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Abstract

We present a selective review of statistical modeling of dynamic networks. We focus on models 

with latent variables, specifically, the latent space models and the latent class models (or stochastic 

blockmodels), which investigate both the observed features and the unobserved structure of 

networks. We begin with an overview of the static models, and then we introduce the dynamic 

extensions. For each dynamic model, we also discuss its applications that have been studied in the 

literature, with the data source listed in Appendix. Based on the review, we summarize a list of 

open problems and challenges in dynamic network modeling with latent variables.
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1. Introduction

As statistical modeling of network data has been posited as a major topic of interest in 

diverse areas of study, there have been an increasing number of books [42, 57] and survey 

papers on random graphs and network models [12, 21, 73, 78, 83, 54]. Those existing 

surveys provide a comprehensive overview of the historical development of statistical 

network modeling, including the summary of network models that are not latent variable 

models—e.g., Exponential random graph models (ERGMs), the quadratic assignment 

procedure (QAP), stochastic actor oriented models (SAOMs)—as well as the latent variable 

models—e.g., statist latent space models (LSM) and the stochastic blockmodels (SBM). The 

key idea behind introducing latent variables into network analysis is to capture various forms 

of dependence between edges and get conditional independence in the error terms, which is 

one of the most challenging parts of network modeling. Considering the difference between 

latent variable models and the rest in the network literature, we aim to provide in-depth 

information on the unobserved or unmeasured structure of networks by presenting a 

selective review on dynamic network models with latent variables. This area has undergone 

significant developments in recent years, with emphasis on two classes of models, the latent 

space models (LSM) and the stochastic blockmodels (SBM).
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The latent space models (LSM) [35] assume that nodes are positioned in an R-dimensional 

latent space, and they tend to create edges to others that are closer in their latent positions. 

Due to this simple geometry-based assumption, the latent space models have an advantage in 

providing the useful visualization and interpretation of network or relational data, and thus 

have been widely used in numerous fields of study [10, 17, 25, 36, 43, 76, 77, 82]. The 

stochastic blockmodels (SBM) assume that the nodes of the network are partitioned into 

several unobserved (latent) classes (or blocks). The framework is first introduced by Holland 

et al. [37] which focuses on the case of a priori specified blocks, where the membership of 

nodes are known or assumed, and the goal is to estimate a matrix of edge probabilities. A 

statistical approach to a posteriori block modeling for networks is introduced by [74] and 

[59], where the objective is to estimate the matrix of edge probabilities and the memberships 

simultaneously. Since then, the communities found in the stochastic blockmodels have been 

interpreted meaningfully in many research fields. For example, in citation and collaboration 

networks, such communities could be interpreted as scientific disciplines [39, 58], while the 

communities in food web networks could be interpreted as ecological subsystems [20].

As dynamic network analysis—the study of networks that evolve over time—has become an 

emergent scientific field in the last decade, there has been a growing number of dynamic 

network models that incorporate a latent space model or stochastic blockmodel framework. 

Since they are relatively new, to the best of our knowledge, there has not been any attempt to 

describe the progress in dynamic latent variable models. In this work, therefore, we outline 

some of the prominent dynamic latent space models and summarize their interconnections, 

and also describe the recent approaches in dynamic stochastic blockmodels.

We organize the review in the following way. For each class of models (LSM and SBM), we 

first introduce a family of static models as the background information, then describe the 

dynamic models motivated by the static ones, and discuss the applications to real-world data. 

In Section 5, we present two diagrams summarizing the relationships of all the models and 

mention some open problems and remaining challenges in dynamic network models with 

latent variables. We also provide a list of available data sources that have been used in past 

literature in the Appendix.

2. Notations

Throughout the paper, we consider the set of nodes 𝒩 labeled as 1, …, N, and assume the 

edges represented by an N × N adjacency matrix Y = yi j (i, j) ∈ 𝒩, where yij being the edge 

value between i and j which could be binary, discrete, or continuous. To achieve the goal of 

statistical network models—to understand the dependence of the edges using the observed 

and unobserved structure—we define the observed pair-specific covariates as 

X = xi j (i, j) ∈ 𝒩 and the unobserved latent variables as Z = zi i ∈ 𝒩. Specifically, zi 

represents an R-dimensional latent position (or vector) of node i in the latent space models 

(Section 3), and zi represents the class of node i in the stochastic blockmodels where each zi 

takes one value in the set of categories 𝒞 labeled as 1, …, C (Section 4). When extending to 

the dynamic models for discrete time points t = 1, …, T, we use a t subscript on the variables 

(e.g., yijt, xijt, zit) to denote “at time t”. Generally, random variables are denoted by upper 
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case letters and fixed quantities or realizations of random variables are denoted by lower 

case letters. Other than the ones specified here, additional notation specific to each model is 

introduced later.

3. Latent space models

In this section, we first describe the original latent space model introduced by Hoff et al. 

[35]. Then we introduce two lines of research: (i) the latent position model [23], which is 

built upon the Euclidean distance space, and (ii) the latent factor model [28], which stems 

from the projection model. We present the dynamic extension of these static models and 

demonstrate how the two different frameworks have evolved in the dynamic network 

literature, in chronological order.

3.1. Static latent space models

3.1.1. Latent space approaches to social network analysis—The idea of social 

space is first introduced to network modeling by Hoff et al. [35], with the intuition that each 

node i ∈ 𝒩 can be seen as a point zi in an R-dimensional space that represents unobserved 

latent characteristics. The presence or absence of an edge between two nodes is independent 

of all other edges given the latent positions of the two nodes; thus the conditional probability 

of the adjacency matrix Y is

P(Y |Z, X, θ) = ∏
i ≠ j

P yi j | zi, z j, xi j, θ ,

where X are observed pair-specific covariates, θ = (α, β) are the set of regression 

parameters. Here, the latent positions Z can be interpreted as the random effects in linear 

models.

There exist two different ways to model P(yij|zi, zj, xij, θ): the distance model and the 

projection model. The main assumption here is that nodes are positioned in a latent space, 

and they tend to create edges to others with shorter distance (distance model) or narrower 

angle (projection model) between their latent positions. Both distance and projection models 

can be applied to various types of edges (e.g., binary, discrete, continuous) via the linked 

mean parameter of a generalized linear model. Without loss of generality, we introduce the 

model formulations for the case of binary networks.

