clinical evaluation 123, 124 Moreover, neutralizing or high-affinity 

monoclonal antibodies against FGFR4 have been generated, and strategies to target FGF19

—the ligand of FGFR4—are under investigation 125–127.

4.2 MET

Like FGFR4, MET encodes a RTK proto-oncogene. Upon activation by hepatocyte growth 

factor (HGF, also referred to as scatter factor) binding, MET promotes cellular proliferation, 

motility, invasion, and survival 128, 129. Collectively, the cellular responses evoked by MET 

have been referred to as “invasive growth,” 130–132 a program that, if dysregulated, can have 

profound tumorigenic and metastatic consequences.
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Amplification of MET, gain-of-function mutations, and transcriptional upregulation are 

mechanisms leading to MET overexpression and/or activation, which has been reported in a 

myriad of human primary tumors 128. Amplification-driven MET overexpression and 

constitutive kinase activation have been observed in medulloblastomas, esophageal and 

gastric carcinomas, and colorectal cancer 133–138. Additionally, MET amplification was 

found in non-small cell lung cancers with acquired resistance to erlotinib or gefitinib, two 

epidermal growth factor receptor inhibitors 139, 140. Activating mutations in MET were 

detected in pediatric hepatocellular carcinoma, head and neck squamous cell carcinoma, 

papillary renal cancer, gastric cancer, and melanoma 128, 131, 141. Remarkably, nearly all 

carcinoma types, such as breast, colorectal, hepatocellular, oral squamous cell, ovarian, 

pancreatic, prostatic, renal cell, and thyroid exhibit elevated MET expression resulting from 

transcriptional upregulation 128, 132, 141. In glioblastoma, osteosarcoma, breast carcinoma, 

and RMS 128, expression of HGF has been proposed to aberrantly activate MET through an 

autocrine loop 33, 128, 142.

Expression of MET in RMS is associated with migration, invasion, and metastasis 142–144 

Thus, it is not surprising that high MET expression levels correlated with advanced stage, 

worse outcome, and ARMS histology, specifically PAX3-FOXO1 expression 145, 146. 

Although other studies found MET expressed in ERMS as well 147, 148, high MET 

expression is consistently observed in ARMS 143, 145, 146, 149, 150, whereas its expression 

levels are more variable in ERMS 147 These findings are in agreement with reports that MET 
is a PAX3-FOXO1 target gene that plays an essential role in mediating the fusion protein’s 

oncogenicity 5, 147, 149. Importantly, both ARMS and ERMS tumors demonstrated oncogene 

addiction to MET, as MET depletion abrogated proliferation, invasiveness, survival, and 

anchorage-independent growth in vitro and arrested tumor growth in vivo 147 Therefore, 

both RMS subtypes—in addition to the multitude of cancer types described above—could 

potentially benefit from MET-directed therapies.

Many therapeutic agents targeting MET have been developed (Table 1) and are at stages 

ranging from preclinical evaluation to Phase II clinical trials 128, 151. The sheer variety of 

compounds and strategies designed to antagonize MET holds much promise: HGF 

antagonists to block interaction of MET with its ligand, HGF and MET neutralizing 

antibodies to interfere with HGF-MET binding and to downregulate MET, MET decoys to 

sequester HGF and obstruct receptor dimerization, and small-molecule inhibitors to impair 

catalytic activity 128. MET inhibitors have been discussed comprehensively in a recent 

review 128. As clinical trials of MET inhibitors progress in other tumor types, evaluation of 

their safety and efficacy in RMS is clearly warranted and anticipated.

4.3 MYCN

Unlike the RTKs FGFR4 and MET, MYCN belongs to a transcription factor family of proto-

oncogenes that includes MYC and MYCL 152, 153. MYCN is a basic helix-loop-helix/

leucine zipper transcription factor that is expressed predominantly in neuronal tissues during 

embryogenesis 153, 154 Following heterodimerization with MAX, MYCN activates 

transcription of target genes, such as TERT, ODC, MDM2, and IGF1R 155. Recent reports 
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that the related MYC protein is a global gene expression amplifier 156, 157, however, may 

foreshadow a comparable, more universal model of gene expression regulation for MYCN.

Normal MYCN expression is virtually undetectable in mature, post-embryonic tissues 
153, 154, 158. Aberrant expression of MYCN as a result of MYCN amplification, however, has 

been detected in several malignancies, including neuroblastoma, glioblastoma, 

medulloblastoma, retinoblastoma, anaplastic large cell lymphoma, and small cell lung 

carcinoma 154, 159. MYCN amplification is perhaps best known in neuroblastoma, in which 

it clearly correlates with poor outcome 154, 160.

