()
IBC ARTICLE

Murine macrophage autophagy protects against alcohol-
induced liver injury by degrading interferon regulatory factor
1 (IRF1) and removing damaged mitochondria
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Excessive alcohol consumption induces intestinal dysbiosis of
the gut microbiome and reduces gut epithelial integrity. This
often leads to portal circulation—mediated translocation of gut-
derived microbial products, such as lipopolysaccharide (LPS), to
the liver, where these products engage Toll-like receptor 4
(TLR4) and initiate hepatic inflammation, which promotes alco-
holic liver disease (ALD). Although the key self-destructive pro-
cess of autophagy has been well-studied in hepatocytes, its role
in macrophages during ALD pathogenesis remains elusive.
Using WT and myeloid cell-specific autophagy-related 7 (Atg7)
knockout (Atg7AMYe) mice, we found that chronic ethanol feed-
ing for 6 weeks plus LPS injection enhances serum alanine ami-
notransferase and IL-1 levels and augments hepatic C-C motif
chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand
10 (CXCL10) expression in WT mice, a phenotype that was fur-
ther exacerbated in Azg7*™°® mice. Atg7*™*® macrophages
exhibited defective mitochondrial respiration and displayed
elevated mitochondrial reactive oxygen species production and
inflammasome activation relative to WT cells. Interestingly,
compared with WT cells, Azg7*™¥® macrophages also had a
drastically increased abundance and nuclear translocation of
interferon regulatory factor 1 (IRF1) after LPS stimulation.
Mechanistically, LPS induced co-localization of IRF1 with the
autophagy adaptor p62 and the autophagosome, resulting in
subsequent IRF1 degradation. However, upon p62 silencing or
Atg7 deletion, IRF1 started to accumulate in autophagy-defi-
cient macrophages and translocated into the nucleus, where it
induced CCL5 and CXCL10 expression. In conclusion, macro-

This study was supported by National Institute on Alcohol Abuse and Alco-
holism Grants R0O1AA027036 and R21AA025841 (to E. S.); NIDDK, National
Institutes of Health Grant RO1DK085252 (to E.S.); an American Liver
Foundation Congressman John Joseph Moakley postdoctoral research
fellowship (to Y.S.R.); National Research Foundation of Korea Grant
2017R1C1B2004423 (to Y. S. R.); and a Cedars-Sinai Medical Center Win-
nick Research Award (to E. S.). The authors declare that they have no
conflicts of interest with the contents of this article. The content is
solely the responsibility of the authors and does not necessarily repre-
sent the official views of the National Institutes of Health.

This article contains Table S1.

" To whom correspondence should be addressed: Cedars-Sinai Medical Cen-
ter, Davis Bldg. #2099, 8700 Beverly Blvd., Los Angeles, CA 90048. Tel.: 310-
423-6605; Fax: 310-423-0157; E-mail: Ekihiro.Seki@cshs.org.

SASBMB

phage autophagy protects against ALD by promoting IRF1 deg-
radation and removal of damaged mitochondria, limiting
macrophage activation and inflammation.

Alcoholic liver disease (ALD)? is a result of chronic con-
sumption of excessive alcohol, and the clinical spectrum ranges
from alcoholic fatty liver to alcoholic hepatitis, alcoholic cirrho-
sis, and hepatocellular carcinoma (1). 90% of heavy alcohol
drinkers exhibit hepatic steatosis, and 35% of them can develop
alcoholic hepatitis, a more advanced form of ALD. Among
patients who develop severe alcoholic hepatitis, ~40% of them
die within 6 months after diagnosis and treatment (2). Unfor-
tunately, corticosteroids are still used as a standard therapy for
severe alcoholic hepatitis, which has not improved in the past
40 years (1, 2). A better understanding of the pathogenic mech-
anism of ALD is urgently needed to develop more effective
therapies.

Both alcohol and its metabolite, acetaldehyde, cause hepato-
cyte damage, resulting in liver inflammation. Long-term over-
consumption of alcohol can lead to chronic inflammation in the
liver, which further enhances liver damage and dysfunction and
may eventually result in liver failure (1). Therefore, it is of
utmost importance to understand how chronic liver inflamma-
tion is induced as a result of excessive alcohol consumption.
Previous work has shown that activation of hepatic Toll-like
receptor (TLR) signaling is a key underlying mechanism of liver
injury, steatosis, inflammation, and fibrosis in ALD (3). Chronic
alcohol consumption is well known to cause intestinal dysbiosis
and compromise intestinal barrier function, which, in turn,
increases gut permeability, allowing translocation of gut
microbe—derived products, such as lipopolysaccharide (LPS),
to the liver through the portal circulation (4). The presence of
gut-derived LPS has been shown to engage TLR4 on Kupffer