Latent distance model: For a binary network, the distance model takes the form of a 

logistic regression model with θ = (α, β) and defines the log odds of an edge between nodes 

i and j as:

ηi j = logodds yi j = 1| zi, z j, xi j, α, β

= α + β′xi j − zi − z j ,

where α is an intercept term, β is a vector of coefficients for covariate effects, and ||zi − zj|| is 

the Euclidean distance between nodes in the latent space. In other words, the existence of an 
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edge in the adjacency matrix (i.e., Yij = 1) is determined by the dyad attributes xij and the 

distance between the pair of nodes ||zi − zj||.

Krivitsky et al. [47] proposes the latent cluster random effects model that includes the 

distance between latent space positions, model-based clustering of the latent positions, and 

random sender and receiver effects (discussed below), and introduces Bayesian estimation 

methods for both binary and non-binary network data.

Latent projection model: The projection model posits a different assumption:

ηi j = logodds yi j = 1| zi, z j, xi j, α, β

= α + β′xi j +
z′iz j
z j

,

which changes the interpretation so that i and j are more likely to form an edge if zi and zj 

are in the same direction  i.e., zi′z j > 0 , while less likely to form an edge if they are in 

opposite directions  i.e., zi′z j < 0 . Due to the denominator term ||zj||, this also allows 

asymmetric edge probabilities (i.e., ηij ≠ ηji) even when the dyadic covariates xij are 

symmetric.

3.1.2. Latent position cluster model—As identifying groups of similar nodes is often 

of interest to network researchers, Handcock et al. [23] extends the latent space models to 

allow clustering of nodes in networks. Referred to as the “latent position cluster model”, this 

approach combines the latent space models and the model-based clustering method [7]. The 

modeling framework is built upon the latent distance model

logodds yi j = 1| zi, z j, xi j, α, β = β0′ xi j − β1 zi − z j ,

where each position zi ∈ ℝK is drawn from a finite mixture of multivariate normal 

distributions from G groups. Assuming different means and covariance matrices for each 

group g = 1, …, G, the model proposes

zi ∑
g = 1

G
λgNd μg, σg

2IR ,

where λg is the probability that an actor belongs to g, and IR is the R × R identity matrix.

Inference of the latent space model and the clustering model can be made with either the 

maximum likelihood method (MLE) or the Bayesian approach via Monte Carlo Markov 

chain (MCMC), and those methods are implemented in the R package ‘latentnet’ [44, 46].

3.1.3. Bilinear mixed-effects model—Providing some computational and conceptual 

advantages to the latent space models, Hoff [28] develops the generalized bilinear mixed-
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effects models (GBME), a network regression model that is in line with the latent space 

models, especially the latent projection models. Starting from the traditional regression 

model on dyadic data

yi j = β′xi j + ϵi j,

this new approach includes additive and multiplicative random effects in the error terms, i.e.,

ϵi j = ai + b j + zi′z j + γi j

ai, b j ′ N 0, Σab ,

zi N 0, σz
2IR ,

γi j, γ j, i ′ N 0, Σγ , where

Σab =
σa

2 σab

σab σb
2  and Σγ = σγ

2 1 ρ
ρ 1 .

This representation allows us to explain the second-order dependence often seen in dyadic 

data: a sender effect ai, a receiver effect bj, and a within dyad effect γij. Variance parameters 

σa
2 and σb

2 represent the dependence of observations having a common sender and receiver, 

respectively, with the correlation between sender and receiver effects described by σab. 

Moreover, reciprocity and within-actor correlation are measured by σγ
2 and the correlation 

parameter ρ. Finally, the bilinear effect in the product term zi′z j is known to capture the third-

order dependence in dyadic data such as transitivity (i.e., if yij = 1 and yjk = 1, then we tend 

to have yik = 1), balance (i.e., yij × yjk × yki > 0 for signed unordered edges), and 

clusterability (i.e., a triad can be divided into groups).

The GBME framework has been further studied and modified in [29, 30, 55], and has been 

referred to as the “latent factor models”, the “eigenmodel”, and the “additive and 

multiplicative effects (AME) models” [27, 32, 55]. Throughout this paper, we use the name 

“latent factor models” to emphasize the objective of the paper in understanding latent 

variable models. Hoff [29] shows that the latent factor model generalizes the latent distance 

model and the latent class model. For the effective use of the latent factor models, the R 

package “AMEN” [32] provides estimation and inference for a class of AME models for 

ordinal, continuous, binary and other types of dyadic data.
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3.2. Dynamic latent distance models

In this section, we summarize some dynamic latent distance models which extend the latent 

distance models with Markovian properties.

3.2.1. Dynamic social network in latent space model—The first dynamic latent 

distance model appeared in the machine learning literature by Sakar and Moore [67]. They 

named it the “dynamic social network in latent space (DSNL) model”. This model assumes 

that Yt (i.e., the observed pairwise adjacency matrix at time t) is only dependent on the 

current latent positions Zt (“observational model”) while allowing the latent positions to 

move over time with standard Markovian assumptions (“transition model”).

The observation model for the graph can be written as

P Yt Zt = ∏
i j

pi jt∏
i j

1 − pi jt ,

where i ~ j and i j denote the existence and absence of a link, respectively, and pijt is the 

probability of a link between i and j at time t. Specifically, it has the following form:

pi jt = 1

1 + e
di jt − ri jt

K di jt + ρ 1 − K di jt ,

where dijt = ||zit − zjt|| is the Euclidean distance between i and j in the latent space as in the 

original latent distance model at time t, rijt is the maximum of the radii of i and j at time t, 
defined as rijt ∝ (max(δit, δjt) + 1) with δit being the degree of node i at time t, K is a 

biquadratic kernel K(dijt) = (1 − (dijt/r ijt)2)2, and ρ is a constant noise.

The transition model assumes a Gaussian random walk:

Zt |Zt − 1 N Zt − 1, σ2I ,

and the resulting logP(Zt|Zt−1) becomes

logP Zt |Zt − 1 ∝ − ∑
i = 1

n
zit − zi(t − 1)

2/2σ2,

such that we want to estimate the positions using

P Zt |Yt, Zt − 1 ∝ P Yt |Zt P Zt |Zt − 1 .

For efficient optimization of the likelihood, the authors develop the two-stage learning 

algorithms: (i) generalized multidimensional scaling (MDS) to find the initial latent 

positions across time and (ii) nonlinear conjugate gradient (CG) optimization starting from 
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the initial estimates. Additionally, the Procrustean transformation is applied to the 

coordinates from MDS so that Zt maintains the same orientation as Zt−1.

The DSNL model is applied to NIPS conference paper co-authorship dataset (network size 

up to 11,000) by separating the 12 years of data into three discrete time points: 1987–1990, 

1991–1994, and 1995–1998. The analysis is mainly focused on investigating the dynamics 

of some well-connected researchers in the machine learning community, and authors find 

out some noticeable changes in the network embeddings via the examination of latent 

positions. Sakar et al. [68] further extends the model to be applicable for dynamic bipartite 

or two-mode networks, such as author-word data from the same NIPS data using text 

corpora.