Several studies also demonstrated MYCN amplification in RMS tumors 148, 161–166. MYCN 
gene amplification occurs predominantly in ARMS 161–163 though recent studies revealed a 

low frequency of MYCN amplification in ERMS 148, 164, 165. In the latest investigation, 

MYCN amplification was present in 25% of ARMS patient samples versus 6% of ERMS 
165. High MYCN expression levels significantly correlated with PAX3/7-FOXO1 -positive 

ARMS tumors and poorer clinical outcome for ARMS patients 165. Association of high 

MYCN expression with fusion gene positivity is consistent with previous findings that 

PAX3-FOXO1 increases MYCN mRNA expression 26, 148, suggesting that MYCN is a 

direct transcriptional target of the PAX3-FOXO1 oncoprotein. Moreover, ChIP-seq analysis 

revealed a PAX3-FOXO1 binding site downstream of the MYCN transcription start site, 

providing further evidence that PAX3-FOXO1 directly activates MYCN transcription 111.

As a transcription factor lacking enzymatic activity, perturbation of MYCN function is 

challenging. Numerous studies of the related MYC protein focused on disrupting MYC-

MAX dimerization 152, which is conceptually a viable strategy. In vitro data provided proof 

of principle, but in vivo functionality of this approach remains to be evaluated 152. 

Preclinical studies of MYCN antigene therapy, however, are promising 165. In both ARMS 

and ERMS cell lines in vitro, treatment with an antigene peptide nucleic acid (PNA-MYCN) 

oligonucleotide that specifically inhibited MYCN mRNA expression abrogated proliferation 

and induced apoptosis 165.Antitumor activity of PNA-MYCN was especially marked and 

intriguing in ARMS; not only was PNA-MYCN effectiveness validated in vivo using a 

murine xenograft model, but also a novel interaction between MYCN and PAX3-FOXO1 

was illuminated. Decreased MYCN levels resulted in reduced PAX3-FOXO1 expression, 

while MYCN overexpression led to elevated PAX3-FOXO1 levels 165. This novel positive 

feedback mechanism has profound potential for therapeutic exploitation in ARMS, as anti-

MYCN therapy will directly inhibit MYCN, thereby indirectly suppressing PAX3-FOXO1 

as well. Like killing two birds with one stone, one agent could kill two oncogenes. Thus, in 

refractory ARMS tumors, MYCN-directed therapy may provide a surrogate strategy for 

PAX3-FOXO1 inhibition 167.

5. Conclusion

Although recurrent chromosomal translocations are uncommon in solid tumors, they are 

characteristic of approximately one-third of all sarcomas 6. Studies of non-random 

chromosomal translocations and their resultant fusion genes have expanded our 

understanding of sarcoma biology, facilitated diagnosis and prognosis, and underscored the 
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value of developing therapies to target oncogenic fusion genes. Using PAX3-FOXO1 in 

ARMS as a paradigm, ample evidence advocates two broad approaches for the treatment of 

translocation-associated sarcomas: 1) targeted therapies directed against the oncogenic 

chimera itself, and 2) therapeutic strategies targeting downstream genes activated by the 

fusion oncoprotein.

6. Expert Opinion

The uniqueness of PAX3-FOXO1 expression to ARMS is a double-edged sword—on one 

hand, it is advantageous for PAX3-FOXO1-directed therapies, conferring cytotoxicity 

specifically to cancer cells. On the other hand, however, PAX3-FOXO1 is exclusively 

expressed in ARMS 1, 7, a rare pediatric tumor. The same scenario is mirrored in other 

translocation-associated sarcomas, including ASPSCR1-TFE3 in alveolar soft part sarcoma 

and FUS-DDIT3 in myxoid liposarcoma 1.

Although targeting specific oncogenic chimeras is a viable therapeutic approach, the rare 

tumor context in which these fusion genes are expressed presents considerable challenges. 

Currently, despite more than 800 new anticancer drugs estimated to be in clinical 

development for adult tumors, the biopharmaceutical industry does not conduct preclinical 

research and development for rare cancers 168. From an economic perspective, the rationale 

of pharmaceutical companies is uncomplicated: drugs indicated for a rare malignancy have a 

smaller market and will therefore garner less profit compared to a more prevalent tumor. 

Drug research and development for rare cancers, such as ARMS and other translocation-

associated sarcomas, is thus relegated to the academic sector funded by federal, foundation, 

and private grants. However, even if the pharmaceutical industry were to extend studies to 

include rare malignancies, patient enrollment in clinical trials would remain a major 

impediment to drug evaluation. Common cancers benefit by virtue of a greater patient pool, 

whereas resources for uncommon tumors are inherently limited, with accrual taking years 

rather than months. To compensate for the small patient population, clinical trials examining 

treatment for rare malignancies must recruit patients from numerous sites, which is the 

impetus for creation of cooperative clinical oncology trials groups such as the Children’s 

Oncology Group.

