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Abstract

INTRODUCTION: Genome-wide-association studies (GWAS) discovered multiple late-onset 

Alzheimer’s disease (LOAD)-associated SNPs and inferred the genes based on proximity, 

however, the actual causal genes are yet to be identified.

METHODS: We defined LOAD-GWAS regions by the most significantly associated SNP 

±0.5Mb, and developed a bioinformatics pipeline that utilizes and integrates chromatin state 

segmentation track to map active enhancers and virtual 4C software to visualize interactions 

between active enhancers and gene-promoters. We augmented our pipeline with biomedical and 

functional information.

RESULTS: We applied the bioinformatics pipeline using three ~1Mb LOAD-GWAS loci: BIN1, 

PICALM, CELF1. These loci contain 10–24 genes, an average of 106 active enhancers and 80 

CTCF sites. Our strategy identified all genes corresponding to the promoters that interact with the 

active enhancer that is the closest to the LOAD-GWAS-SNP and generated a shorter list of 

prioritized candidate LOAD-genes (5–14/loci), feasible for post-GWAS investigations of causality.

DISCUSSION: Interpretation of LOAD-GWAS discoveries requires the integration of brain-

specific functional genomic datasets and information related to regulatory activity.
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BACKGROUND

To date, large genome-wide association studies (GWAS) have identified over 40 genomic 

regions associated with late-onset Alzheimer’s disease (LOAD) and many have been highly-

replicated [1–7]. The large majority of LOAD-GWAS associated SNPs mapped in intergenic 

regions of the genome, thus, the identification of target genes is challenging due to aspects 

of gene density, linkage disequilibrium (LD) structure, and chromatin conformation. While 

the disease-associated genes have been inferred based on proximity to the most significantly 

associated tagging SNPs, the actual causal genes are yet to be identified and confirmed. As 

an example, recently Huang et al. showed that SPI1 gene rather than CELF1, the most 

proximal gene to the GWAS SNP, has an effect on LOAD age of onset[8].

Differential gene expression in LOAD vs. healthy controls were described in brain tissues by 

our team and others[9],[10, 11] and a number of evidences suggest that LOAD-risk variants 

may have a regulatory function. First, most LOAD-GWAS associated SNPs are located in 

noncoding genomic regions, possibly affecting regulatory elements including transcriptional 

enhancers[12, 13]. Second, expression quantitative trait loci (eQTL) studies in brain tissues 

from cognitively normal[14] and LOAD[15–18] samples reported overlap with LOAD-

GWAS loci. Last, integration of findings from LOAD epigenome wide association (EWA) 

and GWA also identified a number of shared loci[19–26]. Identifying causal genes and 

pathways underlying LOAD-associated loci requires integrative analyses of expression and 

epigenetic datasets in disease-relevant brain region and cell types[27].

Herein we take LOAD-GWAS discoveries to the next level and propose an in-silico pipeline 

to start with GWAS discoveries, prioritize candidate functional elements, and translate them 

into causal genes. We modeled our strategy using three genomic regions replicated in 

LOAD-GWAS as highly significant loci. Two loci were identified by Lambert et. al.[1] as 

the most significant LOAD associated SNPs, rs6733839 (p=6.9 × 10−44) and rs10792832 

(p=9.3 × 10−26), referred to by their proximate genes BIN1 and PICALM, respectively. The 

third locus, known as CELF1, tagged by rs10838725 (p=1.1 × 10−8) was recently 

investigated in depth in the context of pinpointing the target LOAD risk gene within this 

GWAS region [8]. The study tested for genetic association with age of onset combining with 

functional genomic approaches. The results suggested SPI1, rather than CELF1, as a 

stronger candidate causal gene within this LOAD-GWAS region. Therefore, we selected this 

locus to serve as a proof of concept for our bioinformatics pipeline. We found a range of 10–