2 The abbreviations used are: ALD, alcoholic liver disease; TLR, Toll-like recep-
tor; LPS, lipopolysaccharide; TNF, tumor necrosis factor; NAFLD, non-alco-
holic fatty liver disease; ROS, reactive oxygen species; ALT, alanine amino-
transferase; BMDM, bone marrow-derived macrophage; OCR, oxygen
consumption rate; TG, triglyceride; TRIF, TIR-domain-containing adapter-
inducing interferon-p.
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Macrophage autophagy in alcoholic liver disease

cells to initiate inflammation, which drives ALD pathogenic
progression (1, 2, 5, 6). Consistent with this notion, mice defi-
cient in TLR4 or orally treated with nonabsorbable antibiotics
are protected against alcohol-induced liver injury (5-7). TLR4
engagement activates two parallel signaling branches that uti-
lize the adaptor molecules MyD88 and TIR-domain-containing
adapter-inducing interferon-B (TRIF). The MyD88-dependent
pathway, activated by all TLRs except for TLR3, is responsible
for up-regulation of proinflammatory cytokines (e.g. TNFa,
pro-IL-13, IL-6, CXCL1, and CCL3), whereas the TRIF-medi-
ated signaling axis (activated by TLR3 and TLR4) induces pro-
duction of IFN-B, CCL5, and CXCL10 in macrophages (8).
Interestingly, relative to the MyD88 signaling branch, TRIF-de-
pendent pathway appears to have a major role in the develop-
ment of ALD (6, 9). In addition to TLR4, accumulating evidence
over the past decade suggests that the NLRP3 inflammasome, a
key immune sensor of tissue damage, drives hepatic inflamma-
tion after chronic alcohol overconsumption, promoting ALD
progression (10). Notably, TLR4 also contributes to NLRP3
inflammasome activation, as it provides a strong “priming” sig-
nal to induce de novo synthesis of pro-IL-1f3 as well as NLRP3
up-regulation, a crucial step required for inflammasome acti-
vation and subsequent maturation of the proinflammatory
cytokine IL-18 (11).

Autophagy, an intracellular self-degradation system for
cytoplasmic constituents (12, 13), is another key player that
regulates the development of chronic liver diseases, includ-
ing ALD. Autophagy in hepatocytes can inhibit lipid accu-
mulation and cell death, preventing pathogenic progression
of ALD and nonalcoholic fatty liver disease (NAFLD) (13,
14). Consistently, down-regulation of hepatic autophagy
activity has been reported in both ALD and NAFLD (13-15).
In contrast to hepatocyte autophagy, the role of macrophage
autophagy in ALD pathogenesis has remained unclear. Inter-
estingly, autophagy has been shown to inhibit NLRP3
inflammasome activation by promoting elimination of dam-
aged mitochondria after NLRP3 activator stimulation. This
ultimately prevents the generation of the NLRP3 inflam-
masome activators, mitochondrial ROS and oxidized mito-
chondrial DNA (16-18).

Based on these findings, we investigated the role of macro-
phage autophagy in ALD pathogenesis. We demonstrated that
chronic ethanol feeding suppressed macrophage autophagy,
leading to overactivation of the NLRP3 inflammasome. More-
over, decreased macrophage autophagy also results in defective
autophagic degradation of IRF1, a transcription factor respon-
sible for LPS-induced CCL5 and CXCL10 expression, exacer-
bating inflammation. In summary, our results provide novel
insights for understanding the role of macrophage autophagy in
ALD pathogenesis.

Results

Chronic ethanol consumption suppresses autophagy in liver
macrophages

First we investigated whether autophagy is altered in liver
macrophages during ALD development. LC3B is a structural
protein of autophagosomes that is lipidated to attach it to the
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autophagosomal membrane, converting it from LC3B-I to
LC3B-II during autophagy, which is commonly used as a surro-
gate indicator for autophagy activity (19). We found that liver
macrophages from ethanol-fed mice exhibited a drastic reduc-
tion in LC3B-II abundance relative to those from control mice
(Fig. 1, A and B). To determine whether autophagy flux is inhib-
ited in liver macrophages in ALD, liver macrophages were
treated with the lysosomal inhibitors ammonium chloride and
leupeptin (Fig. 1A). Inhibition of lysosomal proteases increased
LC3B-II and p62 levels in liver macrophages from control mice,
whereas the LC3B-II expression levels in liver macrophages
from ethanol-fed mice were much lower than those in liver
macrophages from control mice, and inhibition of lysosomal
proteases did not significantly increase either LC3B-II or p62
levels in Fig. 1, A—C. This suggests that autophagy activities are
low and that autophagic flux is diminished in liver macrophages
from ethanol-treated mice (19).