3.2.2. Dynamic latent distance model with popularity and activity effects—
Sewell and Chen [69] propose a network model for longitudinal networks which allows each 

node to have a temporal trajectory in an R-dimensional latent Euclidean space, with 

additional features to capture the nodes’ popularity and activity effects.

For a binary network Yt, the model formulation relies on the log-odds ηij:

P Yt |Zt, βIN, βOUT , r1: N = ∏
i ≠ j

exp yi jtηi jt
1 + exp yi jtηi jt

, where

ηi jt = βIN 1 −
di jt
r j

+ βOUT 1 −
di jt
ri

,

where the distance between i and j at time t is defined as dijt = ||zit − zjt|| and ri is a vector of 

positive actor-specific parameters with constraints ∑i = 1
N ri = 1. Specifically, ri can be 

thought of as the ith actor’s social reach or radius which does not vary over time. In addition, 

this formulation separates the two parameters βIN and βOUT to measure the global popularity 

and activity effects, respectively. Note that this model deals with directed networks (i.e., yij ≠ 

yji) as well as undirected ones (i.e., yij = yji), while the DSNL model in Section 3.2.1 only 

allows undirected edges.

Similar to the DSNL model, the latent positions Zt at time t are modeled by a Markov 

process with a transition equation for t = 2, 3, …, T:

π Zt |Zt − 1, ϕ = ∏
i = 1

n
N zit | zi(t − 1), σ2IR ,

where the initial positions have independent zi1 ~ N(0, τ2 IR) for i = 1, …, N and ϕ = (τ2, σ2, 

βIN, βOUT, r1:n) is the set of parameters of interest. To estimate the parameters ϕ, the authors 

adopt a Bayesan approach and implement MCMC algorithm using Metropolis-Hastings 

within Gibbs. They also perform a Procrustes transformation in order to re-orient the 

sampled trajectories.
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This dynamic latent distance model is applied to two datasets. The Dutch classroom dataset 

includes directed relationships among 25 students, surveyed over four time points. The bill 

cosponsorship dataset consists of the cosponsorship history of 644 members of Congress 

who served during the 97th to 101st Congresses in the U.S. House of Representatives (five 

time points). The model provides useful insights into the networks, such as the overall 

gender and ethnic separation in the Dutch classroom example and the reflection of the 

political ideology of the latent positions in the bill cosponsorship example. In their follow-up 

work, Sewell and Chen [70] adjust the model for weighted edges including rank-ordered 

count data and non-negative continuous edges, via link functions and data augmentation. 

The applicability and interpretability of this extended model are demonstrated with mobile 

phone call log data and world exports/imports data, which are examples of count edges and 

continuous edges, respectively.

3.2.3. Dynamic latent distance model for bipartite network—A bipartite graph is 

a graph in which vertices are divided into two groups and links only exist across groups. 

Friel et al. [19] develop a statistical model for bipartite temporal networks by extending the 

DSNL model, with different assumptions from the bipartite network model in Sakar et al. 

[68]. While Sakar et al. [68] model the co-occurrence of counts of authors and words from 

their empirical distribution, Friel et al. [19] directly model the evolution of edges through 

three Markov processes: one on the parameters, one on the latent positions, and one on the 

edges.

Define the binary edge yijt = 1 if node i in the first group (i = 1, …, N) is connected to node j 
in the second group (j = 1, …, M) at time t (e.g., director i sitting on board j in year t), and 

yijt = 0 otherwise. The chance of forming an edge at time t depends on the previous state 

yij(t−1), and the latent distance between the two nodes in two different groups. The model 

assumes that

logit pi jt = yi j(t − 1)γt + 1 − yi j(t − 1) βt − zit − w jt ,

where γt is an edge persistence parameter and βt is a non-edge persistence parameter, which 

are separately defined to capture the difference in the persistence of edges and non-edges, 

and zit and wjt are the R-dimensional latent positions of node i in the first group and j in the 

second group, respectively, at time t. Note that while the general framework assumes time-

varying latent positions zit, Friel et al. [19] fixed the first group’s latent positions (i.e., zi) for 

their application.

The latent positions in the first group are assumed to have independent Gaussian prior, while 

the latent positions in the second group are modeled using random walk processes (given the 

initial positions at t = 1):

P(Z) = ∏
t = 1

T
∏

i = 1

N
∏

r = 1

R
f zirt; 0, τz ,
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P W τw, τw
0 = ∏

j = 1

M
∏

r = 1

R
f w jr1;0, τw

0 × ∏
t = 2

T
∏
j = 1

M
∏

r = 1

R
f w jrt; w jr(t − 1), τw ,

Where τw, τw
0 , τz  are the precision parameters. Similar to the latent positions of the second 

group, this model further assumes that the parameters γt and βt also follow the Markov 

processes:

P γ |τγ, τγ
0 = f γ1; 0, τγ

0 × ∏
t = 2

T
f γt; γt − 1, τγ ,

P β |τβ, τβ
0 = f β1; 0, τβ

0 × ∏
t = 2

T
f βt; βt − 1, τβ ,

where τγ, Tγ
0, Tβ, τβ

0  are the precision parameters. Same as the inference procedures in other 

dynamic latent distance models, MCMC sampling is used to sample from the joint posterior 

distribution, and Procrustes transformation is applied for fixed orientation.

Using the model, the authors analyze the dynamic evolution of the leading Irish companies 

and their directors from 2003 to 2013. The network data contain N = 761 directors (first 

group), M = 59 companies (second group), and 3,855 edges. Mainly focused on 

understanding the persistence of links and the heterogeneity in the latent positions, the 

analysis reveals an increasing level of interlocking board behavior before and during the 

financial crisis, and stabilization thereafter.

3.3. Dynamic latent factor models

As mentioned before, the multiplicative form in the projection model [35] has been 

continuously studied under the name of “latent factor models”. As shown in Hoff [29], latent 

factor models have some advantages over the latent distance model when both homophily—

a type of pattern in which similar nodes may be more likely to attach to each other than 

dissimilar ones—and stochastic equivalence—a type of pattern in which the nodes can be 

divided into groups such that members of the same group have similar patterns of 

relationships—are present in the network. In this section, we demonstrate the development 

of dynamic latent factor models along with the motivating examples that highlight the 

models’ capability of capturing higher-order dependence such as reciprocity—the tendency 

of one node to create a return link in a directed network—and stochastic equivalence.