24 genes that mapped ±0.5Mb of the three studied GWAS-SNPs. By applying the integrated 

bioinformatics strategy based on potential regulatory elements we narrowed down the range 

to 5–14 per LOAD-GWAS region, i.e. 5, 6 and 14 genes for PICALM, BIN1 and CELF1 
known regions, respectively. The candidate genes that we catalogued using the integrated 

computational analyses were then prioritized based on biological relevance for follow-up 

laboratory-based validation using in vitro and in vivo model systems.
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METHODS

Selection of LOAD-associated genomic regions

The starting point for the bioinformatics analysis focused on 23 genomic regions identified 

by tagging SNPs in the 2013 International Genomics of Alzheimer’s Disease Project (IGAP) 

LOAD-GWAS[1] including the APOE-TOMM40 region (Supplementary Table S1). For 

each LOAD-GWAS tagging SNP, 500kb upstream and downstream defined the initial 

selected 1Mb region. Using a 1Mb range is a conservative boundary based on studies to 

predict the range of linkage disequilibrium (LD) for mapping disease genes[28, 29]. Next, 

we used the genes and gene prediction track, downloaded from the Table Browser[30] for 

the UCSC genome browser[30] (GRCh37/hg19) to identify genes that were near the 

boundaries of the 1Mb region. If the boundary of the 1Mb region was contained within a 

gene (from transcription start site to the terminator sequence in the 3’ UTR), then the 

coordinates for the region were extended to include the entire gene. This new set of 

coordinates that defined the adjusted LOAD associated regions were used for further 

analysis (Supplementary Table S1).

Identification of active enhancers and CCCTC-binding factor (CTCF) regions

For the identification of active enhancer elements, chromatin state segmentation data from 

the Roadmap Epigenomics Project[31] (http://www.roadmapepigenomics.org/) was 

downloaded using the UCSC Table Browser[30, 32]. Specifically, we used chromatin state 

segmentation data available for brain regions involved in LOAD pathology: hippocampus 

middle, inferior temporal lobe and mid frontal lobe. Data for peripheral blood mononuclear 

primary cells was included as a non-brain tissue comparator. Chromatin state segmentation 

was derived using ChromHMM, a multivariate Hidden Markov Model (HMM) that learns 

patterns of chromatin structure based on histones modification marks[33, 34]. Briefly, a 

common set of chromatin states (e.g. transcription start sequences, strong and weak 

transcription, active enhancers, genic enhancers, heterochromatin) across human tissues and 

cell lines were determined computationally by integrating ChIP-seq data for 6 core marks 

(H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3) and also for 

H3K27ac. The 18 states (Auxiliary) configuration was used to segment the defined LOAD- 

genomic regions and the resulting segments were annotated according to the predictions of 

functional elements. The set of genomic coordinates for potential enhancer elements were 

obtained by filtering for active enhancers (states 9, 10), including enhancers in the flanking 

regions of the genes. To identify CTCF binding sites, data from ENCODE/University of 

Washington was downloaded using the UCSC Table Browser[30, 32]. Specifically, we used 

the data available for the retinoic acid-induced differentiated SK-N-SH-RA neuroblastoma 

cell line[35].

Overlap between the active enhancers and CTCF binding sites was assessed based on the 

genomic coordinates of these sites, and the coordinates and number of the overlapping 

regions were determined. Six different types of overlaps were observed: (1) Enhancer 

contained within CTCF, (2) CTCF contained within enhancer, (3) Enhancer overlaps with 

left flanking region of CTCF, (4) Enhancer contained within CTCF but spans beyond right 
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flanking region, (5) CTCF overlaps with left flanking region of enhancer, (6) CTCF 

contained within enhancer but spans beyond right flanking region.