Macrophage autophagy inhibits hepatic injury and steatosis
induced by ethanol and LPS co-administration

As macrophage autophagy activity is compromised in ALD,
we went on to investigate the in vivo role of macrophage
autophagy in alcohol-induced liver injury and steatosis using
myeloid cell-specific, Atg7-deficient (Atg7*™¥¢) mice that
were subjected to ethanol feeding for 6 weeks. As shown in Fig.
24, chronic ethanol feeding slightly increased serum ALT levels
in WT mice, which was further exacerbated in Atg7AM"'e mice
(Fig. 2A). To better mimic the pathological condition seen in
ALD patients, in whom intestinal permeability is increased as a
result of alcohol overconsumption, we i.p. injected a single dose
of LPS, a gut-derived microbial product acting through TLR4
on liver macrophages to promote ALD development, into mice
after 6 weeks of ethanol feeding. Ethanol and LPS co-adminis-
tration resulted in dramatically elevated serum ALT levels in
Atg7*™¥¢ mice compared with WT control mice (Fig. 2A). This
correlated with a significant increase in the numbers of
TUNEL-positive apoptotic hepatocytes as well as enhanced
cell death (as measured by cleaved caspase-3 immunoblot
analysis) in Atg7*™”¢ mice compared with their WT litter-
mates (Fig. 2, B-D). Additionally, hepatic steatosis was dra-
matically increased in Atg7*™Y¢ mice after ethanol and LPS
co-administration (Fig. 2E). These results collectively dem-
onstrate that macrophage autophagy inhibits liver injury and
steatosis in mice after ALD is induced.

Macrophage autophagy inhibits IL-1[ production in ALD

A number of previous studies have demonstrated that
macrophage autophagy negatively regulates NLRP3 inflam-
masome activation and subsequent IL-1 maturation (16, 18,
20). We therefore quantified IL-13 expression during ALD
development. Although there were no significant differences in
hepatic IL-18 and TNFa mRNA levels between WT and
Atg7AMye mice after ethanol and LPS treatment, serum IL-13
protein levels were drastically elevated in Atg7“™Y® mice after
ALD was induced (Fig. 3, A-C). These data suggest that
macrophage autophagy inhibits IL-1 maturation in ALD.
To further confirm this notion, we measured caspase-1
cleavage as well as IL-18 production in WT and Atg7*MYe
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Figure 1. Autophagy is suppressed in liver macrophages after chronic ethanol exposure. Liver macrophages were isolated from WT mice after 6 weeks of
a paired liquid diet or a Lieber-DeCarli diet containing 5% ethanol (v/v). A, the experimental design for Band C. B, LC3B protein expression was determined by
Western blotting. LC3BII levels were reduced in liver macrophages from ethanol-fed mice. C, isolated liver macrophages were treated with ammonium chloride
and leupeptin (AC/Leu) for 2 h, and LC3B and p62 expression was examined by Western blotting. Similar results were obtained in four independent experi-
ments. Representative results and their quantification are shown. *, p < 0.05; **, p < 0.01. inh, inhibitor.

BMDMs after LPS + ATP treatment. Indeed, deficiency in
Atg7 led to much more pronounced mature IL-183 produc-
tion after LPS + ATP stimulation (Fig. 3D). This further
correlated with more abundant caspase-1 p20 subunits in
culture supernatants from Atg7*™* BMDMs, although Atg7
deficiency had no effect on the expression of pro-IL-18 or
TNF secretion (Fig. 3, E and F). We then investigated
whether increased IL-18 by Atg7 deficiency is associated
with increased death in hepatocytes from ethanol-fed
Atg7*M¥¢ mice (Fig. 2). We examined hepatocyte apoptosis
in response to recombinant IL-183. We found that IL-183 did
not increase hepatocyte death in normal hepatocytes,
whereas hepatocytes isolated from ethanol diet—fed mice
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increased TUNEL-positive cells and cleaved caspase-3 by
IL-1B treatment (Fig. 3, G and H), suggesting that ethanol
feeding sensitized hepatocytes to IL-1B-induced death. Sub-
sequently, we investigated the underlying molecular mecha-
nism of ethanol-mediated IL-18 production. Because mito-
chondrial ROS are critical for NLRP3 inflammasome
activation, we next compared mitochondrial ROS produc-
tion in WT versus Atg7*™Y* BMDMs. As shown in Fig. 44,
Atg7 deficiency in macrophages resulted in overproduction
of mitochondrial ROS (Fig. 4, A and B). These results suggest
that macrophage autophagy suppresses mitochondrial ROS
production, preventing NLRP3 inflammasome activation as
well as IL-18 maturation. We then examined whether Atg7
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Macrophage autophagy in alcoholic liver disease

