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Putting the data before the algorithm in big data addressing
personalized healthcare
Eli M. Cahan 1,2, Tina Hernandez-Boussard3,4,5, Sonoo Thadaney-Israni4 and Daniel L. Rubin3,4,6

Technologies leveraging big data, including predictive algorithms and machine learning, are playing an increasingly important role
in the delivery of healthcare. However, evidence indicates that such algorithms have the potential to worsen disparities currently
intrinsic to the contemporary healthcare system, including racial biases. Blame for these deficiencies has often been placed on the
algorithm—but the underlying training data bears greater responsibility for these errors, as biased outputs are inexorably produced
by biased inputs. The utility, equity, and generalizability of predictive models depend on population-representative training data
with robust feature sets. So while the conventional paradigm of big data is deductive in nature—clinical decision support—a future
model harnesses the potential of big data for inductive reasoning. This may be conceptualized as clinical decision questioning,
intended to liberate the human predictive process from preconceived lenses in data solicitation and/or interpretation. Efficacy,
representativeness and generalizability are all heightened in this schema. Thus, the possible risks of biased big data arising from the
inputs themselves must be acknowledged and addressed. Awareness of data deficiencies, structures for data inclusiveness,
strategies for data sanitation, and mechanisms for data correction can help realize the potential of big data for a personalized
medicine era. Applied deliberately, these considerations could help mitigate risks of perpetuation of health inequity amidst
widespread adoption of novel applications of big data.
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PAST: DICHOTOMY BETWEEN THE DATA AND THE ALGORITHM
The tsunami of big data—harnessed most prominently through
predictive algorithms and machine learning—has swept across
healthcare in recent years.1 Demonstrated applications exist for
many discrete clinical scenarios (Table 1). Applications have also
enveloped biomedical research, health systems utilization review,
and medical curricular redesign.2–4

However, such algorithms—agnostic to the sources, or validity,
of the big data used for training—have the potential to worsen
preexisting demographic disparities in healthcare.5 Racial biases
anchored in historically biased training datasets have led to
racially biased predictive models for criminal justice, hiring
decisions, allocation of social services/benefits, issuance of
supportive housing, and evaluation of child abuse.6,7 In biomedi-
cine, algorithms have also exhibited racial biases: for example, in
prognostic models designed from the Framingham Heart Study,
and precision medicine protocols based predominantly on
European ancestral genotypes.8–10

The algorithms are often blamed for these deficiencies.11

However, we assert that the data used to train these algorithms
bears greater responsibility. The concept of “garbage in, garbage
out” is of the utmost importance for medical algorithms trained on
healthcare datasets and impacting patients downstream.12

In this paper we (1) argue that existing big datasets are
frequently limited in their inclusiveness—an issue potentially
magnified by digitized devices in the future (2) examine how, if
these datasets are leveraged by algorithms in an uncorrected

manner, they may lack representativeness, and thus could
potentially exacerbate health disparities (3) provide recommenda-
tions to improve the usefulness of future datasets, to deliver on
big data’s potential for facilitating personalized healthcare.

PRESENT: CONFLUENCE BETWEEN THE DATA AND THE
ALGORITHM
Deficiencies in the data inexorably compromise the algorithm. The
algorithm is the terminal node in the big data value-chain: the
generation, sanitization, transmission, and storage of data all
precede its final predictions.13 The integrity of unbiased, clinically
useful data depends upon the reliability of sources such as
electronic health record notes and remote sensors. Its transmis-
sion relies upon the fidelity of decentralized software. Its storage
depends upon the security of local and cloud-based servers.13 In
this way, big data does not refer to headline-grabbing algorithms
producing statistically significant outputs in isolation. Rather,
those outputs should be viewed as inevitable byproducts of
preceding inputs.
Big data has been defined by “4 V’s”: volume, velocity, variety,

and veracity. While the latter two promote replicability, the
volume and velocity of data have been leveraged more routinely
to date.14 Development of algorithms has focused on the
collection of data—and more data. Investigators and inventors
clamor for data, focusing on its quantity rather than its quality. For
example, a recent review identified 15 devices developed in
recent years for continuous electrocardiographic (ECG)
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monitoring, yet only a minority of these performed any appraisal
of the quality or usefulness of these vast accumulated data.15

