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Abstract

Kinetic parameter values, such as myocardial perfusion, can be quantified from dynamic contrast 

enhanced (DCE-) magnetic resonance imaging (MRI) data using tracer-kinetic modelling. 

However, respiratory motion affects the accuracy of this process. Motion compensation of the 

image series is difficult due to the rapid local signal enhancement caused by the passing of the 

gadolinium-based contrast agent. This contrast enhancement invalidates the assumptions of the 

(global) cost functions traditionally used in intensity-based registrations. The algorithms are 

unable to distinguish whether the differences in signal intensity between frames are caused by 

spatial motion artefacts or the local contrast enhancement. In order to address this problem, a 

fully-automated motion compensation scheme is proposed which consists of two stages. The first 

of which uses robust principal component analysis (RPCA) to separate the local signal 

enhancement from the baseline signal, before a refinement stage which uses traditional PCA to 

construct a synthetic reference series that is free from motion but preserves the signal 

enhancement. Validation is performed on 18 subjects acquired in free-breathing and 5 clinical 

subjects acquired with a breath-hold. The validation assesses visual quality, temporal smoothness 

of tissue curves and the clinically relevant quantitative perfusion values. The expert observers 

score of visual quality increased by a mean of 1.58/5 after motion compensation and improvement 

over previously published methods. The proposed motion compensation scheme also leads to the 

improved quantitative performance of motion compensated free-breathing image series (30% 

reduction in the coefficient of variation across quantitative perfusion maps, 53% reduction in 

temporal variations (p<0.001)).
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I Introduction

FIRST-PASS myocardial stress perfusion cardiovascular magnetic resonance (CMR) has 

become one of the tools of choice for the non-invasive diagnosis of myocardial ischaemia 

[1]–[3]. In current clinical practice, stress perfusion CMR is assessed visually; however, this 

requires extensive training and the diagnostic accuracy depends strongly on the operator [4]. 

As was first suggested more than 20 years ago, it is possible to quantitatively analyse 

myocardial perfusion in units of ml · min−1 · g−1 using CMR [5], [6] through the application 

of the indicator-dilution theory [7], [8]. As yet, quantitative analysis of perfusion CMR 

remains primarily a research tool but its clinical translation would be advantageous as it can 

be automated [9], [10], enabling accurate and user-independent assessment of myocardial 

perfusion [6]. Our group has also recently demonstrated the independent prognostic value of 

quantitative stress perfusion CMR [11].

The fully automated compensation of respiratory motion is a key milestone in the process of 

the clinical translation of the quantitative analysis as the inter-frame misalignment caused by 

this respiratory motion can hamper the accuracy of the analysis. In particular, voxel-wise 

quantification of perfusion is desirable in order to take advantage of the high spatial 

resolution of MRI and to enable the accurate detection of subendocardial perfusion defects 

[12]. Such an approach assumes that a voxel represents the same anatomical location in each 

frame of the image series - i.e. that there is no inter-frame misalignment. When voxel-wise 

quantification is used, even misalignments as small as one voxel can result in significant 

errors in the quantitative values.

Current clinical protocols involve acquiring dynamic image series which last 50-90 seconds 

[13]. Breath-holds can only effectively prevent respiratory motion during a limited time 

frame of 15-25 seconds, usually during the first-pass of the bolus of contrast agent across the 

left ventricle (LV) cavity and the LV myocardium. Hence, even when breath-holds are 

performed, it frequently leads to poor image quality due to the residual motion [14]. This 

can be worsened by incorrect timing of the breath-hold, resulting in it not coinciding with 

the passage of the contrast agent in the LV cavity and by the fact that patients with coronary 

artery disease often struggle to hold their breath properly, especially under the effects of the 

vasodilator drug.

More recently, some authors [10], [15], [16] have proposed to acquire perfusion images in 

free-breathing and to apply retrospective motion compensation. This approach has the 

advantage of being more tolerable for patients and, with good motion compensation, to 

enable automatically generating accurate voxel-wise perfusion maps without requiring 

manual segmentation and manual correction of the position of the heart. Furthermore, 

acquisitions in free-breathing (FB) are more robust when compared to breath-hold (BH) 

acquisitions when a motion compensation algorithm is used. Shallow free-breathing 

encourages smooth in-plane motion that aides motion compensation, whereas breath-holds 

can lead to deep inspiration/expiration and sudden motion both in-plane and through-plane. 