A B WT Atg7AMye
500— -~
e WT o
. 400 © Atg7AWe
a =
S T
—~ 300 o
5
<<
£ 200
2
[0
@ 100 % 6
& o ® 2
0_'%. T i| T i
PR S IR & 5
& < X
® Q}O
c " 254 owr I
I g0 ° A7 o o
3 w
§ 15
@
2 10 g
+
TR
2 24 2
o ol : t\p r 5
P ° i
R .\g\? < Q‘x\g =
> o R :
$
) Scale bar: 200pm
D
WT Atg7AMye E
- ———y —— 3D 2w, ewt
caspase3 . — o Atg7MWe
@
25kD o ;
- 25kD °<\° 15 &
\ o
cl-casp3 - - - 104
n - H17kD & _i_
5 5
C-HUDUIIN | S———— %<0
42kD 0

Figure 2. Macrophage autophagy negatively regulates ethanol-induced liver injury and steatosis. A-£, WT and LysM-Cre/Atg7 flox (Atg7*™¥¢) mice were
treated for 6 weeks with a paired liquid diet or a Lieber-DeCarli diet containing 5% ethanol. Some mice were subsequently administered LPS (n = 5-8/group).
A, serum ALT levels. Band C, apoptotic hepatocytes of liver tissues were determined by TUNEL staining. Representative pictures and quantification of TUNEL
staining of liver tissues are shown. D, full-length and cleaved caspase-3 in livers from WT and Atg7*M¥¢ mice treated with an ethanol-containing Lieber-DeCarli
diet plus LPS were determined by Western blotting. £, hepatic steatosis of WT and Atg7*™” mice treated with an ethanol-containing Lieber-DeCarli diet plus
LPS were determined by Oil Red O staining. Quantification of Oil Red O staining is shown. **, p < 0.01.

deficiency and ethanol can compromise mitochondrial func-
tion in liver macrophages by measuring the oxygen con-
sumption rate (OCR). As shown in Fig. 4, B and C, liver
macrophages from Atg7*™® mice and ethanol-fed WT mice
had a lower OCR relative to control diet—fed mice. These
results suggest that autophagy suppression by chronic etha-
nol feeding could be associated with compromised mito-
chondrial function. Last, we examined whether mitochon-
drial ROS contributes to IL-183 production. MitoQ is a
selective inhibitor of mitochondrial ROS (16). MitoQ treat-
ment suppressed IL-183 production and caspase-1 activation
(Fig. 4, D and E), suggesting that increased mitochondrial
ROS in Atg7*M¥¢ BMDMs promotes inflammasome activa-
tion, producing IL-18. Taken together, these results suggest
that chronic ethanol consumption reduces macrophage
autophagy, causing an accumulation of dysfunctional mito-
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chondria and ROS in liver macrophages, promoting NLRP3
inflammasome activation and IL-18 production.

Macrophage autophagy prevents CCL5 and CXCL10
production in ALD

As autophagy maintains a cellular healthy status by concur-
rently monitoring a number of cellular processes, we explored
additional mechanism(s) by which macrophage autophagy
could prevent alcohol-induced liver injury and steatosis. In
addition to NLRP3 inflammasome overaction, we observed that
Atg7*™° mice also exhibited increased production of CCL5
and CXCL10 after LPS or chronic ethanol feeding (Fig. 5, A and
B). Notably, chronic ethanol feeding plus LPS injection induced
a further elevation of CCL5 and CXCL10 levels in Atg74Mve
mice relative to their WT littermates (Fig. 5, A and B). In line
with this notion, Atg7AM‘/‘e BMDMs, compared with WT cells,
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Figure 3. Macrophage autophagy negatively regulates activation of caspase-1 and IL-1f maturation. A and B, WT and LysM-Cre/Atg7 flox (Atg7-"¢)

mice were treated with a paired liquid diet or a Lieber-DeCarli diet containing

5% ethanol for 6 weeks. Some mice were subsequently administered LPS (n =

5-8/group). A and B, hepatic mRNA expression of IL-1 (A) and TNF (B) was determined by quantitative real-time PCR. C, serum IL-1p levels were determined
by ELISA. Cand D, WT and Atg7 /~ (KO) BMDMs were treated with LPS (100 ng/ml) for 24 h with or without ATP (2 mm). D, IL-18 levels in the supernatant were
measured by ELISA. E, IL-18 and caspase-1 in the supernatant (sup) and cell lysate (lys) were determined by Western blotting. casp, caspase. F, TNF mRNA
expression was determined by quantitative real-time PCR. G and H, TUNEL staining (G) and Western blotting (H) for caspase-3 using primary hepatocytes

isolated from mice fed a paired liquid diet or a Lieber-DeCarli diet containing 5