Nevertheless, the virtue of algorithms mobilizing big data has
seemed ironclad by this immensity of N value.
Yet, data are not necessarily useful simply because they are

voluminous. The abundance of data cannot presuppose its
needed diversity, representative of the populations the algorithms
seek to serve. Rather, the multiplicity of data collection media,
mechanisms, and contexts may produce additional susceptibility
to compromising biases.16 This is especially true for data derived
from informal sources (such as smartphones and connected
wearable devices), which are not subject to methodological,
hypothesis-driven rigor characterizing classical scientific data
collection.17 Fitbit accelerometer data have shown considerable
differences across step counts, intensity scores, and calculated
metabolic rates from research-grade instruments, for example.18

As highlighted by Zhang et al., “an important concept of big data
is that assembly of the data is not on purpose”.19

Two well-defined forms of bias warrant additional discussion:
sampling bias and observation bias. Sampling bias—whereby
certain patient cohorts are absent from the inputs—yields
nonrepresentative algorithmic outputs. Currently, significant dis-
parities exist in the patterns of smartphone, mobile sensor, and
other device use, such that the pipelines of big healthcare data are
homogenous and lack demographic diversity.20 The very popula-
tions who might benefit most from optimized medical interven-
tions—including the poor, the elderly, the rural, and the disabled
—are among the least likely to be using platforms generating big
data.21 In addition, consent necessary for capturing data may be
withheld in marginalized populations whose historical mistreat-
ment by biomedicine has led to a lack of faith in and use of
healthcare systems (such as African-Americans following Tuske-
gee).22 This digital redlining prompts algorithmic outputs that
have inconsistent utility across populations. For example, it leads
to misweighting of cardiovascular risk factors between popula-
tions, leading to phenomena such as understatement of HDL risk
in Hispanic populations and of diabetes risk in African-American
populations.8

The second form of bias is observation bias, denoting the
systematic miscalibration of measurement. Measurement error has

been observed in connected devices across a variety of healthcare
specialties—such as in sphygmomanometry used for blood
pressure assessment23 (Table 2). Yet while miscalibration is
correctable, in a review of the 2016 high-impact literature (defined
in terms of publication in one of the top 12 biomedical journals),
fewer than half of all articles considered observation bias, and only
7% corrected for it.24 Introduction of measurement uncertainty to
studies that did not consider it compromises initial findings, as
demonstrated in simulations using blood pressure to predict
cardiovascular disease.25

As stated by Chiolero, “big data” do not speak by themselves
any more than “small data”.26 Acceptance of the veracity of data
inputs on account of volume overlooks the hazardous underbelly
of volume, in its ability to amplify falsity. Even for big data,
“nothing is too big to fail”.26

FUTURE: INTERDEPENDENCE BETWEEN THE DATA AND THE
ALGORITHM
Occult flaws in the data used to train algorithms bear implications
both on the predictions that are generated by the data
(amplifying false positives), and those that are not (compounding
false negatives).

False negatives: valid predictions missed by the algorithm due to
flaws in the data
The generalizability of models depends on representative training
datasets. In both structured and unstructured models, representa-
tiveness necessitates a large feature set reflective of diversity in
the broader population.
Yet, existing clinical data often lacks diverse subgroups (as

discussed via sampling bias).20,21 Amplifying this issue, per one
review, the majority of algorithms based on EHRs failed to correct
for any missing data, and fewer than 10% corrected for all missing
dimensions.27

Furthermore, introduction of heterogeneity relies on the
conceptualization of heterogeneity—which is to say, the cognitive
feature set appreciated by research investigators. Narrowness of
problem representation from a methodologic standpoint leads to
narrowness of algorithmic problem-solving capability. As Loscalzo

Table 1. Selected current machine learning applications using big data in healthcare

Specialty Clinical Problem Methodology Source

Radiology Coronary artery
calcification
Thoracic lesion
inspection
Mammography

Enhanced image reconstruction
Improved feature detection (diagnostic)
Improved feature interpretation (prognostic)

Giger ML. J Am Coll Radiol. 2018;15(3 Pt B):512–20.