Additionally, breath-hold scans can also be difficult to retrospectively correct due to the 

changes in the volumes of the ventricles associated with deep inspiration and expiration 

[17].
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II Background

The problem of motion compensation can be formulated as an image registration problem. 

The difficulty in the application of image registration to the motion compensation of 

myocardial perfusion images is due to the rapidly changing signal intensities caused by the 

arrival and wash-out of the contrast agent in the region of interest. In the case of nonrigid 

registrations with vastly different signal intensity profiles, it cannot be guaranteed to not 

introduce unnatural anatomical deformations [18], [19]. The cost functions that are 

optimised in the image registrations are global measures [20], they assume that the mapping 

between tissue and image intensity is constant. This underlying assumption is violated by 

the local intensity changes. As a result, the cost functions cannot distinguish between the 

intensity variations that are due to spatial motion artefacts and those that are due to the 

contrast enhancement. For example, when trying to register a frame with contrast 

enhancement only in the right ventricle to a frame with contrast enhancement only in the left 

ventricle, the algorithm will likely try to match the left ventricle to the right ventricle. One 

possible solution to this problem is to only register successive frames in the image series so 

that the contrast enhancement should be relatively similar. However, this has the effect of 

propagating the errors from each registration to every subsequent registration. Also, 

particularly during the passage of contrast agent from the right ventricle to the left ventricle, 

the intensity change is fast relative to the temporal sampling rate of the image series, leading 

to vastly differing contrast between successive frames and the potential for failed 

registrations.

A State-of-the-art

Several methods to compensate for motion in myocardial perfusion MRI data already exist. 

Adluru et al. [21], [22] proposed the use of tracer-kinetic models to create synthetic 

reference images. However, this work only considered rigid registration with breath-hold 

acquisitions and the more general applicability of the method is unclear. In particular, the 

model-fitting is likely to be difficult with free-breathing acquisitions. The method of 

Melbourne et al. [23] proposed to progressively remove motion in the sequence using 

principal component analysis (PCA). The original sequence can hence be motion 

compensated by progressively registering to a motionless synthetic image series 

reconstructed from only early PCs. This is equivalent to an iterative spatio-temporal 

denoising. However, this theory breaks down if the acquisition is free-breathing or there is 

large amounts of motion, such as a deep inspiration, present. This is because the non-random 

effects of the structured motion biases the PCA decomposition. This results in the motion 

manifesting itself in the early PCs. Hence, registration to the synthetic PCA-based reference 

image cannot remove the motion. Wollny et al. [15], [24] built on the work of Milles et al. 

[25] and proposed to use independent component analysis (ICA) to separate the motion from 

the image series to create synthetic reference images. However, differentiating between the 

independent components and hence removing the motion is difficult.

More recently, Benovoy et al. and Xue et al. proposed methods, based on optical flow, that 

are now components of larger software packages for automated quantitative perfusion 

analysis [16], [26]. These methods however do not explicitly account for the locally-varying 
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contrast enhancement. As demonstrated in Fig. 1, there can be vastly differing contrast 

profiles between frames. Lingala et al. [27] proposed deformation corrected compressed 

sensing (DC-CS) which embeds the motion compensation within an iterative reconstruction 

scheme. The algorithm iterates a reconstruction step with registration to a spatio-temporal 

denoised reference. However, it is not clear if it is always possible to create a denoised 

version with no motion but the same contrast profile as the original image series in this way. 

The technique also requires many iterations of these steps, the main limitations of doing so 

are the unwanted smoothing of the images caused by iterative registrations and the time 

complexity of such an approach. This work will be compared extensively to the method 

proposed in this paper. The review paper of Pontre et al. [28] compared many of the 

aforementioned techniques but no clear conclusion was reached.