% ethanol. Cells were treated with IL-18 for 24 h. Similar results were obtained

in three independent experiments. Representative results are shown. **, p < 0.01.

produced more CCL5 and CXCL10 after LPS stimulation (Fig.
5C). CCL5 and CXCL10 induction is mediated by the TLR4-
TRIF pathway (8). Indeed, macrophages deficient in TRIF, but
not MyD88, abolished LPS-induced expression of CCL5 and
CXCL10 (Fig. 5D). These results together suggest that, in addi-
tion to antagonizing NLRP3 inflammasome activation, macro-
phage autophagy also inhibits CCL5 and CXCL10 production

SASBMB

and may thereby further prevent alcohol-mediated liver injury,
inflammation, and steatosis.

Macrophage autophagy promotes IRF1 degradation

To further delineate how macrophage autophagy inhibits
CCL5 and CXCL10 production, we examined whether any of
the TLR4-TRIF pathway downstream signaling molecules may

J. Biol. Chem. (2019) 294(33) 12359-12369 12363
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Figure 4. Macrophage autophagy negatively regulates activation of caspase-1 and IL-13 maturation through mitochondrial ROS production. A, WT
and Atg7~/~ (KO) BMDMs were treated with LPS (100 ng/ml) for 24 h. Mitochondrial ROS was determined by MitoSOX. B, OCRs of WT and Atg7 ~/~ BMDMs were
determined by Seahorse bioanalyzer. FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone; Rot, rotenone. C, OCR in liver macrophages was assessed.
The OCR was suppressed in ethanol-treated liver macrophages. D and £, WT and Atg7 ~’~ BMDMs were treated with LPS (100 ng/ml) and ATP (2 mm) with or
without MitoQ (5 um). D, IL-18 levels in the supernatant were measured by ELISA. Veh, vehicle. E, Western blots for caspase-1 (caspT). Similar results were
obtained in three independent experiments. Representative results are shown. *, p < 0.05; **, p < 0.01.

be regulated by autophagy. Engagement of the TLR4 —TRIF-
dependent pathway is known to activate the transcription fac-
tor IRF3. However, we did not observe any apparent differences
in the levels of IRF3 mRNA or phosphorylated IRF3 protein in
Atg7-deficient macrophages relative to WT cells over 10 h after
LPS treatment (Fig. 6, A and B). In addition to IRF3, it has been
reported that IRF1 is required for IL-1B—induced CCL5 and
CXCL10 transcription (21). Interestingly, IRF1 protein but not
mRNA abundance was dramatically increased in Atg7-defi-
cient macrophages relative to WT cells as early as 4 h after LPS
stimulation (Fig. 6, A and B). We therefore examined whether
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autophagy participates in posttranslational regulation of IRF1
in macrophages. By taking advantage of BMDMs from LC3B-
GFP transgenic mice, we visualized autophagosome formation
by microscopy. Upon LPS stimulation, IRF1 expression started
to increase, and some IRF1 proteins were already translocated
into the nucleus (Fig. 6C). Notably, a significant fraction of IRF1
was retained in the cytosol, where it co-localized with LC3-
GFP-labeled autophagosomes (Fig. 6C). However, in Atg7-de-
ficient LC3B-GFP transgenic macrophages where autophago-
some formation was disrupted, the majority of IRF1 proteins
were already translocated into the nucleus (Fig. 6C). Together,
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Figure 5. LPS-induced, TRIF-dependent CCL5 and CXCL10 expression is negatively regulated by autophagy in macrophages. A and B, WT and LysM-
Cre/Atg7 flox (Atg7*™¥¢) mice were treated for 6 weeks with a paired liquid diet or a Lieber-DeCarli diet containing 5% ethanol. Some mice subsequently
received LPS (n = 5-8/group). Hepatic mRNA expression of CCL5 and CXCL10 was determined by quantitative real-time PCR. C, WT and Atg7*™¥® BMDMs were
treated with LPS (100 ng/ml) for 4 h. CCL5 and CXCL10 mRNA expression was determined by quantitative real-time PCR. D, WT, TRIF ~/~,and MyD88 ~/~ BMDMs
were treated with LPS (100 ng/ml) for 4 h. CCL5 and CXCL10 mRNA expression was determined by quantitative real-time PCR. Similar results were obtained in
three independent experiments. Representative results are shown. *, p < 0.05; **, p < 0.01.

these results clearly demonstrate that autophagy inhibits IRF1
protein degradation and prevents its nuclear translocation,
inhibiting IRF1-dependent transcription of downstream genes.
Indeed, we found that IRF1 is required for LPS-induced CCL5
and CXCL10 production (Fig. 6D) and further confirmed that
induction of IRF1 by LPS is largely dependent on the TRIF-de-
pendent pathway (Fig. 6, E and F). Taken together, these results
suggest that macrophage autophagy prevents LPS-induced
CCL5 and CXCL10 expression by promoting the degradation
of IRF1.