While efforts to develop targeted therapies against fusion proteins should not be abandoned, 

one must also be cognizant of molecular targets that are applicable to a broader tumor 

landscape. This review has highlighted FGFR4, MET, and MYCN as examples of such 

targets, but numerous other oncogenes, including IGF1R, PDGFR, VEGFR, PI3K, and 

MTOR (Table 1), are relevant to both rare, translocation-associated sarcomas 2 and to more 

common cancers. Such oncogenes may be found not only as genes downstream of the fusion 

oncoproteins but also potentially related to genetic events that cooperate with the fusion 

oncoproteins. By focusing on more generalizable molecular targets, the paradigm shifts to 

regard therapies not as tumor-specific, but as target-specific. With a higher likelihood for 

investment and a larger patient population from which to enroll for clinical trials, this 

approach provides the potential for including more rare malignancies in trials of mainstream 

targeted cancer therapeutics.
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Abbreviations

ARMS Alveolar rhabdomyosarcoma

CDK1/2 Cyclin-dependent kinase 1/2

ChIP Chromatin immunoprecipitation

CK1/2 Casein kinase 1/2

CNR1/CB1 Cannabinoid receptor 1

COL1A1-PDGFB Collagen type I alpha 1-Platelet-derived growth factor beta

CPT1A Carnitine palmitoyltransferase 1A

CTL Cytotoxic T cell lymphocytes

DFSP Dermatofibrosarcoma protuberans

EGFR Epidermal growth factor receptor

ERMS Embryonal rhabdomyosarcoma

EWSR1-FLI1 Ewing’s sarcoma breakpoint region 1-Friend leukemia 

virus integration 1

FGFR Fibroblast growth factor receptor

FISH fluorescence in situ hybridization

HGF Hepatocyte growth factor

HLA Human leukocyte antigen

IGF2 Insulin-like growth factor 2

IGF1R Insulin-like growth factor 1 receptor

IL-2 Interleukin-2

MHC Major histocompatibility complex

MTOR Mammalian target of rapamycin

NCOA1/2 Nuclear receptor coactivator 1

ODC Ornithine decarboxylase

PDGFR Platelet-derived growth factor receptor

PI3K Phosphatidylinositol 3-kinase
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PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 

subunit alpha

PKC Protein kinase C

PNA Peptide nucleic acid

RMS Rhabdomyosarcoma

RTK Receptor tyrosine kinase

RT-PCR Reverse transcription polymerase chain reaction

TERT Telomerase reverse transcriptase

TK Tyrosine kinase

VEGFR Vascular endothelial growth factor receptor
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7. Article Highlights

• Although recurrent chromosomal translocations are typically rare in solid 

tumors, they are associated with approximately one-third of all sarcomas.

• The majority of recurrent chromosomal translocations in sarcomas generate 

oncogenic chimeric transcription factors, which aberrantly transactivate target 

gene expression.

• Using the PAX3-FOXO1 fusion oncoprotein in ARMS as an example, 

evidence is discussed that constructs a conceptual framework of therapeutic 

strategies to target not only the fusion product itself, but also the downstream 

products mediating fusion protein oncogenicity.

• Most fusion genes are expressed in rare tumors, creating considerable 

challenges for drug development and clinical evaluation. Therefore, an 

important additional approach is to exploit downstream targets in these 

translocation-associated sarcomas that are also applicable to more common 

cancer categories.
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Figure 1. 
Schematic depiction of t(2;13)(q35;q14) and t(1;13)(p36;q14) chromosomal translocations 

and resultant PAX3/7-FOXO1 chimeric fusion products. The vertical dashed line denotes the 

fusion point. DBD: DNA binding domain; FD: Forkhead domain; HD: Homeobox domain; 

PB: Paired box; TAD: Transcriptional activation domain.
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Figure 2. 
Phosphorylation-mediated regulation of FOXO1, but not PAX3-FOXO1, subcellular 

localization. Wild-type FOXO1 contains three evolutionarily conserved AKT 

phosphorylation sites (P). AKT-driven phosphorylation at these FOXO1 residues promotes 

14–3-3 protein docking and binding, resulting in inactivation of FOXO1 transcriptional 

activity via cytoplasmic sequestration. PAX3-FOXO1 is resistant to AKT-mediated 

regulation by phosphorylation as evidenced by its constant nuclear localization.
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Table 1.

Therapeutic targets implicated in ARMS and additional cancer categories.