3.3.1. Dynamic gravity model—Gravity models [49] in social sciences are used to 

model the bilateral relationships that can be predicted by the mass and distance of the pair. 

In modeling international trade and conflicts, Ward and Hoff [81] and Ward et al. [82] are 

the earlier works that combine the bilinear mixed-effects model (GBME) in Section 3.1.3 

with the gravity models. However, their applications to temporal networks are done by 
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separately fitting the static model to each time point’s network. Later, Ward et al. [80] 

improve their approach by including the previous year’s fitted positions. The resulting model 

has the following form:

log yi jt = β′xi jt + βuvui(t − 1)′ v j(t − 1) + ait + b jt + uit′ v jt + ϵi j,

where xijt consists of three covariates in the gravity models—the log of gross domestic 

product (GDP) of country i and j at time t, respectively, and the log of geographic distance 

between country i and j at time t. Different from the GBME, this model separates the latent 

positions to sending activity u and receiving activity v, and also includes the lagged position 

term βuvui(t − 1)′ v j(t − 1) to estimate the effect of positions at time t − 1 on the edges at time t

This model is applied to bilateral trade data from 1990 to 2008. After several goodness of fit 

tests including the R2 checks and out-of-sample predictions, the authors confirm the 

presence of strong second-order (i.e., reciprocity) and third-order dependencies in the world 

trade network. They demonstrate that the GBME model outperforms conventional ones in 

international trade literature, regarding predicting the observed values and understanding 

unobserved dyadic relationships.

3.3.2. Hierarchical multilinear model—By treating dynamic network data as an 

example, Hoff [31, 34] develops a general modeling framework for array data via reduced-

rank decompositions, in which the array can be expressed as products of low-dimensional 

latent factors. Specifically for symmetric dynamic network data Yt, the model takes the 

following form:

Yt = Xtβ + Γt,

Γt = ZΛtZ′ + Et,

where Z = (z1, …, zN)′ is a matrix consisting of the time-invariant eigenvectors, assumed to 

have a matrix normal prior distribution, and Λt = diag(λ1t, …, λRt) is the time-varying 

eigenvalue matrix. This can be seen as a generalization of the latent factor models, using the 

reduced-rank approximations to matrices. Further extensions to arrays can be found in Hoff 

[33], with the longitudinal network serving as an example of the general model. This model 

is implemented as the R package “AMEN” [32].

In Hoff [34], the model is applied to analyze the international cooperation and conflict data 

in Ward et al. [82]. The dataset includes the records of militarized conflict and cooperation 

of 66 countries in every five years from 1950 to 1985, along with some economic and 

political characteristics of the countries. The model discovers that a majority of the conflicts 

over the cold war period involves economically large countries, and also reveals different 

conflict and cooperation patterns across countries over time.
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3.3.3. Dynamic bilinear effects model—Gaussian processes (GP’s) have long been 

used in modeling temporally or spatially dependent data. Durante and Dunson [13, 15] 

propose a model that extends the bilinear component in Section 3.1.3 to the dynamic case by 

assuming the mean parameters and the latent factors are evolving in time via Gaussian 

processes. In particular, the model assumes

ηi jt = μt + βt′xi jt + zit′ z jt,

where η is the linked mean parameter of a generalized linear model, μt is the mean process, 

and zit and zjt are the R-dimensional latent positions at time t. Here, the parameters μ, β, and 

zir (for i = 1, …, n, and r = 1, …, k) vary over time given their GP priors

μ1, …, μT ′ N 0, cμ ,

zir1, …, zirT ′ N 0, τr
−1cz ,

where cμ and cz are both T × T matrices constructed using the squared exponential 

covariance function—as a function of the distance between two time points t1 and t2. In 

other words,

cμ t1, t2 = exp −κμ t1 − t2
2 ,

cz t1, t2 = exp −κz t1 − t2
2 ,

τr = ∏
l = 1

r
vl, v1 Ga a1, 1 , vl Ga a2, 1 , l ≥ 2,

where κμ and κz are the length-scale parameters in GP, and τr is the variance parameter with 

hierarchical Gamma priors. The main advantage of this model is that it relaxes the 

Markovian assumption in most of the previously mentioned work and allows an unequal 

spacing of the observed time points.

Durante and Dunson [15] apply the method to analyze the co-movements of 23 National 

Stock Market Indices from 2004 to 2013. The results successfully reflect the global financial 

crisis and Greek debt crisis periods. The time-varying predictors help to discover the 

existence of international financial contagion effects and the opposite effects of verbal and 

material cooperation efforts on financial co-movements.
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4. Stochastic blockmodels

In this section, we briefly summarize a statistical approach to a posteriori block modeling for 

networks introduced by [74] and [59] where the membership of nodes are unknown as well 

as the two relevant models, the mixed membership stochastic blockmodel [2] and the 

degree-corrected stochastic blockmodel [41], and then introduce several dynamic extensions 

of these static models.

4.1. Static stochastic blockmodels

The main assumption of the stochastic blockmodels is that the nodes of the network are 

partitioned into several latent classes (or blocks). To be specific, Snijders and Nowicki [74] 

and Nowicki and Snijders [59] assume the set of nodes i ∈ 𝒩 is partitioned into C categories 

labeled 1, …, C. The class of node i is denoted by zi and the classes are obtained in the 

vector z = zi i = 1
N . The set of classes is denoted by 𝒞 = 1, …, C . The models further assume 

that the probability distribution of the edge between two nodes depends only on the classes 

to which they belong. Thus the edges are conditionally independent given the class vector.

Stochastic blockmodels inherit the philosophy of finite mixture models, and assume that the 

unobserved classes Zi are i.i.d. random variables with the probability

P Zi = c = θc,

for class c ∈ 𝒞. Therefore, the joint distribution of Z = {Z1, …, ZN} is defined by

P Z1 = z1, …, ZN = zN = θ1
m1⋯θC

mC,

where

mc = ∑
i = 1

N
I zi = c

denotes the number of vertices with class c.

The model for edges between the nodes depends on the node classes in the following ways. 

Given the vector of node classes Z = z, the random vectors Yij for (i, j) ∈ 𝒩 with i < j are 

independent, and the probabilities are

P Yi j = y |Z = z = ηy zi, z j ,

where y = yi j, y j i ∈ 𝒴 is a vector of edge values and ηy(zi, zj) is the class dependent 

edge probabilities which satisfy the condition
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∑
y ∈ 𝒴

ηy(g, h) = 1  for all  g, h ∈ 𝒞 .