Autophagic degradation of IRF1 requires p62/SQSTM1

As p62/SQSTML is a key adaptor protein that connects the
autophagic cargo with autophagosome (14), we next examined
whether p62 participates in autophagy-mediated IRF1 degrada-
tion. Indeed, IRF1 was co-localized with both LC3B autopha-
gosome and p62 aggregates after LPS stimulation (Fig. 7A).
Moreover, p62-deficient macrophages (shp62 immortalized
BMDMs) had increased IRF1 in both the cytoplasmic and
nuclear fractions compared with control macrophages after
LPS stimulation (Fig. 7B). Consistently, LPS-induced CCL5 and
CXCL10 production was also significantly higher in p62-si-
lenced macrophages relative to control cells (Fig. 7, C and D).

Discussion

Alcohol consumption is known to alter hepatic autophagy.
Acute ethanol exposure enhances autophagy activity, whereas
chronic ethanol consumption inhibits it (22). It is generally
accepted that autophagy in hepatocytes prevents hepatocyte
death and liver steatosis in ALD (13-15). However, whether
and how macrophage autophagy plays a role in ALD remains
unknown. In this study, we demonstrate that macrophage
autophagy, which is compromised as a result of chronic ethanol
consumption, negatively regulates alcohol-induced liver injury,
steatosis, and hepatic inflammation and thus inhibits ALD

SASBMB

development. Mechanistically, macrophage autophagy drives
the removal of damaged mitochondria and thereby limits mito-
chondrial ROS production as well as NLRP3 inflammasome
activation and subsequent inflammation. Additionally, macro-
phage autophagy also promotes p62-mediated degradation of
IRF1 to inhibit IRF1-dependent transcription of CCL5 and
CXCL10, two important chemokines involved in liver inflam-
mation (see the schematic summary in Fig. 7E).

Chronic ethanol treatment has been shown to sensitize liver
macrophages (23), which can enhance the response to LPS. The
underlying mechanisms proposed include reduced expression
of IL-1 receptor-associated kinase (IRAK)-M, an endogenous
inhibitor of TLR/IL-1 receptor signaling, and heme oxyge-
nase-1 (HO-1), an antioxidant (24, 25). In this study, we pro-
vided evidence that autophagy inhibition in liver macrophages
is an additional mechanism by which chronic ethanol con-
sumption leads to ALD development. Importantly, we demon-
strated that defective macrophage autophagy leads to accumu-
lation of damaged mitochondria as well as IRF1 protein, which
drives ALD development. Damaged mitochondria are normally
eliminated by mitophagy, a selective autophagy for mitochon-
dria. However, chronic ethanol exposure compromised macro-
phage autophagy, causing defective clearance of damaged mito-
chondria, which enhances mitochondrial ROS production as
well as mitochondrial DNA oxidization, which participate in
induction of NLRP3 inflammasome activation and liver
inflammation.

The most interesting discovery of this study is that macro-
phage autophagy promotes degradation of IRF1. Prevention of
autophagic degradation of IRF1 as a result of Atg7 or p62 defi-
ciency increased IRF1 nuclear translocation, augmenting CCL5
and CXCL10 expression. This pathway is mainly regulated by a
TLR4—TRIF-dependent pathway, which has been reported to
be crucial for ALD development (21, 26). Intriguingly, our
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Figure 6. Macrophage autophagy regulates cellular levels of IRF1. A-C, WT and Atg7 /~ (KO) BMDM:s were treated with LPS (100 ng/ml) up to 10 h (4) and
for 4 h (B and Q). A, Atg7, IRF1, phospho-IRF-3, total IRF3, and p62 expression was determined by Western blotting. B, IRF3 and IRF1 mRNA expression was
determined by quantitative real-time PCR. C,BMDMs from WT and Atg7 ~/~ (KO) LC3B-GFP transgenic mice were used forimmunofluorescence. Green, red, and
blue represent LC3B, IRF1, and nucleus, respectively. Yellow indicates co-localization of LC3B and IRF1. D, WT and IRF1~/~ BMDMs were treated with LPS (100
ng/ml) for 4 h. CCL5 and CXCL10 mRNA expression was determined by quantitative real-time PCR. E and F, WT, TRIF/~, and MyD88 '~ BMDMs were treated
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results were obtained in three independent experiments. Representative results are shown. *, p < 0.05; **, p < 0.01.

research team has recently demonstrated that IRF1 contributes
to NLRP3 inflammasome activation by inducing expression of
CMPK2, which promotes mitochondrial DNA synthesis (27).
We speculate that increased IRF1 levels as a result of defective
macrophage autophagy could also promote NLRP3 inflam-
masome activation through CMPK2.