Identification of gene promoters linked to defined enhancers using virtual 4C

Gene regulation is driven by interactions between proximal and distal regulatory elements in 

the genome, i.e. promoters and enhancers. Circular Chromosomal Conformation Capture 

(4C) is a chromatin ligation-based method to identify frequencies of chromatin interaction 

events between a specific “bait” locus and other proximal and distal loci[36, 37]. We used 

the Virtual 4C option of the 3D genome browser[38] to plot interaction frequencies between 

active enhancers and basal promoters of the target genes within the defined LOAD genomic 

regions. For the “bait” region, we used the genomic coordinates of the active enhancers that 

were closest to the corresponding LOAD-GWAS SNPs. Next, we utilized a feature of the 3D 

genome browser that displays long-range interactions between distal regulatory elements 

and target genes to determine the target genes linked to the active enhancers. Specifically, 

we applied the option to visual DNase I hypersensitive site (DHS)-linkage data to chart arcs 

between active enhancers and the basal promoters of the target genes. The promoter 

sequence of the target genes was determined as the 600 bp 5’ flanking sequence upstream of 

the transcription start site as shown in the UCSC Browser. For each of the studied LOAD 

GWAS defined regions, the results of the enhancer-promoter interaction frequency (4C 

reads) were plotted for the hippocampus. Each plot consists of three panels: (1) The top line 

graph shows the frequency of chromatin interaction events, centered on the bait enhancer 

element, (2) Elliptical arcs indicate the interactions between active enhancer element and 

promoter sites, whereas the threshold to declare an interaction and draw an arc was based on 

DHS-linkage data with a Pearson correlation coefficient ≥ 0.7[39]. All arcs involving the 

same proximal DHS are shown with the same color, (3) The arcs were overlaid on the same 

charts illustrating the genes’ structure and chromHMM tracks for brain hippocampus middle 

from the UCSC genome browser. Supplemental data includes this plot augmented with 

chromHMM data for brain inferior temporal lobe, brain dorsolateral prefrontal cortex and 

primary mononuclear cells from peripheral blood as a non-brain tissue comparator 

(Supplementary Figure S1).

Data and computer code availability

All computer code used for determining the overlapping genomic regions based on the 

various elements (enhancers, CTCF regions, promoters) is available on Github at the 

following link: https://github.com/NCTrailRunner/Alzheimers-bioinformatics-resource. 

Datasets containing the genomic regions and annotations described in the bioinformatics 

analysis of this paper are also available through this public resource. The virtual 4C software 

is available at http://promoter.bx.psu.edu/hi-c/virtual4c.php.

RESULTS AND DISCUSSION

Bioinformatics pipeline to prioritize candidate LOAD causal genes for experimental 
Validation

Identification of genes associated with LOAD has previously been determined by proximity 

to GWAS tagging SNPs[1, 4, 40]. These genes have been then mapped to several major 
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biochemical pathways implicated in LOAD pathogenesis including, lipid metabolism, 

immune response, regulation of endocytosis and protein ubiquitination[41, 42]. In a recent 

study Amlie-Wolf et al. developed a novel software, named INFERNO, to infer the 

molecular mechanisms of noncoding genetic variants by integration of hundreds of 

functional genomics datasets spanning enhancer activity, transcription factor binding sites, 

and expression quantitative trait loci (eQTL) with GWAS summary statistics[12, 13]. In a 

subsequent work, the team applied INFERNO to IGAP GWAS data and characterized the 

effects of noncoding genetic variations associated with LOAD risk on gene 

dysregulation[12, 13].

In this paper, we developed a new complementary bioinformatics strategy to prioritize 

candidate causal genes (vs. variants) mapped within the extended 1Mb regions tagged by 

LOAD GWAS[1]. The proposed bioinformatics pipeline, illustrated in Figure 1, will guide 

post-GWAS follow-up experimental work and validation studies. Our bioinformatics 

strategy is based entirely on publicly available genomic datasets including: annotation of 

enhancer elements and minimal promoters, definition of CTCF sites, and identification of 

3D genome structure of enhancer promoter interactions. Here we integrate these genomic 

datasets to construct a comprehensive bioinformatics resource for the expanded (1Mb) well-

replicated LOAD GWAS regions.

Defining the expanded LOAD GWAS regions and generating catalogues of genes and 
regulatory elements

The region tagged by each top LOAD-SNP was initially defined by anchoring the center of 

the region on the GWAS SNP and extending 500kb in each direction to cover a 1Mb locus. 