B Our Contribution

In this study, we propose a robust fully-automated, image-based approach to the motion 

compensation of free-breathing perfusion MRI image series using a matrix decomposition 

technique, robust principal component analysis (RPCA) [29] and non-rigid image 

registration. This approach is based on the observation that RPCA allows the separation of 

the dynamic contrast enhancement from the baseline signal in a myocardial perfusion CMR 

images series. Hence, the deformation fields required to eradicate the respiratory motion can 

be computed in the absence of the locally-varying contrast enhancement and then applied to 

the original image series to render it motionless. Hamy et al. [30] demonstrated that RPCA 

allowed motion compensation of data from liver, small bowel and prostate DCE-MRI. In this 

work, it is shown that RPCA also facilitates the motion compensation of myocardial 

perfusion MRI data.

This extension is non-trivial due to the fact the images do not just have one enhancing tissue 

but rather the enhancing tissue is surrounded by the two more intensely enhancing blood 

pools. Furthermore, the use of a group-wise registration scheme negates the difficulty of 

choosing a reference frame. The motion compensation is conducted in a two-stage approach, 

the first stage uses RPCA, as described above, to account for the bulk motion and the second 

stage is a refinement stage in which the image series is registered to a separate motionless 

synthetic image series created using PCA [23] (analogous to the spatio- temporal denoising 

used in DC-CS). The idea is that such a denoising will be much more efficient after the first 

bulk motion compensation step. The validation is conducted with its clinical applicability in 

mind, which is achieved through an assessment of the accuracy of myocardial blood flow 

quantification and by the scoring of expert readers.

III Theory

A RPCA

RPCA is a generalisation of traditional principal component analysis which, as its name 

suggests, attempts to make the algorithm more robust to corrupt data points [29]. It takes 

advantage of the fact that, in many applications, the data (M) can be modelled as a 

combination of a low-rank component (L0) and a sparse component (S0) such that: M = L0 + 

S0. Mathematically this can be formulated as the solution of:
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argminL, S L ∗ + λ S 1 s . t . L + S = M (1)

where ||·||∗ is the nuclear norm and is defined as the sum of the singular values of the matrix. 

λ > 0 is a trade-off parameter that balances the constraint on the rank of L and the sparsity 

of S. Large values of λ lead to L having higher rank and S being more sparse (λ → ∞ gives 

L = M and S = 0) and conversely smaller values of λ lead to L having lower rank and S 
being less sparse (λ → 0 gives L = 0 and S = M). The solution of (1) can be obtained 

through an augmented Lagrangian multiplier method using an alternating directions 

approach [31].

B Motion Compensation

Motion compensation was conducted in two stages, this scheme followed from the 

observation that it is difficult to optimise the parameters of the image registration algorithms 

to correct for both large and small deformations simultaneously. In stage 1, it is attempted to 

correct for the bulk motion caused by the respiration and stage 2 is a refinement step which 

attempts to account for any remaining fine misalignments. The analysis is performed on 

image series that have been cropped around the region of interest [32], which vastly reduces 

the time taken for all processing steps. The full scheme is illustrated in Fig. 2.

C Stage 1: bulk motion compensation

As was shown by Hamy et al. [30], when RPCA is applied to a DCE-MRI image series the 

low-rank component L well models the baseline signal and the sparse component S captures 

the contrast enhancement. This decomposition is shown for two example frames in Fig. 3, 

with videos provided in the supplementary material. With a suitable choice of λ, typically 

taken to be λ = 1/ N p where Np is the number of pixels in an image [29], it is therefore 

possible to obtain a low-rank image series L which has a similar motion profile as the 

original image series but without dynamic contrast enhancement. Traditional image 

registration techniques can be easily applied to this low-rank series as the contrast is similar 

in each frame. Thereafter, the deformation fields which are computed from L can then be 

applied to the original image series to eliminate motion.