Our results are also consistent with previous reports showing
that macrophage autophagy inhibits NLRP3 inflammasome
activation through suppression of ROS production (17, 18, 28),
preventing the development of diseases associated with
immune overactivation. For instance, in an acute liver injury
model induced by galactosamine plus LPS, macrophage

12366 J Biol. Chem. (2019) 294(33) 12359-12369

autophagy prevented liver injury by inhibiting IL-1 produc-
tion (16, 20). Indeed, our data demonstrated that suppression of
increased mitochondria ROS production by macrophage
autophagy deficiency reduced caspase-1 activation and IL-1f3
production. In addition to the link between autophagy and the
inflammasome, macrophage autophagy has also been shown to
regulate M1 versus M2 macrophage polarization. In mice with
autophagy-deficient macrophages, liver macrophages tend to
polarize to the M1 phenotype, which promotes liver injury and
inflammation in NAFLD (29), although the underlying mecha-
nisms remain unknown. In summary, this study has not only
demonstrated that chronic ethanol consumption inhibits
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macrophage autophagy but also provided novel mechanistic
insights into how defective macrophage autophagy promotes
ALD development, which may provide insights for designing
new therapies to treat and/or prevent alcoholic liver diseases.

Experimental procedures
Animal Experiments

C57BL/6 WT mice, TRIF-mutant lps2 mice, IRF1-deficient
mice, and LysM-Cre transgenic mice were purchased from The
Jackson Laboratory (Bar Harbor, ME). MyD88-deficient mice
were originally generated by Dr. Akira (Osaka University, Suita,
Japan), and Atg7"°*/°* mice were originally generated by Dr.
Komatsu (Niigata University, Niigata, Japan) (30). Atg7-™Y®
mice were generated by crossing Atg7%°*/1°* mice with LysM-
Cre transgenic mice. Atg7"*1°* mice without the Cre trans-
gene were used as WT littermate controls for Atg7*M¥® mice.

SASBMB

All mice, including WT mice, were bred in the University of
California San Diego and Cedars-Sinai Medical Center vivaria.
All genetically modified mice were backcrossed at least 10 gen-
erations onto the C57BL/6 background and displayed a similar
hepatic phenotype as WT mice with standard laboratory chow.
Female mice were used for in vivo experiments.

For induction of mouse ALD, mice were fed a control liquid
diet ad libitum for the first 5 days as an acclimatization step and
subsequently fed a Lieber—DeCarli diet (Bio-Serv, Frenchtown,
NJ) containing 5% ethanol (v/v) for 6 weeks. Some of these mice
were then challenged with LPS (1 mg/kg intraperitoneally) and
sacrificed 8 h after LPS administration.

All studies were in accordance with National Institutes of
Health recommendations outlined in the Guide for the Care
and Use of Laboratory Animals. All animal experimental pro-
tocols were approved by the University of California San Diego
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and Cedars-Sinai Medical Center Institutional Animal Care
and Use Committee.

Histological analysis

Mouse liver tissues were collected, fixed in 10% neutral buff-
ered formalin solution for 48 h, routinely processed, and then
embedded in paraffin. Tissue sections (4 wm) were prepared
using a microtome and placed on glass slides. TUNEL staining
was performed. TUNEL-positive cells were counted on at least
8 random fields per slide and expressed as cells per high-power
field.

RNA isolation and quantitative real-time PCR analysis

RNA was extracted from mouse liver tissues and cells using
TRIzol (Life Technologies) and a column kit (NucleoSpin®,
Clontech, Mountain View, CA) and treated with DNase I (Pro-
mega, Madison, W1I). Extracted RNA was converted to comple-
mentary DNA using a reverse transcription kit (Applied Biosys-
tems, Foster City, CA) according to the manufacturer’s
instructions. Quantitative real-time PCR was then performed
using a CFX96 Real Time System (Bio-Rad) using SYBR Green
I as a double-stranded DNA—specific binding dye. After the
reaction was completed, specificity was verified by melting
curve analysis. Quantification was performed by comparing the
Ct values of each sample with normalization to 185 RNA.
Sequences of primers are summarized in Table S1.