Genes on the boundary of the 1Mb region were examined and the locus extended to cover 

the full length of the gene if the boundary intersects within a gene. Supplementary Table S1 

lists the resulting expanded 23 LOAD GWAS loci and includes the summary statistics for 

each tagging LOAD-associated SNP reported by Lambert et. al.[1].

The 23 expanded ~1Mb LOAD GWAS regions contain nearly 500 genes with an average of 

21 genes per region (Table 1). The complete list of genes for each region appears in 

Supplementary Table S2. Thus, a strategy for prioritizing this extended list of target genes is 

needed prior proceeding with validation experiments in model systems, such as human 

iPSC-derived neuronal, 3D multi-culture and organoid systems, and rodent models. Towards 

this end, we first generated a comprehensive tissue-specific catalogue of regulatory 

elements, particularly, enhancer elements and CTCF binding sites, as CTCF is known to 

affect enhancer promoter interactions and is involved in gene regulation. The catalogue of 

active enhancers consists of data for brain regions affected in LOAD: hippocampus middle, 

inferior temporal lobe and mid frontal lobe. The catalogue of CTCF binding sites consists of 

data obtained from the neuroblastoma cell line, SK-N-SH-RA. The average number of active 

enhancers and CTCF binding sites for an expanded LOAD GWAS region was 22 and 109, 

respectively, with an average of 22 overlapping sites for each region (Table 1). The 

coordinates for all overlapping enhancer elements and CTCF binding sites and the type of 

overlap for each of the 23 LOAD GWAS regions are summarized as a data resource in 

Supplemental Table S3.
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Integration of the brain regulatory elements resource with visualization map of 
enhancerpromoter interactions: example analyses of three LOAD GWAS regions

Next, we applied our bioinformatics strategy (Figure 1) to three expanded LOAD GWAS 

regions denoted hereafter by the gene most proximate to the top associated SNP, i.e. BIN1, 

PICALM and CELF1 (Table 2). These ~1Mb loci encompass 10–24 genes each. In order to 

prioritize potential causal genes and focus follow-up experiments on a relatively small list of 

strong candidate LOAD genes, we first annotated the regulatory elements within the loci. 

The number of genes and brain regulatory elements for each of these three ~1Mb loci with 

the overlapping regions of the active enhancer and CTCF sites are summarized in Table 2. 

The chromHMM track for brain hippocampus middle is shown for the example loci referred 

to as BIN1 (Figure 2), PICALM (Figure 3) and CELF1 (Figure 4) indicating the respective 

location of the active enhancers (orange), transcription (green) and the transcription start site 

(red). Additional tissue-specific chromHMM tracks for the brain inferior temporal lobe, 

brain midfrontal lobe and peripheral blood mononuclear primary cells (as a non-brain 

comparator) are shown for these loci in Supplemental Figure S1.

Next, we identified and visualized the interactions between distal and proximal regulatory 

elements, i.e. the annotated enhancer elements and the minimal promoter of the genes within 

the BIN1, PICALM and CELF1 LOAD GWAS regions. We used the data resource described 

above for the hippocampus to define the ‘bait’ for the visualization of the interactions map 

as the active enhancer site closest to the top LOAD GWAS SNPs. Specifically, Table 2 

indicates the SNP rs number and chromosomal location, and the coordinates of the closest 

active enhancer element used as an anchor for plotting the promoter interactions. The closest 

active enhancers were determined 190bp, 75bp and 71bp from the anchor point set as the 

LOAD GWAS SNPs, for BIN1, PICALM and CELF1 loci, respectively (Figures 2–4, Table 

2). The coordinates for the closest active enhancers for each of the 23 LOAD GWAS SNPs 

are provided in Supplemental Table S2. Subsequently, the 3D genome browser was used to 

construct the visualization maps of the genome organization[38] in the hippocampus for the 

example loci, known as: BIN1 (Figure 2), PICALM (Figure 3) and CELF1 (Figure 4). The 

arcs show interactions between the defined closest active enhancer for each region and the 

promoters of the target genes based on DNase I hypersensitive site (DHS)-linkage data 

(Pearson correlation coefficient ≥ 0.7 between enhancer and promoter) and were verified by 

checking the location of the promoter as described in the Methods. The genes linked to the 

promoters are listed as interacting genes in Table 2.