Bulk motion is corrected for using a rigid registration scheme which optimises the mutual 

information cost function [33]. The registration is applied in a group-wise manner, where all 

frames are registered to the mean frame in an iterative framework, with the mean frame 

being updated on each iteration (for a total of 3 iterations). This approach performs well as it 

uses all information at each stage of the registration as opposed to considering only two 

frames at a time. It also avoids the uncertainties and errors caused by either developing an 

algorithm to choose a reference frame or doing so in a random manner. The iterative 

refinement of the reference frame also avoids the complication of registering two frames 

which are far apart; this could lead to unwanted deformations of the anatomy.
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D Stage 2: refinement

After this first bulk motion compensation, it is observed that the remaining motion appears 

to be jittery and noiselike. Hence, in the second stage, the frames are registered to a 

synthetic image series which is created using a PCA decomposition to remove the noise-like 

motion, as was first proposed by Melbourne et al. [23]. Fig. 4 shows an example frame 

expressed as a linear combination of the three principal eigen-images, a video of such an 

example series is provided in the supplementary material. Each frame from the image series 

resulting from stage one is hence registered to the corresponding frame from the motionless 

PCA-based synthetic image series. The motion profile for this synthetic image series is 

shown in Fig. 5. The registrations are performed using freeform deformations [34] which 

optimises the residual complexity cost function [35] and is performed using a Gaussian 

image pyramid scheme [36]. This step refines the original motion compensation, and as such 

is performed on a fine grid of control points (grid spacing (h) of 4 pixels) with relatively 

weak regularisation (κ = 5). These parameters are similar to the optimal combination for this 

application found by Wollny et al. [20] (h = 5, κ = 15). As compared to these values, this 

method uses a finer grid as it is only being used in the second stage and thus only correcting 

fine misalignments. This work also uses less regularisation as after the first stage the images 

are already close to being aligned and thus required less protection against local optima. All 

processing steps were implemented in Matlab (The MathWorks, Natick, MA, USA) using 

the Medical Image Registration Toolbox for Matlab [37].

IV Methods

A Study population and image acquisition

Dynamic perfusion series were prospectively acquired in patients referred for cardiac MRI at 

the School of Biomedical Engineering and Imaging Sciences, King’s College London. 

Image acquisition was carried out at 3.0T (Philips Achieva-TX, Philips Medical Systems) 

using standard acquisition protocols [13]. Datasets were acquired either in free-breathing or 

during breath-holds. There was 16 free-breathing rest acquisitions, 2 free-breathing stress 

acquisitions and 5 breathhold stress acquisitions in total. Images were acquired in 3 short 

axis views using a turbo field echo gradient echo pulse sequence (typical acquisition 

parameters TR/TE/flip angle/saturation prepulse delay were 2.5 ms/1.25 ms/15° /100 ms) 

with a typical spatial resolution of 1.34 × 1.34 × 10 mm. The acquisition of the images was 

synchronised to the cardiac cycle using a vector electrocardiogram trace. The dynamic 

image series were acquired during first-pass injection of 0.075 mmol/kg Gadobutrol 

(Gadovist, Schering, Germany) at 4 ml/s followed by a 20 ml saline flush. A dual bolus 

contrast agent scheme was used to correct for signal saturation of the AIF, as previously 

described [38]. All patients consented to the CMR scan and to the inclusion in the study 

(ethics approval number 15/NS/0030). The study was conducted in accordance with the 

Declaration of Helsinki.

Image series acquired during a breath-hold can contain significant and sudden motion, 

whereas images acquired in free-breathing contain a smooth, almost periodic breathing 

pattern [15] due to the encouraged shallow breathing. The motion profile is visualised for an 
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example free-breathing image series in Fig. 6 which shows the vertical (Fig. 6 (a)) and 

horizontal (Fig. 6 (b)) motion.

B Evaluation

The method was evaluated in both a qualitative and quantitative manner. All metrics were 

computed for 48 individual freebreathing rest image series (16 subjects with 3 slices each), 

15 breath-hold stress image series and 6 free-breathing stress image series. All subjects were 

free from ischaemia and scar. Although quantification of myocardial perfusion is routinely 

done in research settings, it is likely that visual assessment will remain a part of clinical 

protocol for the near future. With this in mind, the qualitative facet of the evaluation 

involved the grading by expert observers. This qualitative assessment compares the original 

image series to the equivalent image series compensated with both the proposed framework 

and the DC-CS method [27]. The quantitative assessment involved assessing the temporal 

smoothness of time-intensity curves while also focusing on the spatial smoothness of the 

clinically relevant myocardial perfusion values. In the absence of motion, the time-intensity 

curves should be smooth and the quantitative perfusion maps should be relatively uniform. 

The quantitative assessment again compares the original image series with the two 

equivalent motion corrected image series. This follows the recent validation paper of Jansen 

et al. [39].