The conditional distribution of Y given the vector of classes z is given in the following form

P(Y = y | z, θ, η) = ∏
y ∈ 𝒴

∏
1 ≤ g < h ≤ C

ηy(g, h)
ey(g, h)

× ∏
y ∈ 𝒴

∏
c = 1

C
ηy(c, c)

ey(c, c)
,

where ey(g, h), y ∈ 𝒴, 1 ≤ g ≤ h ≤ C, are the edge counts for block (g, h).

For the inference of the stochastic blockmodels, both Bayesian and frequentist approaches 

are proposed. In the Bayesian approach, the prior distribution for parameters is taken to be a 

product of Dirichlet distributions for the class distribution and the edges between and within 

classes of the given memberships. The posterior distribution is estimated using the Gibbs 

sampler. On the other hand, in the frequentist approach, several different algorithms are 

proposed to estimate the classes: Rohe et al. [65] propose the spectral clustering to estimate 

classes in the model, Guédon and Vershynin [22] and Amini and Levina [4] write the class 

estimation problem as a semidefinite optimization problem and find the solution, and Amini 

et al. [3] propose a pseudo-likelihood algorithm which provides consistent estimates of 

classes.

Despite the simplicity in model formulation, stochastic blockmodels provide a powerful tool 

in modeling networks. They allow one to represent the effect of unobserved heterogeneity of 

individual positions or preferences on the pattern of pairwise relations. Since the 

heterogeneity is modeled by the stochastic membership of the c classes, regarding cluster 

analysis, it is more similar to a mixture model rather than a discrete classification model.

4.1.1. Mixed membership stochastic blockmodel—Many real-world networks are 

multi-faceted. However, stochastic blockmodels suffer from a limitation that each node can 

only belong to one group, or in other words, play a single latent role. To overcome this issue, 

Airoldi et al. [2] relax the assumption of a single latent role for nodes and develop the mixed 

membership stochastic blockmodel.

In this paper [2], the authors focus on directed networks and assume the observed network is 

generated according to node-specific distributions of community membership and edge-

specific indicator vectors denoting the membership in one of the C communities. Each node 

is associated with a randomly drawn vector π i for node i, where πi,c denotes the probability 

of node i belonging to group c. That is, each node can simultaneously belong to multiple 

groups with different degrees of affiliation. The probabilities of edges between different 

groups are defined by the matrix of Bernoulli rates BC×C, where B(g, h) rep-resents the 

probability of having an edge between a node from group g and a node form group h. The 

mixed membership stochastic blockmodel posits that the {Yij}1<i,j<N are drawn from the 

following generative process.

• For each node i = 1, …, N:
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– Draw a C dimensional mixed membership vector π i ~ Dirichlet(α ).

• For each possible edge variable Yij:

– Draw membership indicator for the initiator z i j ~ Multinomial π i .

– Draw membership indicator for the receiver z i j ~ Multinomial π j .

– Sample the edge Yij ~ Bernoulli z i j′ B z i j .

Here, the indicator vector z i j denotes the group membership of node i when node i has 

out-going edge to node j, and z j i denotes the group membership of node j when node j 

has out-going edge to node i.

Under the mixed membership stochastic blockmodel assumptions, the joint probability of 

the data Y and the latent variables π 1: N, Z , Z  can be written the in following form:

P Y , π 1: N, Z , Z | α , B

= ∏
(i, j) ∈ 𝒩

P Yi j | z i j, z i j, B P z i j | π i P z i + j | π j × ∏
i = 1

N
P π i | α

where π 1: N is the set of mixed membership vectors, and Z→ and Z← are the sets of 

membership indicator vectors.

A nested variational inference algorithm is used for posterior inference on the per-node 

mixed membership vectors and per-pair roles. To compute the empirical Bayes estimates of 

the model parameters, variational expectation-maximization (EM) algorithm is used. 

Moreover, in recent years, Mao et al. [52] and Jin et al. [40] propose a consistent algorithm 

for inferring mixed membership of nodes in the mixed membership stochastic blockmodel.

4.1.2. Degree-corrected stochastic blockmodel—Although the stochastic 

blockmodels have been popularly used as a tool for detecting community structure in 

networks, they fail to capture the heterogeneity of node degrees (i.e., number of edges the 

node has to other nodes) within communities which often observed in real-world networks. 

To solve this problem, Karrer and Newman [41] relax the assumption that the stochastic 

blockmodels treat all nodes within a community as stochastically equivalent, and propose 

the degree-corrected stochastic blockmodel that can consider node covariates.

This model focuses on undirected networks and allows networks to contain both multi-edges 

and self-edges, even though many real-world networks have no self-connecting edges. Let Y 
be an undirected multigraph on n nodes, possibly including self-edges, and let Yij be an 

element of the adjacency matrix of the multigraph. Also, there is a new set of parameters θi 

controlling the expected degrees of nodes i. The model assumes that the number of edges 

between each pair of nodes is independently Poisson distributed, and defines θiθjωgh to be 
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the expected value of the adjacency matrix element Yij for nodes i and j lying in groups 

g ∈ 𝒞 and h ∈ 𝒞, respectively. Then, Y has the probability

P(Y |θ, ω, z) = ∏
i < j

θiθ jωziz j

Yi j

Yi j!
exp −θiθ jωziz j

× ∏
i

1
2θi

2ωziz j

Yi j/2

Yi j/2 !
exp − 1

2θi
2ωziz j

.

To estimate the parameters and infer the membership of nodes, the authors suggest a novel 

method where the log-likelihood is maximized in two stages. First, they find maximum 

likelihood values of model parameters θi and ωgh. Then, they propose information-theoretic 

quantities for community detection or clustering. Similar to Rohe et al. [65], Qin and Rohe 

[61] propose spectral clustering under the degree-corrected stochastic blockmodel. Also, 

Zhao et al. [87] generalize the consistency framework of the stochastic blockmodel to the 

degree-corrected stochastic blockmodel and obtain a general theorem for community 

detection consistency.

4.2. Dynamic stochastic blockmodels

4.2.1. Dynamic stochastic blockmodel with varying community memberships
—To analyze dynamic communities, Yang et al. [86] propose a model that captures the 

evolution of communities by explicitly modeling the transition of community memberships 

for individual nodes in the network.

Let Yt be the snapshot of a network at a given time step t, with N the number of nodes in the 

network. Each element yijt in Yt is the weight assigned to the edge between nodes i and j. 
Although this dynamic stochastic blockmodel can handle both the frequency of interactions 

(i.e., a natural number) and the binary number indicating presence or absence of interactions, 

the authors’ main focus is on the binary edges. For a dynamic network, they use 

𝒴T = Y1, …, YT  to denote a collection of snapshots for the network over T discrete time 

steps. They also use zi ∈ {1, …, C}, where C is the total number of communities, to denote 

the community membership of node i. In addition, they introduce zic = [zi = c] to indicate if 

node i is in the cth community where [x] outputs 1 if x is true and zero otherwise. 