The filtering stage that used the 3D genome organization maps to identify enhancer-

promoter interactions reduced the overall number of LOAD candidate genes by 40%−50% 

(Table 2). Of note, the virtual 4C analysis of the CELF1 loci (Figure 3) identified the 

interaction between the proximal enhancer and the promoter of the SPI1 gene. SPI1 encodes 

PU.1, a transcription factor that is critical for myeloid cell development and function. Our 

results provide, retrospectively, a bioinformatics validation to a recently published study that 

reported an association between a SNP in the SPI1 gene, positioned in the CELF1 LOAD 

risk locus that delayed LOAD onset[8]. In addition, the study found SPI1 eQTL association 

in monocytes and macrophages for this same SNP, and provided evidence suggesting that 

PU.1 may regulate the expression of multiple LOAD associated genes in myeloid cells[8]. 
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Last, overexpression and down regulation of PU.1 levels in mouse microglial cells affected 

the expression of mouse orthologs of several LOAD risk genes and the phagocytic activity. 

While CELF1 is the most proximate gene to the LOAD-SNP at this locus, SPI1, separated 

by 87,357bp, was suggested as a stronger candidate causal gene for LOAD risk based on 

functional lines of evidence. Collectively, the results for SPI1 demonstrated the concept that 

a gene different from the most proximal gene to the GWAS SNP contributes to LOAD 

pathogenesis. This concept was also applied for the interpretation of novel loci identified 

through the largest LOAD GWAS meta-analysis[43]. As a prioritization strategy for ranking 

the genes located in LOAD-GWAS significant loci the authors used several criteria 

including, gene expression and eQTL effect on the gene in tissue relevant to LOAD, 

expression correlation with Braak stage and LOAD-associated differential expression, as 

well as involvement in biological pathways enriched in LOAD. Our study and the two 

studies discussed above [8][43] integrated functional genomic information to interpret 

LOAD-GWAS discoveries; while the others prioritize primarily based on expression traits 

our strategy uniquely utilize the genome features/states and chromatin organization and 

focus on the interplay between noncoding regulatory element and 3D chromatin structure.

Biological insights to further narrow down candidate for experimental follow-up

Subsequent to the bioinformatics analysis, we used biological knowledge and outcomes 

from previous studies related to the interacting genes (Table 2 and Supplementary Table S4) 

to refine the list of target genes for post-GWAS follow up studies that will validate and 

characterize their putative contribution to LOAD pathogenesis. We annotated each of the 

interacting genes based on functional and biomedical information including: encoded 

protein function, expression profiles, related pathways and associated diseases 

(Supplementary Table S4). Herein we discuss pathways that presumably have a biological 

relevance to LOAD and were implicated for a subset of the interacting genes (Table 3). 

Overall this approach narrowed down the highest priority genes for experimental exploration 

using model systems to 2–7 genes per locus from the interacting genes identified by the 

bioinformatic pipeline.

Four of the interacting genes identified in this study positioned across all studied loci, 

PICALM, BIN1, SPI1 and MADD, have been well-studied in relation to neurological 

pathways and LOAD. This category includes PICALM and BIN1 genes that were previously 

associated with LOAD based on their proximity to the GWAS-SNPs. PICALM was shown 

to affect LOAD risk by modulating processes affecting beta-amyloid accumulation[44, 45], 

and BIN1 was suggested to be involved in LOAD related pathways including, synaptic 

vesicle endocytosis and BACE1 recycling that in-turn impacts beta-amyloid endocytic 

production[45]. The CELF1 locus harbors SPI1 with potential contribution to LOAD as 

described above[8]. In addition, the SPI1 gene was implicated in neuronal cell death in 