The quality of the motion compensation was assessed by two expert observers, blinded to 

the motion compensation status of the image series, with level III CMR accreditation 

according to the guidelines of the Society for Cardiovascular Magnetic Resonance (SCMR). 

The observers (AC and ADMV) viewed the image series and graded each of them on a five 

point scale. 1=Poor Quality; unnatural deformations, 2=Mediocre Quality; significant 

motion, 3=Acceptable Quality; some motion, 4=Good Quality; only some unimportant 

motion, 5=Excellent Quality; no visible motion. The grades from the two observers were 

deemed to be in agreement if they differed by less than two, otherwise, a consensus grade 

was reached. The average score from the two observers was then used for assessment.

In the absence of motion, the only change in voxelintensity is the contrast enhancement. 

These changes should be smooth and slowly-varying. This assumption is violated in the 

presence of motion as voxels can represent different anatomical features in consecutive 

frames. To analyse this temporal smoothness, the standard deviation (SD) of the second 

derivative of the voxel-wise time-intensity curves was computed and the mean value of this 

was recorded for each slice. Time-intensity curves were smoothed using a Gaussian filter 

with σ = 1 (time frame) in order to reduce the effect of noise. This smoothing was performed 

in all cases to ensure fair comparison. Only the part of the curve relating to the first-pass of 

the contrast agent is assessed.

Myocardial perfusion is quantified through the relationship: Cmyo (t) = RF (t) ∗ CAIF (t) 
where RF, the residue function, is constrained by the Fermi function [5], [6]:

RF(t) = F ⋅ 1
1 + exp[(t − τ0 − τd) ⋅ k] ⋅ θ(t − τd) (2)
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CAIF (t) is the arterial input function and Cmyo (t) is the concentration of contrast agent in 

the tissue. An estimate of myocardial blood flow F can hence be obtained by deconvolving 

the observed tissue curve with the AIF.

The fitting is done with a Levenberg-Marquardt nonlinear least square fitting algorithm. θ (t) 
is the unit step function. The algorithm fits for the variables F, k and τ0 and uses a 

predefined τd. The fitted value of F is taken as the estimate of myocardial blood flow, 

whereas k and τ0 define the shape of the residue function. Signal-intensity curves are 

converted to concentration of gadolinium by assuming a linear relationship (this can be 

assumed due to the dual-bolus acquisition) [40].

Since the image series were acquired from healthy patients, relatively uniform perfusion 

would be expected through-out the myocardium as there is no stress-induced ischaemia and 

no scarred tissue, based on the late gadolinium enhancement images. However, this will not 

be the case in the free-breathing acquisitions due to motion artefacts in the time intensity 

curves, demonstrated in Fig. 7. Image series were therefore quantified with a previously 

validated in-house software [41], with the aim of showing that it is possible to obtain more 

homogenous perfusion maps after motion compensation. In order to make this assessment, 

the SD of each perfusion map was recorded.

V Results

A Qualitative Assessment

The expert observers scored the 69 image series with three different motion compensation 

statuses (no motion compensation, the DC-CS method and the RPCA-based method 

proposed in this work), leading to 207 individual scores. The two expert observers assigned 

identical scores to the image series in 63% of the cases. A difference of more than one point 

was only observed in 4/207 cases and in all of these cases a consensus score was agreed on. 

This corresponds to an inter-observer Spearman’s rank correlation coefficient of 0.80.

The mean grades (SD) after averaging the grades from each observer for the rest image 

series were 2.1 (0.3), 3.71 (0.64), and 4.10 (0.62) for the original free-breathing image 

series, the DC-CS corrected image series, and the RPCA corrected image series. The 

equivalent scores for the stress image series were 2.76 (0.53), 3.19 (0.66) and 3.57 (0.66). 