Cell culture experiments

Liver macrophages and primary hepatocytes were isolated
from mice fed a paired liquid diet or a Lieber-DeCarli diet con-
taining 5% ethanol as described previously (31). Liver macro-
phages were cultured in RPMI 1640 medium (Gibco, Life Tech-
nologies). To examine autophagic flux, cells were treated with
20 mMm ammonium chloride and 100 um leupeptin (Sigma) for
2 h. Primary bone marrow— derived macrophages (BMDMs)
were generated by culturing mouse bone marrow cells in the
presence of 20% (v/v) L929 conditional medium for 7 days as
described previously (16). LPS (100 ng/ml, Sigma) and ATP (2
muy, Sigma) were used to stimulate liver macrophages or
BMDM:s. Cells were also treated with MitoQ (5 um, MedKoo,
Morrisville, NC). p62-silenced BMDMs were generated as
described previously (16). Primary hepatocytes from mice fed a
paired liquid diet or a Lieber-DeCarli diet containing 5% etha-
nol were treated with recombinant IL-18 (10 ng/ml) for 24 h,
followed by TUNEL staining and western blotting for
caspase-3.

Measurement for ALT and IL-113
Serum alanine aminotransferase (ALT) levels were measured
by Infinity ALT reagent (Thermo, Waltham, MA). The levels of

IL-1B in the serum and cell supernatant were analyzed by
ELISA kit (R&D Systems, Minneapolis, MN).

TG extraction and measurement

Hepatic triglycerides (T'Gs) were extracted as described pre-
viously (32). TG content was measured using a triglyceride mea-
surement kit (Pionte Scientific, Canton, MI) according to the
manufacturer’s instructions.
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Western blots

Protein extracts were electrophoresed and then blotted. Blots
were incubated with antibody for LC3B, IL-1p, caspase-3, cleaved
caspase-3, Atg7, IRF1, IRF3, phospho-IRF3 (Cell Signaling Tech-
nology, Danvers, MA), mouse caspase-1 p20 (Adipogen, San
Diego, CA), p62 (ProGen, Heidelberg, Germany), tubulin (Santa
Cruz Biotechnology, Dallas, TX), and B-actin (Sigma).

Mitochondrial ROS detection

Mitochondrial ROS were measured using MitoSOX
(Thermo). Briefly, macrophages were treated with LPS (100
ng/ml) for 24 h, washed twice with PBS, loaded with 4 um
MitoSOX for 20 min, and washed twice with PBS. Fluorescence
intensity was determined using a FACSCanto flow cytometer
(BD Biosciences).

Measurement of mitochondrial oxygen consumption

OCRs were measured using an XF24 Extracellular Flux Sea-
horse Bioanalyzer (Agilent, Santa Clara, CA). For the XF24
assay, cells were equilibrated with DMEM lacking bicarbonate at
37°C for 1 h in an incubator without CO,. Oligomycin, which
blocks phosphorylation of ADP to ATP, was utilized to prevent
mitochondrial respiration and to provide basal O, consumption
during the assay. Carbonyl cyanide p-trifluoromethoxyphenylhy-
drazone (FCCP) was used as an uncoupling agent to allow maxi-
mal O, consumption under a given condition. Rotenone and anti-
mycin were employed as a mitochondrial respiratory chain
complex I inhibitor and a complex III inhibitor, respectively.

Immunofluorescent staining and confocal microscopy

BMDM were treated with or without LPS (100 ng/ml) for 2 h.
After the treatment, the cells were washed twice with sterile
PBS, fixed with 4% paraformaldehyde, permeabilized with
0.01% Triton X-100, and blocked in 2% BSA and 1% donkey
serum. The cells were then incubated overnight with primary
antibodies, including anti-p62 (ProGen), and anti-IRF1 (Cell
Signaling Technology). Secondary fluorescent antibodies
(Alexa 488, 594, or 647; Life Technologies) were added for 1 h,
and 4',6-diamidino-2-phenylindole (DAPI) was used for
nuclear counterstaining. Samples were imaged using a SP5 con-
focal microscope (Leica) 24 h after mounting.

Statistical analysis

Statistical significance was assessed using GraphPad Prism 8
software (GraphPad Software, Inc.). Differences between the
two groups were compared using a two-tailed unpaired
Student’s ¢ test. Differences between multiple groups were
compared using one-way analysis of variance, followed by
Tukey’s post hoc analysis. p < 0.05 was considered significant.

Author contributions—S. L. and E.S. conceptualization; S.L.,
S.Y.K,R. U, Y.S. R, and H. M. data curation; S. L., S. Y. K,, R. U,
Y.S.R., H. M., and E. S. formal analysis; S. L. and E. S. investigation;
S.L., Z.Z., and R. A. G. methodology; S.L., Z. Z., R. A. G, and E. S.
writing-review and editing; E. S. supervision; E. S. funding acquisi-
tion; E. S. writing-original draft.
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