Huntington’s disease, and its inhibition in mouse models led to memory deficits and 

increased levels of amyloid-beta plaques, suggesting a possible role in LOAD 

pathogenesis[46]. Last, down regulation of MADD was correlated with neuronal cell death 

in LOAD[47].
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LOAD has been investigated as a brain disease, however, it has been suggested that LOAD is 

a systemic disease involving other organs such as the liver and gut, and affecting various 

biological processes including lipid metabolism and immune response[48]. Furthermore, 

APOE, the most reproducible LOAD genetic risk factor with the strongest effect size, plays 

a role in cholesterol and lipid metabolism. Interestingly the CELF1 LOAD-GWAS expanded 

locus is enriched in genes involved in lipid and cholesterol metabolism: CELF1, MTCH2, 

NR1H3, generating the hypothesis that co-regulation of genes in this cluster may lead to an 

additive or synergistic effect on disease risk; the forth gene mapped to this pathway from our 

focused analysis is SPI1.

Four interacting genes have been related to aspects of HIV including EED, ERCC3, IWS1, 

and SPI1 positioned across all three LOAD-GWAS loci used as examples in this paper. The 

relationship between HIV and cognitive impairment has been studied for decades[49] and 

HIV-associated neurocognitive disorder (HAND) presents similar symptoms to Alzheimer’s 

disease[50]. The genetic intersection between HIV and LOAD is intriguing and warrants 

further investigations using experimental models to better understand shared mechanisms of 

disease susceptibility.

CELF1, IWS1, and ERCC3 all play roles in the regulation of RNA transcription, splicing, 

and metabolism. CELF1 and IWS1 both exert a role on regulating mRNA translation and 

splicing, while ERCC3 plays a role in RNA transcriptional initiation and promotion. 

Dysregulation of gene expression and changes in transcriptional programs have been 

described in aging and neurodegenerative diseases including LOAD[51]. Noteworthy IWS1 
and ERCC3 located in the BIN1 LOAD-GWAS locus are also HIV-related genes, implying a 

possible connection between deficiency in RNA metabolisms and cognition in the context 

shared mechanisms in LOAD and HAND.

Four interacting genes are known to be associated with DNA repair and damage response 

including SPI1, DDB2, PSMC3, ERCC3, mapped to the BIN1 and CELF1 LOAD-GWAS 

loci. High rates of DNA damage have been reported in aging and in the progression of 

neurodegenerative diseases such as LOAD, mild cognitive impairment[52], and 

Parkinson’s[53].

CONCLUDING REMARKS

LOAD is a genetically heterogenous disease involving multiple genomic loci that mediate 

their effect on pathogenesis via genetic and epigenetic mechanisms. GWAS and whole 

genome/exome sequencing implicated about 40 loci in LOAD navigating LOAD genetic 

research to specific genomic regions of interest. Post-GWAS research that applies a 

multifaceted strategy combining in silico, in vitro and in vivo approaches is needed for the 

identification and validation of the precise causal gene/s within the associated loci. Our 

overall strategy is based on the hypothesis that dysregulation of gene expression contributes, 

at least in part, to LOAD pathogenesis. This paper focuses on in silico analysis approach and 

proposes a new bioinformatics pipeline (Figure 1) that utilizes publicly available functional 

genomic and epigenomic datasets specifically, chromatin state segmentation based on 

hippocampus-specific histone modification marks from the Epigenome Roadmap, and 
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enhancer-promoter interactions based on hippocampus specific 4C data. Using three model 

LOAD regions, we demonstrated that our computational strategy is feasible to identify the 

highest priority LOAD candidate causal genes and to guide follow up laboratory 

experiments.