The Wilcoxon signed rank test showed that there is a significant (Bonferronicorrected) 

difference between all pairs of populations except the stress DC-CS and stress RPCA 

corrected images (p=0.07). Although in this case the trend suggests that the RPCA 

correction works better. This shows that not only does motion compensation improve the 

image quality of free-breathing image series, but also that our proposed two-step approach 

gives better results than the previously published method [27]. There are no cases in which 

the non-motion compensated image series scored higher than an equivalent motion 

compensated image series. There was a positive difference in the score between the RPCA 

and DC-CS methods in 48% of the image series with a mean improvement of 0.39. Both 

observers confirmed that they would be satisfied to report on the free-breathing image series 

in 100% of the cases. Before and after motion compensation videos are provided in the 

supplementary materials.
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B Quantitative Assessment

In order to assess the temporal smoothness of the time-intensity curves, the second 

derivatives of the voxel-wise time-intensity curves are examined. The SD of this is then 

computed for each curve and the mean value is computed over all curves from an individual 

slice. The median (interquartile range) values were 0.28 (0.14), 0.16 (0.06) and 0.13 (0.06) 

at rest and 0.14 (0.14), 0.11 (0.09), and 0.09 (0.08) at stress for the non-motion 

compensated, DC-CS, and RPCA data respectively. Lower values indicate that the change in 

intensity between two successive images in the series is smooth and hence indicates a likely 

reduction in the amount of motion. Fig. 8 shows the distribution of these values. The 

Wilcoxon signed rank test shows that the values for the RPCA-based method differ 

significantly from the DC-CS method both at rest (p = 0.013) and at stress (p = 0.024). The 

two motion compensation schemes are significantly better than no motion compensation 

both at rest and at stress.

The mean (SD) quantitative perfusion values for the original image series the DC-CS 

corrected image series, and the RPCA corrected image series are 0.93 (0.33), 0.94 (0.40), 

and 0.83 (0.26) ml ·min−1 · g−1 at rest and 4.02 (0.91), 4.15 (0.84), and 3.21 (0.73) ml · min
−1 · g−1 at stress respectively. As expected the means are very similar and in line with what 

we would expect to see [42], the reduction in perfusion after motion compensation is due to 

the lack of artefacts in the intensity curves. However, what is more telling is that at rest the 

SD accounts for 73%, 53% and 43% of the mean respectively. Due to motion artefacts both 

the non-motion compensated free-breathing have a higher SD than the motion compensated 

image series. The median values of the SD of quantitative perfusion value in each slice for 

the original, DC-CS corrected and RPCA corrected image series are 0.16, 0.13, and 0.14 at 

rest and 0.61, 0.69 and 0.45 at stress, respectively. The distribution of these values is 

visualised, in Fig. 9.

The Wilcoxon signed rank test shows that the values for the image series do not differ 

significantly to those of the two motion compensation schemes, though the trend is clearly 

visible. The homogeneity of the perfusion maps is improved particularly with the RPCA 

based method. Furthermore, the homogeneity of the maps at stress for the RPCA corrected 

image series is significantly improved over the DC-CS corrected image series for both the 

free-breathing (p=0.001) and breath-hold (p=0.009) image series.

VI Discussion

In this study, we introduced a novel method for robust and fully-automated, image-based 

motion compensation of free-breathing perfusion CMR image series. This method was 

validated both qualitatively and quantitatively. The quality of the motion compensation of 

both rest and stress free-breathing and stress breath-hold image series was graded by two 

expert observers in comparison with a previously established method. The quantitative 

assessment compared free-breathing image series that had subsequently been motion 

compensated to the original image series and also image series acquired with a breath-hold 

before and after motion compensation. This evaluation focused on the clinically relevant 

quantitative perfusion values. The results show an improvement in all metrics for the free-

breathing image series that have been motion compensated using the proposed method as 
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compared to the original image series (30% reduction in the coefficient of variation across 

quantitative perfusion maps, 55% reduction in temporal variations (p<0.001)). The 

uniformity of the motion compensated free-breathing stress maps is comparable with the 

breath-hold stress maps. It follows that it may be possible to omit the breath-hold from the 

clinical protocol, making the procedure easier for both the patient and the scan operator, 

encouraging smoother respiratory motion which is easier to correct and reducing the 

potential for large gasps and throughplane motion.

A Qualitative Assessment

There was a reasonable agreement between observers, with both observers consistently 

scoring the image series that had been corrected with the RPCA-based method higher than 

those corrected with DC-CS and those with no motion compensation. Fig. 10 shows the 

tMIP of each of the three slices for one patient (stress free-breathing) for the three different 

motion compensation statuses, the increased sharpness of the image series corrected with 

and the RPCA based approach (column 3) indicates that there is little residual motion 

remaining.