Community matrix Zt = (zict : i ∈ {1, … , N}, c ∈ {1, … , C}) then indicates the community 

assignments of all nodes in network at a given time step t. Finally, they set 𝒵T = Z1, …, ZT

to represent the collection of community assignments of all nodes over T time steps.

Assuming that the community matrix Zt–1 for time step t – 1 is given, the model uses a 

transition matrix A ∈ ℝC × C to model the community matrix Zt at time step t. Moreover, π = 

{π1, …, πC} is used as the initial probability where πc is the probability for a node to be 

assigned to community c. Given the community memberships in Zt, the edge between nodes 

Kim et al. Page 15

Stat Surv. Author manuscript; available in PMC 2019 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is determined stochastically by probabilities P. The joint probability of the data 𝒴T and the 

latent variable 𝒵T can be written in the following form:

P 𝒴T , 𝒵T |π, P, A = ∏
t = 1

T
P Yt |Zt, P ∏

t = 2

T
P Zt |Zt − 1, A P Z1 |π

where

P Yt |Zt, P = ∏
i j

P yi jt | zit, z jt, P

= ∏
i j

∏
g, h ∈ 𝒞

Pgh
yi jt 1 − Pgh

1 − yi jt
zigtz jht

,

P Zt |Zt − 1, A = ∏
i = 1

N
P zit | zi(t − 1), A

= ∏
i = 1

N
∏

g, h ∈ 𝒞
Akl

zig(t − 1)ziht,

and

P Z1 |π = ∏
i = 1

N
∏

c = 1

C
πc

zic1,

respectively. Note that in their model self-loops are not considered and so in the above 

equations i ~ j means over all i’s and j’s such that i ≠ j.

For the inference of the model, the authors introduce a point estimation approach using a 

Variational EM algorithm. They also propose a method based on a combination of 

probabilistic simulated annealing algorithm and Gibbs sampling algorithm to infer the 

parameters.

This model is applied to three datasets. The southern women dataset records the attendance 

of 18 women to 14 social events over a 9-month period in 1930’s in Natchez, Mississippi, as 

part of their work to study social class in both black and white societies. The blog dataset is 

collected by the NEC labs and includes 148,681 entry-to-entry links among 407 blogs 

during 15 months. The paper co-authorship (DBLP) dataset contains the co-authorship 

information of papers in 28 conferences in three areas (data mining (DM), database (DB), 

and artificial intelligence (AI)) over ten years (1997–2006). For the first two datasets, the 

model can detect the change of community membership over the study period. In the co-

authorship dataset, the model discovers the trend that, over time, the community of DB gets 

smaller, the community of DM gets larger, and the community of AI remains relatively 
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stable. Moreover, they also find some highly productive researchers had many changes in 

community membership.

4.2.2. Dynamic stochastic blockmodel with varying community memberships 
and connectivity parameters—Both Xu and Hero [85] and Matias and Miele [53] 

propose methods which relax the constraint of fixed connectivity probabilities P of Yang et 

al. [86] and allow both community memberships and connectivity parameters vary over 

time. The main difference between the two papers is that the former entirely relaxes the 

constraint of fixed connectivity parameters while the latter keeps a weak constraint on the 

connectivity parameters to handle the label switching issues across different time steps. Here 

we first introduce Xu and Hero [85] followed by Matias and Miele [53].

Xu and Hero [85] propose a state space model through time on the probability of connection 

between groups and focus on directed networks with no self-edges. Let Yt denote the 

adjacency matrix of the network observed at time step t. Let 𝒴t denote the set of all 

snapshots up to time t, i.e., {Y1, … Yt} The notation i ∈ c indicates that node i belong class 

c and the classes of all nodes at time t is given by a vector zt with zit = c if i ∈ c at time t. 
The Θt = [θght] denotes the connectivity parameter between groups, where θght denotes the 

probability of forming an edge between a node in class g and a node in class h, and C 
denotes the number of classes. The set Θt can be viewed as the states of a dynamic system 

that generates the noisy observation sequence. Since θght is a probability that must be 

bounded between 0 and 1, they work with the ψght = log(θght) − log(1 − θght), which is the 

logit of θght.

The following linear dynamic system gives a model for the state evolution

ψt = Ftψt − 1 + vt

where Ft is the state transition model applied to the previous state, ψt is the vector 

representation of the ψght ∈ ℝC × C, and υt is a random vector of zero-mean Gaussian 

entries, commonly referred to as process noise, with covariance matrix Γt. They assume Γt to 

be time-invariant and not necessarily diagonal because states could evolve in a correlated 

manner.

Since the class memberships zt are not known and should be estimated along with ψt, the 

label-switching methods are used as in [41], [87], and maximize the posterior state density 

given the entire sequence of observations 𝒴t up to time t, in order to account for the prior 

information. The posterior state density is given by

P ψt |𝒴t ∝ P Yt |ψt, 𝒴t − 1 P ψt |𝒴t − 1 .

Their inference is based on on-line iterative estimation procedure alternating two steps. First, 

a label-switching method is used to explore the space of node group configurations. Then, 
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they use extended Kalman filter (EKF) that optimizes the likelihood when the group 

memberships are known.

This model is applied to two datasets. The MIT reality mining dataset records cell phone 

activity of 94 students and staff at MIT over a year. They use the participant affliations as 

ground-truth class memberships and compare the class estimation accuracy of their model to 

static stochastic blockmodel. The Enron email dataset consists of about 500,000 email 

messages of 184 Enron employees from 1988 to 2002. The model discovers a steady 

increasing trend in edge probabilities from Enron CEOs to presidents as Enron’s financial 

situation worsened. On the other hand, edge probabilities between other employees 

remained at their baseline levels until Enron fell under federal investigation.

Matias and Miele [53] focus on detecting communities characterized by a stable within-

group connectivity behavior by adding some constraints on the varying connectivity 

parameter. They consider weighted interactions between N nodes recorded over time in a set 

of data matrices Y = (Yt)1≤t≤T. For each t ∈ {1, …, T}, the adjacency matrix Yt = 

(Yijt)1≤i≠j≤N contains real-values measuring interactions between the nodes i, j ∈ {1, …., 

N}2. Their model can also consider undirected networks without self-loops. They assume 

that the N nodes are split into C latent communities that vary through time, as encoded by 

the random variables Z = (Zit)1≤t≤T,1≤i≤N. They use independent Markov chains to model the 

evolution of the nodes’ memberships over time. For each node i, the process (Zit)1≤t≤T is an 

irreducible, aperiodic stationary Markov chains with transition matrix A = (Agh)1≤g,h≤C and 

initial stationary distribution α = (α1, …, αC). They consider Zit as a random vector Zit = 

(Zi1t, …, ZiCt) ∈ {0, 1}C constrained to ∑c = 1
C Zict = 1.