Pathology Breast cancer Enhanced image reconstruction
Improved feature detection (diagnostic)
Improved feature interpretation (prognostic)

Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen
TO, van de Vijver MJ, et al. Sci Transl Med. 2011;3
(108):108ra13.

Ophthalmology Diabetic retinopathy Enhanced image reconstruction
Improved feature detection (diagnostic)

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D,
Narayanaswamy A, et al. JAMA. 2016;316
(22):2402–10.

Emergency Medicine Clinical triage Use of retrospective EHR data for
training→outcome prediction upon new
patient presentation

Hong WS, Haimovich AD, Taylor RA. PLoS One.
2018;13(7):e0201016.

Cardiology Heart failure outcomes Use of retrospective EHR data for
training→outcome prediction upon new
patient presentation

Ahmad T, Lund LH, Rao P, Ghosh R, Warier P,
Vaccaro B, et al. J Am Heart Assoc. 2018;7(8).

Neurology Ischemic stroke
outcomes

Use of retrospective EHR data for
training→outcome prediction upon new
patient presentation

Asadi H, Dowling R, Yan B, Mitchell P. PLoS One.
2014;9(2):e88225.

Dermatology Melanoma staging Enhanced image reconstruction
Improved feature detection (diagnostic)

Gautam D, Ahmed M, Meena YK, Ul Haq A. Int J
Numer Method Biomed Eng. 2018;34(5):e2953.
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and Barabasi describe, a reductive “Oslerian tradition of [linear and
mechanistic] clinicopathological correlation” in disease concep-
tualization begets a constricted set of simplified disease profiles.4

For example, the poor predictive power of findings from genomic
studies has been shown to arise from exclusion of environmental
factors—which can contribute as much towards phenotypic
variation as do genetic traits.28 These problems may be intensified
if reductive feature sets are explicitly programmed into the
models. Chen and Asch have observed that “no amount of
algorithmic finesse or computing power can squeeze out
information that is not present”.17

False positives: invalid predictions made by the algorithm due to
flaws in the data
The compromise of predictions that are generated by data is
potentially more insidious. Often these arise from unconsidered
confounders. Nurtured on data that exists but has minimal
veracity, algorithms will in turn make minimally generalizable
predictions.29

Important causes beyond observation bias in healthcare include
changes in medical coding practices or variations in clinical
practice, both of which form the very basis of clinically derived
datasets.19,30 This may lead to (i) overfitting, in which predictions
are internally valid, but externally invalid (the computational
equivalent of hubris) or (ii) noncausal associations, which are both
internally and externally valid, but not clinically impactful.31

The greater danger of noncausal associations is their potential
to perpetuate incorrect assumptions. This includes those related
to race and socioeconomic based health disparities.6,7 For
example, black infant and maternal mortality are more than two
and four times those of their white counterparts, yet this
association is unlikely to be solely biologic. A total of 95% of
genetic differences occur within races rather than between them,
and only 14% of these exhibit clinically relevant effects.32

Causative factors for these associations cannot be parsed by
datasets containing race categories alone (and lacking more
granular psycho-social considerations).
In short, algorithms trained on biased, uncorrected datasets are

vulnerable to exacerbation of false negatives and false positives
alike. Flawed predictions in silico misguide clinical practice and
may harm patients when translated in vivo.29 For example, in one
study unadjusted Framingham risk scores demonstrated under-
estimation of cardiovascular mortality by up to 48% in diverse

demographic groups and led to undertreatment of 29% of the
cohort.33

THE OLD PARADIGM: DEDUCTIVE REASONING FROM BIG
DATA
Given current wariness in the usefulness of big data, it is necessary
to clarify the technology’s current limitations, and identify possible
approaches that enable the fulfillment of its potential going
forward. The traditional paradigm of big data is deductive in
nature. Specific questions (inputs) are asked, and discrete answers
(outputs) are given—such as whether or not to order a specific
diagnostic test. This is deemed “clinical decision support”:
algorithm as hammer, and clinical problem as nail.
By intermediating the interaction of the data and the algorithm,

clinician-investigators play a fundamental role here. As discussed,
without appropriate intermediation, these predictions are subject
to distortion resulting from inappropriate algorithm training. In
addition, clinician-investigators impose rigor through a deliberate
approach to data collection, to foster internal and external
validity.30 They also impose structure through contextualization
in the provision of care, to prevent the decoupling of predictions
from clinical relevance. For example, Wells’ criteria for prediction
of pulmonary embolism relies heavily on clinical discretion and is
less accurate without it.34