B Quantitative Assessment

The temporal variations of the free-breathing (both rest and stress) image series were 

significantly reduced (by 55%) compared to that of the original image series. This indicates 

that the motion compensation is indeed enforcing smooth changes between successive 

images in the series which in turn indicates the eradication of motion. The temporal 

smoothness of an example free-breathing image series is visualised through its motion 

profile in Fig. 11. This is the equivalent image series to Fig. 6. In Fig. 12, the deep 

inspiration and expiration caused by the breath-hold are obvious. After the breath-hold, large 

amounts of motion can occur due to the subject being out of breath and gasping for air. 

However, in general, this motion in the BH image series does not significantly affect the 

clinically relevant quantitative perfusion values. The Fermi deconvolution only uses the part 

of the time intensity curves that relate to the first-pass of the contrast agent and this is when 

the breath-hold takes place. However, the BH image series can still produce less uniform 

perfusion maps in the case of mistiming or failure of the breath-hold.

This leads naturally to a comparison of the quantitative perfusion values obtained in each 

case. As previously remarked, due to the patients’ status there will be no stress-induced 

ischaemia and therefore relatively uniform perfusion would be expected throughout the 

myocardium. In the presence of motion this will not be the case due to the motion artefacts 

in the time intensity curves, which impacts the deconvolution. As such, the mean standard 

deviation of the quantitative maps is lower after motion compensation with a reduced 

variability. This effect is more pronounced under stressed conditions. Breath-hold 

acquisitions are not robust, mistakes by the operator, failed breath-holds by the patient or 

differences in cardiac output between individuals can adversely impact on the 

synchronisation of the acquisition. Hence, there can still be significant motion and mistiming 

during the first-pass of the contrast across the left ventricle and the left ventricular 

myocardium in the BH image series. At stress, the quantitative maps computed with the 
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motion corrected FB image series are more homogenous than the maps computed with the 

BH image series.

A further consideration that contributes to the improved uniformity of the motion corrected 

perfusion maps as compared to the BH perfusion maps is the through-plane motion. The 

“gasp” or period of deep breathing following a breath-hold can cause significant through-

plane motion and cannot be retrospectively compensated for using 2D registrations.

The reported results improve on those obtained with previously established methods [27]. 

Further to the improved results, the proposed method is beneficial as it is faster (3.5 minutes 

versus 12 minutes on average). From the point of view of timing, it is potentially 

advantageous that the motion compensation is achieved in two steps rather than in the many 

iterations of an iterative procedure.

The bulk compensation step can also deal with structured motion (such as periodic motion 

and large inspiration) better than the iterative denoising. When compared to directly using 

the PCA-based approach [23], this approach is deemed to be more applicable to myocardial 

perfusion imaging. This is because the bulk motion compensation step removes the non-

random effects in the data which then allows the successful application of PCA. This leads 

to better results with both free-breathing and breath-hold data (the clinical standard). Videos 

which demonstrate the effect of the non-random motion in free-breathing acquisitions on the 

PCA-based approach are provided in the supplementary material.

The benefits of the proposed approach are that there is no assumptions made on the 

acquisition system and parameters or even the imaging modality. The resulting motion 

compensated image series were of higher visual quality. The quantitative information was 

shown to be preserved after motion compensation, with more robust estimate of myocardial 

blood flow due to reduced motion artefacts in the signal intensity curves.

C Limitations

There is a lack of a ground-truth to validate this method. We have attempted to account for 

this by conducting the evaluation in a multitude of different manners.

To date, the method has only been validated with one set of acquisition parameters. 

Although we believe there is no reason the acquisition parameters should influence this 

method, it would be desirable to demonstrate this on further datasets.

Despite the fact this is a 2D compensation for the 3D motion of the heart, image series 

acquired in the short-axis view with shallow breathing will have predominantly in-plane 

motion. In our datasets, it is not possible to correct through-plane motion in due to the large 

slice thickness, large distance between slices and the limited sampling of the left ventricular 

myocardium.