The new bioinformatics pipeline presented here utilized datasets of brain regulatory 

elements obtained from normal brains. While gene regulation in health is beneficial to 

interpret gene dysregulation in disease, it lacks the context of disease. Thus, we suggest 

augmenting our basic pipeline by integration of comprehensive epi/genomic datasets, 

generated through ongoing and prospective projects, from LOAD brains. Moreover, the 

publicly available omics databases were generated using bulk brain tissues. Brain tissue 

homogenates consist of heterogenous cell-types, i.e. different neurons and various types of 

glia cells, and therefore introduce bias and sample-to-sample variations related to cell-type 

composition. In addition, molecular phenotypes determined using bulk brain tissues are not 

informative regarding the brain cell-type responsible for the differential molecular/omics 

profile. These limitations underscore the need for single brain cell-type specific omics data 

from healthy and LOAD individuals to further enhance the interpretation of LOAD-GWAS 

discoveries. Finally, the top LOAD candidate genes and variants, identified through genetic 

association studies and bioinformatics analyses, will be subject for validation and in-depth 

characterization of their pathogenic effects using in vitro and in vivo model systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Systematic review: The authors reviewed the Literature using Pubmed, meeting abstracts 

and presentations and downloaded publicly available genome and epigenome datasets. 

While LOAD-GWAS genes have been inferred based on proximity to the top 

significantly associated tagging SNPs, the actual causal genes are yet to be identified.

Interpretation: Our findings support the concept that LOAD causal genes may not be 

simply inferred as the most proximate gene but that the interpretation of GWAS 

discoveries requires the integration of functional genomic datasets and information 

related to regulatory activity in the context of LOAD. This will facilitate cataloguing the 

highest priority LOAD candidate genes for post-GWAS follow-up experiments.

Future directions: We propose a framework for in-depth investigation of causality in the 

following directions: (a) Exploring the effect of the top priority target genes on LOAD 

related phenotypes using in vitro and in vivo model systems; (b) Applying the 

bioinformatics pipeline using the extended list of LOAD-associated SNPs and depositing 

the data as a resource for the community of researchers in the field of LOAD genetics; (c) 

Identifying regulatory genetic variants within the active enhancer elements and 

characterizing their effects on the expression of the strongest candidate LOAD genes.
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Highlights

• LOAD-GWAS regions defined by the top associated SNP ±0.5 Mb encompass 

an average of 21 genes.

• Gene/s within LOAD-associated loci, not necessarily the most proximal gene 

to the GWAS SNP, may be the LOAD causal genes and play a role in disease 

pathogenesis.

• We propose a bioinformatics pipeline that integrates brain active enhancers 

information and promoter-enhancer interaction maps to prioritize candidate 

LOAD causal genes for experimental validation and further exploration of 

their pathogenic effects.

• Applying our strategy using three ~1Mb LOAD-GWAS regions resulted in a 

list of 40–50% fewer candidate LOAD causal genes vs the physical map in 

the genome browser. Biomedical information facilitated further sharpened the 

focus on 2–7 top priority target genes per region.
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Figure 1. 
Schematic of the bioinformatics-based strategy to prioritize LOAD-GWAS candidate risk 

genes for experimental follow up and validation of causality.
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Figure 2. 
Enhancer-promoter interaction plot for the >1Mb defined BIN1 LOAD-GWAS region, 

tagged by SNP rs6733839. (A) Line plot of the interaction frequency for Hi-C reads in the 

hippocampus, anchoring point at chr2:127,893,000 (5’ end of enhancer). (B) gene structure 

and chromHMM track for brain hippocampus middle to show the location of genomic 

structures including active enhancers (orange), transcription (green) and the transcription 

start site (red). Proximate active enhancer (type 9) was defined at chr2:127,893,000–