To take account of possible sparse weighted networks, they assume that

Yi jt | ZigtZ jht = 1 1 − βght δ0( ⋅ ) + βghtF ⋅ , γght ,

where g, g, h ∈ 𝒞 and {F (·, γ), γ ∈ Γ} is a parametric family of distribution with no mass at 

0 with its density denoted by f(·, γ). Here βt = (βght)1≤g,h≤C is the sparsity parameter which 

satisfies βght ∈ [0, 1]. Moreover, γght is the connectivity parameter which depends on the 

choice of the parametric family. They also let ϕ(·; β, γ) denote the density of the 

distribution.

The joint probability of the data Y and the latent variable Z can then be written in the 

following form:

P(Y , Z | A, β, γ) = ∏
i = 1

N
∏

c = 1

C
αc

Zic1 ∏
t = 2

T
∏

i = 1

N
∏

1 ≤ g, h ≤ C
Agh

Zig(t − 1)Ziht

× ∏
t = 1

T
∏

1 ≤ i < j ≤ N
∏

1 ≤ g, h ≤ C
ϕ Yi jt; βght, γght

ZigtZ jht .
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To infer the model parameters and to cluster the nodes, the variational expectation-

maximization (VEM) algorithm is employed. Furthermore, they propose an integrated 

classification likelihood (ICL) criterion for estimating the number of communities.

This model is applied to reveal social structure and organizations in a French high school 

and two animal interaction datasets. The French high school dataset consists of face-to-face 

encounters of 31 students in the class during four days in December 2011. The model finds 

four distinct groups showing different interaction patterns. The model also discovers the 

evidence of some gender homophily. The migratory birds (sparrows) dataset is composed of 

3 time steps with 69 birds in total. The model successfully confirms the analysis in Shizuka 

et al. [71] that the sparrow community is stable. The model is also applied to the Indian 

equids (onagers) dataset by aggregating interactions of 23 onagers monthly from February 

2003 to May 2003 and reveals a hierarchical social integration process. On the other hand, 

under the setting of constant community membership across different time steps and varying 

connectivity parameters, Bhattacharyya and Chatterjee [8] propose a spectral clustering 

algorithm for dynamic stochastic blockmodel which guarantees consistency of community 

detection.

4.2.3. Dynamic mixed membership stochastic blockmodel—Xing et al. [84] and 

Ho et al. [26] propose dynamic extensions of the static mixed membership stochastic 

blockmodel using a state space model for the time-varying parameters of the priors, both for 

the mixed membership vector of a node and the connectivity behavior. Their methods model 

the role of each node as a dynamic mixed membership vector that allows nodes to behave 

differently over time as well as carry out different roles when interacting with different 

nodes.

Xing et al. [84] consider a temporal series of networks Y = {Y1, …, YT} where 

Y t = yi jt i, j = 1
N

 is the set of edges at time t between a fixed{set of N nodes. In the static 

mixed membership stochastic blockmodels, Airoldi et al. [2] employ a simple Dirichlet prior 

because it is conjugate to the multinomial distribution over every latent membership label 

z i . , z i .  defined by relevant π i. However, to model temporal dynamics of the node 

roles and capture the non-trivial correlations between different roles at the same time, the 

authors employ the logistic normal distribution. The logistic normal distribution, LN(μt, Σt), 

is used for the prior for the mixed membership vectors, π it and another logistic normal 

distribution, LN(ηt, St) is used for the prior for the entries of the connectivity matrix, βght.

Their basic model structure is based on the state space model, which defines a linear 

dynamic transformation of the mixed membership priors over adjacent time points:

μ t = A μ t − 1 + ω t,

where π t represents the mean parameter of the prior distribution of the transformed mixed 

membership vectors of all vertices at time t, and ω t N(0, Φ) represents normal transition 
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noise for the mixed membership prior, and the transition matrix A shapes the trajectory of 

temporal transformation of the prior. Also, the model makes a similar assumption for ηt such 

that

ηt = bηt − 1 + ξt,

where b is scalar and ηt ~ N(0, ψ).

The dynamic mixed membership stochastic blockmodel thus consists of three components: a 

state space model for the mixed membership vector, a state space model for entries of 

connectivity matrix, and a logistic normal mixed membership stochastic blockmodel for the 

networks. The first two components explain the temporal dynamics while the third 

component models the generative process of the network at each time point. Following is an 

outline of the generative process.

• State space model for mixed membership prior:

– μ 1 N(ν, Φ), sample the means of the mixed membership prior at t = 1.

– μ t N A μ t − 1, Φ , sample the means of the mixed membership prior at 

time points t = 2, …, T.

• State space model for connectivity matrix:

– ηgh1 ~ N(ι, ψ), sample the means of the entries of connectivity matrix 

prior between g and h at t = 1.

– ηght ~ N(bηgh(t−1), ψ), sample the means of the entries of connectivity 

matrix prior between g and h at t = 2, …, T.

– βght ~ LN(ηt, St), sample the entries of connectivity matrix between g 
and h at t = 1, 2, …, T.

• Logistic normal mixed membership stochastic blockmodel:

– π it LN μ t, Σt , sample a C-dimensional mixed membership vector for 

each node i = 1, …, N, at t = 1, 2, …, T.

– z i j, t ~ Multinomial π it , sample membership indicator for the 

initiator for each node i = 1, …, N, at t = 1, 2, …, T.

– z i j, t ~ Multinomial π jt , sample membership indicator for the 

receiver for each node i = 1, … , N, at t = 1, 2, …, T.

– eijt ~ Bernoulli z i j, t′Bt z i j, t , sample the edges between nodes i 

and j for 1 < i ≠ j < N, at t = 1, 2, … , T.

The joint probability of the data Y and the latent variables π 1: N, t, Z , t, Z , t  can be 

written in similar form as the static mixed membership stochastic blockmodel. For the 

posterior inference, a Laplace variational approximation scheme based on the generalized 
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means field (GMF) approximation is used to infer the latent variables and estimate the 

model parameters.

This model is applied to three datasets. The Sampson’s monk dataset contains the liking 

relationship among 18 monks over three time points. The result of the model is consistent 

with previous works except for one controversial person, Mark. The model is also applied to 

a subset of Enron email dataset consisting of 151 persons from 2001 and discovers five 

distinct roles of actors. They visualize and track the trajectory of the mixed membership 

vector for an individual to understand how each evolves in his or her role. The third example 

studies the evolving gene network of fruit flies. The Drosophila melanogaster gene network 

dataset contains 22 networks at different time points across various developmental stages. 