Nonetheless, the potential of big data within this schema is
limited, capable only of incremental improvements in patient care
by offering a binary endorsement late in the decision-making
process—such as for or against a CT scan. Furthermore, the
generalizability of this approach has been brought into question,
due to the impact of unseen data. For instance, when comparing
outside hospital cases to cases used for training, the performance
of deep learning models evaluating chest radiographs for the
detection of pneumonia was significantly lower 60% of the time.35

THE NEW PARADIGM: INDUCTIVE REASONING FROM BIG DATA
A future model for the use of big data is to harness its potential for
inductive reasoning.36 In this model, few predictions enter, and
many questions exit. This may be thought of as “clinical decision
questioning”: conventional clinical practice as dented nail, and
algorithm as claw. The new paradigm is accomplished by
recognition, and illumination, of false positives and false
negatives.

Table 2. Documented instances of measurement error using connected devices

Specialty Clinical problem Device/Instrument Source

Rehabilitation medicine Ambulation
exercise tolerance

Accelerometer Yang Y, Schumann M, Le S, Cheng S. PeerJ. 2018;6:e5775.

Orthopedics Range of motion Digitized protractor/
goniometer

Awatani T, Enoki T, Morikita I. J Phys Ther Sci. 2017;29
(10):1869–73.

Occupational health Pneumoconioses Environmental monitor de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J,
Nieuwenhuijsen MJ, et al. Environ Pollut. 2013;176:92–9.

Cardiology Hypertension
ischemic heart disease

Smartphone
sphygmomanometer

Lee ES, Lee JS, Joo MC, Kim JH, Noh SE. Ann Rehabil Med. 2017;41
(1):129–37.

Infection disease Microbial outbreaks Crowdsensors Edoh T. J Med Syst. 2018;42(5):91.

Neurology Gait abnormality
Parkinson’s disease

Smartphone gyroscope Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, et al. PLoS
One. 2015;10(10):e0141694.

Otolaryngology Hearing loss Ambient sonography Ventura R, Mallet V, Issarny V, Raverdy PG, Rebhi F. J Acoust Soc
Am. 2017;142(5):3084.

Endocrinology Prediabetes
diabetes

Glucometer Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Conf Proc IEEE
Eng Med Biol Soc. 2015;2015:2359–62.

Opthalmology Physical examination Optical biometer Rozema JJ, Wouters K, Mathysen DG, Tassignon MJ. Am J
Ophthalmol. 2014;158(6):1111–20 e1.
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A famous nonphysician—Dr Seuss—once stated that “some-
times the questions are complicated, and the answers are simple.”
The power of algorithms here is to liberate the human predictive
process from preconceived lenses in data solicitation and/or
interpretation.37 Inductive predictions can unshackle clinical
decisions from the narrowness and biases inculcated by human
medical training (and manifest in the clinical gestalt).
Inductive algorithms have already been employed to discover

causal relationships in datasets with large amounts of unlabeled
data. Genome sequences, pathology slides, and radiology images
have all been leveraged by inductive algorithms to derive novel
relationships undiscovered by human interpretation alone.38–40 It
is likely not all derived relationships will be clinically impactful, as
this approach also is susceptible to noncausal correlations.
However, the hypothesis-generating capabilities of these methods
have shown particular use for outputs with low prevalence, in
which reductive thinking may be especially detrimental.41 Large,
complex datasets with ever-smaller disease prevalence, progres-
sing towards N-of-1: these are the exact parameters of persona-
lized medicine.
Thus, an inductive approach offers revelation of formerly

missing, impactful features while retiring preexisting, obsolete
ones. It can drive inclusion of these new features in future datasets
via refinement of existing measurement tools and additional of
novel ones.42 Efficacy, representativeness and generalizability of
research are all heightened in this schema. Inclusion of features
less routinely considered in clinical care—through advancement
of history-taking, diagnostic work-up, and treatment processes—
may likewise improve outcomes.
For instance, information on social determinants of health (such

as zip code, socioeconomic status, and educational background)
has been demonstrated to improve prognostication and treat-
ment planning for patients at risk for coronary heart disease
compared with biomedical considerations alone.43 Used across
clinical scenarios, inductive models could help providers prioritize
evaluation and targeting of similarly under-investigated, high-
impact features going forward.