127,893,400 (400 bp), 190bp from the tagging SNP rs6733839 (chr2:127,892,810). Arcs 

show interactions between the defined enhancer and promoters (Pearson correlation 

coefficient ≥ 0.7) in the target genes based on DNase I hypersensitive site (DHS)-linkage 

data. All arcs involving the same proximal DHS are drawn with the same color. (C) Inset 

shows a magnified version of the arcs and ChromHMM for an approximately 200Kb subset 

of the full genomic region. The inset shows the origin of the arcs in the enhancer.
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Figure 3. 
Enhancer-promoter interaction plot for the >1Mb defined PICALM LOAD-GWAS region, 

tagged by SNP rs10792832. (A) Line plot of the interaction frequency for Hi-C reads in the 

hippocampus, anchoring point at chr11:85,867,400 (5’ end of enhancer). (B) gene structure 

and chromHMM track for brain hippocampus middle to show the location of genomic 

structures including active enhancers (orange), transcription (green) and the transcription 

start site (red). Proximate active enhancer (type 9) was defined at chr11:85,867,400–

85,867,800 (400 bp), 75bp from the tagging SNP rs10792832 (chr11:85,867,875). Arcs 

show interactions between the defined enhancer and promoters (Pearson correlation 

coefficient ≥ 0.7 between enhancer and promoter) in the target genes based on DNase I 

hypersensitive site (DHS)-linkage data. All arcs involving the same proximal DHS are 

drawn with the same color. (C) Inset shows a magnified version of the arcs and ChromHMM 

for an approximately 200Kb subset of the full genomic region. The inset shows the origin of 

the arcs in the enhancer.
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Figure 4. 
Enhancer-promoter interaction plot for the >1Mb defined CELF1 LOAD-GWAS region, 

tagged by SNP rs10838725. (A) Line plot of the interaction frequency for Hi-C reads in the 

hippocampus, anchoring point at chr11:47,557,800 (5’ end of enhancer). (B) gene structure 

and chromHMM track for brain hippocampus middle to show the location of genomic 

structures including active enhancers (orange), transcription (green) and the transcription 

start site (red). Proximate active enhancer (type 11) was defined at chr11: 47,557,800–

47,558,200 (400 bp), 71bp from the tagging SNP rs10838725 (chr11:47,557,871). Arcs 

show interactions between the defined enhancer and promoters (Pearson correlation 

coefficient ≥ 0.7 between enhancer and promoter) in the target genes based on DNase I 

hypersensitive site (DHS)-linkage data. All arcs involving the same proximal DHS are 

drawn with the same color. (C) Inset shows a magnified version of the arcs and ChromHMM 

for an approximately 200Kb subset of the full genomic region. The inset shows the origin of 

the arcs in the enhancer.
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Table 3.

Highest priority candidate LOAD causal genes: Biomedical and Functional information

Gene name Gene coordinate GWAS-SNP (coordinate) Biomedical/Functional category Brain expression

CELF1 Chr11: 47,487,489–
47,587,121

rs10838725 (Chr11: 
47,557,871)

LOAD as a systematic disease, RNA 
metabolism related

++

SPI1 Chr11: 53,773,960–
53,810,230

LOAD as a systematic disease, 
Neurological and Alzheimer’s 
associated, HIV related, DNA damage 
and repair related

++

DDB2 Chr11: 47,236,493–
47,260,769

DNA damage and repair related +

MADD Chr11: 47,290,712–
47,351,582

Neurological and Alzheimer’s 
associated

++

MTCH2 Chr11: 47,639,858–
47,664,206

LOAD as a systematic disease ++

NR1H3 Chr11: 47,269,851–
47,290,401

LOAD as a systematic disease ++

PSMC3 Chr11: 47,440,320–
47,448,024

DNA damage and repair related +++

PICALM Chr11: 85,668,214–
85,780,924

rs10792832 
(Chr11:85,867,875)

Neurological and Alzheimer’s 
associated

+++

EED Chr11: 85,955,586–
85,989,855

HIV related +

BIN1 Chr2: 127,048,023–
127,107,400

rs6733839 (Chr2:127,892,810) Neurological and Alzheimer’s 
associated

+++

ERCC3 Chr2: 128,014,866–
128,051,752

HIV related, RNA metabolism related, 
DNA damage and repair related

++

IWS1 Chr2: 128,193,783–
128,284,462

HIV related, RNA metabolism related +
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