The model discovers that many genes exhibit a sharp transition regarding their roles near the 

end of the embryonic stage. They further examine 45 ontological groups and find an overall 

pattern that each role consists of genes with a variety of functions, and the functional 

composition of each role varies across time.

Different from Xing et al. [84], which employs a time-evolving logistic normal distribution 

on all networks nodes, Ho et al. [26] generalize the prior on nodes to be a mixture of time-

evolving logistic normal distributions. This mixture prior is multi-modal and captures 

correlations between roles, allowing it to fit complex data densities that the unimodal prior 

cannot. The state space model, which defines a linear dynamic transformation of the mixed 

membership priors, now contains N distinct trajectories over adjacent time points,

μ ct = A μ c(t − 1) + ω ct, c = 1, 2, …, C

where A is a transition matrix and ωct ~ N(0, Φ) represents the normal transition noise. Now 

each mixed membership vector π it is drawn from one of the C trajectories μ ct. The choice 

of trajectory for π it is given by the indicator zit, which is drawn from some prior. For 

simplicity, they use a single multinomial prior with the parameter δ for all zit. Notice that zit 

can change over time, allowing nodes to switch clusters if that would fit the data better. 

Given zit, the mixed membership vector π it is sampled from LN μ zit, t, Σzit, t . Once 

π it i = 1
N  have been drawn for some timepoint t, the remaining part follows the generative 

process of Xing et al. [84]. They also propose a similar variational EM algorithm for 

parameter learning and latent variable inference.

The authors analyze the United States 109th Congress voting records by generating time-

varying networks containing 100 senators and eight time points corresponding to 3-month 

periods from Jan 1st, 2005 to Dec 31st, 2006. The analysis not only finds the two clusters 

capturing party affliations but also identifies outliers, for example, a senator who shifted 

from the Democrat cluster to the Republican cluster.
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5. Conclusions and discussions

The literature on statistical network modeling may be divided into various lines of research, 

such as the development of network statistics for ERGMs, inference methods for SAOMs, 

and asymptotic network properties in physics-based models. Among various possibilities, in 

this paper, we mainly focus on the review of dynamic network models with latent variables

—models that assume and estimate latent structures of networks—in detail. Latent space 

models assume the existence of unobserved network embedding into a low-dimensional 

space, and stochastic blockmodels assume that the nodes within same blocks are structurally 

equivalent. From these, we make a distinction between the latent space models (LSM) and 

stochastic blockmodels (SBM) and outline the evolution of each class of models from static 

to dynamic models, as well as their explicit connections. As a review of network models, to 

conclude, we provide two mini directed networks to summarize the relationships of the 

models discussed in previous sections, with latent space models in Figure 1 and stochastic 

blockmodels in Figure 2. In both figures, static models are in italic letters, with the names of 

nodes corresponding to the title of each section. A directed link indicates the sender model 

motivates the development of the receiver model, or the receiver is a dynamic extension of 

the sender.

Despite recent advances in statistical and computational methods of dynamic network 

modeling, there remain several challenges across the models described in previous sections. 

Some (e.g., computation, visualization) are challenges for network modeling in general, 

while others (e.g., lack of continuous-time models, identifiability) are only applicable to 

dynamic latent space and/or stochastic blockmodels. In this section, we briefly sketch out 

the three major issues in modeling dynamic networks with latent variables.

Computation, the most common type of problem for network modeling in general, is 

particularly an issue for latent variable models due to the estimation of the additional 

parameters. For example, the evaluation of likelihood equations for static and dynamic latent 

space models require the calculation of a distance matrix given the complete set of latent 

positions at a computational and storage cost of O(N2) [63] and O(T × N2), respectively. 

This makes the estimation of latent space models impractical for networks larger than a few 

thousand nodes, and as a result, most of their applications have been limited to relatively 

small networks, typically less than 500 nodes. As the existing software packages for other 

well-known frameworks including temporal ERGMs [24, 45, 48, 1] or SAOMs [72, 75] can 

efficiently fit networks of size up to a few thousand nodes, there is a strong need for the 

development of efficient statistical software to fit these models. Recently, new estimation 

methods [51, 62, 63, 64] are considered for latent space models, so we expect a bright 

prospect to achieve a substantial reduction in computing time. In the case of stochastic 

blockmodels, the computation is especially non-trivial for large networks, since the 

optimization over all possible label assignments is NP-hard (i.e., non-deterministic 

polynomial-time hardness). With the help of variational methods [9], stochastic blockmodels 

can be fit for thousands of nodes. It is still a challenge to fit blockmodels to large networks 

with millions or tens of millions of nodes.
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In general, latent variable models allow for better understanding of networks that are 

believed to contain hidden structure. As such, visualization is one of the biggest advantages 

of those models due to their model-based nature, such as Euclidean distances between nodes 

and clustering of the nodes. At the same time, there also remain limitations and open 

problems in visualizing the latent variables. For example, latent space models are usually 

visualized in 2D or 3D plots, but not in higher dimensions. Furthermore, when a dynamic 

network spans a large number of time points (e.g., T ≥ 50) or has a continuous-time scale, it 

is diffcult to create plots that effectively show the movement of latent positions.

Finally, motivated by the rise of large-scale online social networks, a variety of continuous-

time network models have been introduced, mostly built upon survival and event history 

analysis [38, 60, 79]. In contrast, most of the dynamic latent variable models introduced in 

this paper focus on learning discrete-time networks or the discrete realization of a 

continuous process [15], where multiple cross-sectional “snapshots” of the network are 

recorded at discrete time points. One exception is the dynamic bilinear effects model in 

Section 3.3.3, however, the model’s illustrated example is still the discrete (quarterly) 

network data. Considering the growing amount of network data recorded on a continuous-

time scale, developing the latent variable models that take advantage of this temporal 

granularity might be a promising future research direction.
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Fig 1. 
Network summarizing the relations between models discussed in our review of latent space 

models (LSM): static latent space models (upper) and dynamic latent space models (lower). 

Arrows indicate inspiration or influence of the model at the source on the model at the 

target.

Kim et al. Page 28

Stat Surv. Author manuscript; available in PMC 2019 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
Network summarizing the relations between models discussed in our review of stochastic 

blockmodels (SBM): static stochastic blockmodels (upper) and dynamic stochastic models 

(lower). Arrows indicate inspiration or influence of the model at the source on the model at 

the target.
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