VII Conclusion

We have demonstrated the feasibility of a robust fully-automated, image-based approach to 

the motion compensation of free-breathing perfusion CMR images using the matrix 
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decomposition technique, robust principal component analysis (RPCA) and non-rigid image 

registration and shown its efficacy using clinical data. With the use of motion compensation 

algorithms, the evidence presented in this study suggests that a breath-hold protocol for the 

acquisition of first-pass myocardial perfusion MRI data may be no longer necessary. Motion 

compensated free-breathing acquisitions led to significantly more uniform quantitative 

perfusion maps than the original images. The variation of motion corrected free-breathing 

perfusion maps is equivalent to breath-hold clinical acquisitions. Our method performs well 

in comparison with the established methods in the literature. Additionally, both expert 

observers noted that the motion compensated free-breathing image series were all of 

satisfactory quality for visual assessment. In summary, in addition to the increased 

convenience of free-breathing acquisition, our motion compensation scheme produces image 

series of high visual quality and allows the robust quantification of myocardial perfusion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Two pairs of successive frames from a myocardial perfusion MRI image series. The first pair 

((a) and (b)) are during the arrival of contrast agent in the right ventricle and the second pair 

((c) and (d)) are during the arrival of contrast agent in the left ventricle. This serves to show 

that the contrast profile is not necessary similar between two successive frames.
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Fig. 2. 
A flow chart of the proposed motion compensation scheme.
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Fig. 3. 
The RPCA based separation of the example images from the original image series (M) into 

its low-rank (L) and sparse components (S). As discussed, the local signal enhancement is 

represented in S with no dynamically changing contrast present in L.
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Fig. 4. 
An example image from the image series which can be expressed as a linear combination of 

its 3 principal eigen-images.
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Fig. 5. 
The motion profile of the synthetic reference. This is constructed by taking the centre 

column (a) and row (b) from each image in the series and stacking them left to right (a) and 

top to bottom (b). (a) shows the vertical motion (anterior to inferior) and (b) shows the 

horizontal motion (septal to lateral). This figure indicates a complete absence of motion.
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Fig. 6. 
The motion profile of a free-breathing image series that was created for the same image 

series as shown in Fig. 5. The motion is represented as the oscillating pattern and is quite 

severe in this case. As expected, there is strong vertical motion. There is less horizontal 

motion but it is still present.
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Fig. 7. 
Voxel-wise time-intensity curves which were extracted from the myocardial segmentation, 

before and after motion compensation. On the left the motion causes the segmentation of the 

myocardium to be contaminated by the left ventricle during the upslope of myocardial 

signal. After motion compensation (right) this effect is corrected and the curves look as 

expected.
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Fig. 8. 
The values for the mean standard deviation of the 2nd derivative of myocardial time-intensity 

curves. This indicates the temporal smoothness of the image series. The smoother the 

transition between successive images in the series the less motion that is present.
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Fig. 9. 
The values for the standard deviation of perfusion values in each map. Lower standard 

deviations indicate more homogenous perfusion maps and hence less motion.
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Fig. 10. 
The temporal maximum intensity projection of the three slices from a free-breathing stress 

acquisition. The increase in sharpness in the RPCA corrected series indicates a lack of 

motion. The blurring artefacts as a result of motion are shown with yellow arrows.
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Fig. 11. 
The equivalent motion profile for the same image series as shown in Fig. 6 after motion 

compensation. The smooth transition between frames indicates the near-total eradication of 

motion.

Scannell et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 12. 
The equivalent motion profile as shown in Fig. 6 for a breath-hold acquisition. In this image 

series there is a period of free-breathing followed by a breath-hold during the passage of the 

main bolus and then another period of free-breathing. The breath-hold is short relative to the 

passage of the contrast agent, this will impact the tissue curves from the myocardium and 

subsequently the quantitative perfusion values.

Scannell et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Background
	State-of-the-art
	Our Contribution

	Theory
	RPCA
	Motion Compensation
	Stage 1: bulk motion compensation
	Stage 2: refinement

	Methods
	Study population and image acquisition
	Evaluation

	Results
	Qualitative Assessment
	Quantitative Assessment

	Discussion
	Qualitative Assessment
	Quantitative Assessment
	Limitations

	Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12