Glymour et al. stated: “methodological innovation is not merely
about applying novel methods to improve our estimation in the
third decimal point. New data and new computing power should
allow us to approach problems differently”.20 Early utilization of
big data in an inductive manner can help redesign medical
research and the clinical care emerging from it.

HARMONY OF DATA, ALGORITHMS, AND CLINICIANS FOR
PERSONALIZED MEDICINE
Big data’s potential for health is profound. At the preclinical stage,
it can fill research voids (through trial emulation on preexisting
datasets) and accelerate the movement of research from the
bench to the bedside (through computational systems biol-
ogy).4,44 At the clinical stage, it can better expound social
determinants of health (by highlighting areas of disease
uncertainty poorly explained by biology alone) and elucidate
individual phenotypic nuances (by enabling multidimensional
measurement of a given patient).45 In these ways, it offers the
quickest route towards personalized medicine—through which
health management is rigorously individualized.
Big data’s potential for care is also significant. Knowledge

accumulation may not, in fact, be the physician’s greatest value to
patients. Rather, physicians and patients alike flourish most when
the “retention, access, and analysis” of knowledge by providers is
delegated to algorithms, creating an opportunity for return to the
“particularly human aspects of the profession”.46 Moreover,
additional value is created through such human–computer
partnership. Enhanced interaction empowers collection of those
intimate data points solicited via a thoughtful history and a
thorough physical.47 These are the very data points essential to
bridge social circumstances with medical factors for optimization
of care. The much feared elimination of humans from this scene is
unlikely, as the last mile of big data (implementation of
recommendations from prediction to action taken clinically) relies
unequivocally on human–human contact.17,47 As such, big data
offers an expedient return towards personified medicine—
through which care is comprehensively humanistic.

Fig. 1 Guidelines describing quality standards for analytical datasets (used and modified with permission from Cai and Zhu51
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However, the possible risks of big data—used deductively or
inductively—arise from the inputs themselves. Optimal use of
burgeoning technologies from newfound oceans of data requires
stewardship of the data’s integrity.
Several strategies can support these goals. Annotation of

training datasets with labeling metadata, by documenting biases
intrinsic to them (such as sampling imbalance), can heighten
transparency.48 In turn, redesign of methods for data collection
(specifically relating to peripheral digital platforms) can ensure
data variety beyond volume alone.49 For example, deliberate
outreach efforts can be made by investigators to populations with
poorer healthcare access. Imputation of heterogeneity to datasets
and utilization of federated methods can support data veracity
through inclusion of diverse feature sets when outreach efforts
cannot be feasibly conducted.50 Dataset quality standards and
minimum thresholds of inclusiveness used for analysis should
likewise be adopted by journals to promote the utility of what
they publish51 (Fig. 1). Finally, transparency into the characteristics
of datasets should be provided to practitioners attempting to
interpret emerging studies.
Mobilization of the technology itself in an inductive fashion can

also support these appraisals. For example, methods like contrastive
principal component analyses, which compare multidimensional
enrichment patterns between datasets, are capable of visualizing
ingrained data biases. Identification of the shortcomings of datasets
offers one path to improving the utility of studies.52

Across all of these strategies, privacy of patient health
information (PHI) must be prioritized. Increasing magnitude and
dimensionality of data threatens to compromise patient anonym-
ity even in de-identified databases.53 Compromise of privacy
amidst accelerating data generation and use threatens the
medical, financial, and social wellbeing of patients: for instance,
discrimination in health insurance and job employment on the
basis of PHI can perpetuate health disparities by impacting access
to services and medications.6,7

As claimed by Confucius, “real knowledge is to know the extent
of one’s ignorance.” To this end, awareness of data deficiencies,
structures for data inclusiveness, strategies for data sanitation, and
mechanisms for data correction can help realize the potential of
big data for a personalized medicine era. Simultaneously, they can
avoid risks of perpetuation of health inequity amidst widespread
adoption of novel applications of big data.
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