Target Agent Alteration in RMS Alteration/Implication in
Other Tumor Types

CNR1/CB
1

AM251; HU210; Delta(9)-
tetrahydro-
cannabinol169, 170

Overexpression; Induced by PAX3-FOXO1 
169, 170

Invasion in breast cancer; migration in kidney 
171, 172

CPT1A Etomoxir 173 Direct PAX3-FOXO1 transcriptional target 
174

Proliferation and motility in lung 175 and 
prostate cancer 175, 176

FGFR4 PD173074; AZD4547; 
AZ12908010 109112,123, 124

Overexpression in RMS; Direct PAX3-
FOXO1 transcriptional target; Association 
with PAX3-FOXO1-positive ARMS and 
reduced overall survival; Activating mutations 
found in 7.5% of RMS tumors (mostly 
ERMS) 95, 105–109, 111

Overexpression in several malignancies (e.g., 
breast, gynecologic, lung, liver, pituitary, 
prostate, and pancreas) 116–122, 177

IGF1R Cixutumumab; 
Figitumumab; 
Teprotumumab 1, 2

Overexpression; Association with aggressive 
behavior and reduced failure-free survival in 
ARMS 2, 178

Overexpression in numerous human cancers 
(e.g., breast, colorectal, melanoma, liver, 
prostate, and sarcoma) 179, 180

MET Crizotinib; Tivantinib; 
OA-5D5; DN30; K252; 
SU11274; PHA665752; 
PF2341066; XL880; 
MK2461; MP470; 
SGX523; JNJ38877605 
1, 2, 128

Association with migration, invasion, and 
metastasis; Correlation of high MET 
expression with advanced stage, worse 
outcome, ARMS histology, and PAX3- 
FOXO1 expression; Direct PAX3-FOXO1 
transcriptional target 142–147, 149, 150

Overexpression in almost all carcinoma types 
(e.g., breast, colorectal, hepatocellular, oral 
squamous cell, ovarian, pancreatic, prostatic, 
renal cell, and thyroid) 128, 131–141

MTOR 
(mTOR)

Everolimus; 
Ridaforolimus; Sirolimus; 
Temsirolimus 1, 2

Strong association between activation of 
mTOR signaling components and poor 
failure-free or overall survival 181, 182

Deregulation in several cancers (e.g., hamartoma 
syndromes, lymphomas, breast, and melanoma) 
183–187

MYCN PNA-M7CW165 Amplification, most frequently in ARMS; 
Correlation between high MYCN expression 
and PAX3/7-FOXO1 -positive ARMS tumors 
and poorer clinical outcome; Direct PAX3-
FOXO1 transcriptional target 111,148, 161–166

Aberrant expression of MYCN as a result of 
MYCN amplification detected in several 
malignancies (e.g., neuroblastoma, glioblastoma, 
medulloblastoma, retinoblastoma, anaplastic 
large cell lymphoma, and small cell lung 
carcinoma) 154, 159

PDGFR Imatinib; Olaratumab; 
Sorafenib; Dasatinib; 
Sunitinib; Axitinib; 
Pazopanib 1, 2

Overexpression of PDGFR-A in ARMS and 
ERMS; Association between PDGFR 
expression and decreased survival 178, 188

Aberrant expression or overexpression in a 
variety of cancers (e.g., glioma, breast, ovarian, 
prostate, and lung) 189–192

PI3K GSK1059615; BEZ235 2 Putative overexpression/gain-of-function 
mutations based on downstream activation of 
AKT-mTOR axis 79, 181

PIK3CA mutations in several malignancies (e.g., 
breast, colon, endometrial, glioblastoma, 
ovarian); PIK3CA amplification in many other 
tumors (e.g., head and neck, squamous cell lung 
carcinoma, cervical, gastric, and esophageal) 193

VEGFR Bevacizumab; Brivanib; 
Cediranib; Sorafenib; 
Sunitinib; Axitinib; 
Pazopanib 1, 2

Higher VEGFR expression in ARMS versus 
ERMS implicated in metastatic phenotype of 
ARMS 194

Aberrant expression or overexpression in 
vasculature of numerous solid tumors (e.g., 
breast, ovarian, colorectal, and lung) 195, 196

ARMS: Alveolar rhabdomyosarcoma; CNR1/CB1: Cannabinoid receptor 1; CPT1A: Carnitine palmitoyltransferase 1A; ERMS: Embryonal 
rhabdomyosarcoma; FGFR4: Fibroblast growth receptor 4; IGF1R: Insulin-like growth factor 1 receptor; MTOR: Mammalian target of rapamycin; 
PDGFR: Platelet-derived growth factor receptor; PI3K: Phosphatidylinositol 3-kinase; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase, 
catalytic subunit alpha; PNA: Peptide nucleic acid; RMS: Rhabdomyosarcoma; VEGFR: Vascular endothelial growth factor receptor
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