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Functional Geometry of Human 
Connectomes
Bosiljka Tadić1,2, Miroslav Andjelković1,3 & Roderick Melnik4,5

Mapping the brain imaging data to networks, where nodes represent anatomical brain regions and 
edges indicate the occurrence of fiber tracts between them, has enabled an objective graph-theoretic 
analysis of human connectomes. However, the latent structure on higher-order interactions remains 
unexplored, where many brain regions act in synergy to perform complex functions. Here we use 
the simplicial complexes description of human connectome, where the shared simplexes encode 
higher-order relationships between groups of nodes. We study consensus connectome of 100 female 
(F-connectome) and of 100 male (M-connectome) subjects that we generated from the Budapest 
Reference Connectome Server v3.0 based on data from the Human Connectome Project. Our 
analysis reveals that the functional geometry of the common F&M-connectome coincides with the 
M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is 
built in six anatomical communities, and linked by short cycles. The F-connectome has additional edges 
that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. 
Both connectomes contain characteristic subjacent graphs that make them 3/2-hyperbolic. These 
results shed new light on the functional architecture of the brain, suggesting that insightful differences 
among connectomes are hidden in their higher-order connectivity.

Human psychology and behaviour are determined by functional brain connectivity among neurons, neural 
assemblies, or entire regions, making the patterns of circuitry that can be detected by brain imaging1. Recent 
large-scale research into the brain imaging data within the Human Connectome Project (HCP)2–4 aims to 
uncover, describe and understand the functional structure of human connectome; the connectome is visualised as 
a network consisting of different brain regions (grey matter) and paths between them (white-matter fibre bundles) 
that can be determined by mapping the diffusion-MRI and tractography data. The network nodes are identified 
as distinct brain regions that are functionally similar and spatially close as well as equally connected to the other 
regions4–7. The connections between these regions are inferred from brain imaging data. Recent studies provided 
insight into the developmental trajectory, elucidating that the architecture of connections in the brain develops 
over time to support the function8. Thus the inferred structure of edges may vary among different subjects, per-
formed tasks and conditions. In this context, the sex-related differences in brain connectivity evolve across the 
development to accompany all functional and behavioural dimensions8,9. Therefore, the consensus between the 
pipelines in the structural connectome can be mapped from a large population tractography data10 and depends 
on many parameters. Based on the data from HCP2 and the brain mapper developed in11, the Budapest connec-
tome server12 provides the possibilities to infer the consensus networks at a variety of the relevant parameters, as 
described in13. The mapping of imaging data to the brain networks enables an objective analysis based on graph 
theory methods14,15.

Recently, different studies of brain imaging data revealed the strong evidences for sex-related differences in 
the structural connectome16–22. This subject was not well researched, but already it brought some controversial 
debates9. The exact origin of these differences and their potentials and impact on the level of individual and social 
behaviour are still to be investigated23. On the other hand, the current degree of reliability of the connectome data 
provides an opportunity for a mathematical analysis of structural differences at all levels. For example, a recent 
study22 has shown that the consensus female connectome has superior connectivity than the consensus male 
connectome in many graph-theoretic measures.
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Recent investigations of geometrical properties of various complex systems24–33 show the relevance of the 
higher-order connectivity beyond standardly considered pairways interactions. Mathematically, the impact of 
these higher order interactions is adequately described by the simplicial complexes in the algebraic topology of 
graphs34–37. In these complexes, elementary geometrical shapes (triangles, tetrahedra, and simplexes of higher 
order) are combined through shared substructures of various orders. These geometrical structures directly influ-
ence dynamic processes that the complex system in question performs, such as transport, diffusion, or synchro-
nisation among the involved nodes. In the case of brain networks, the main dynamic function pertains to 
maintaining an optimal balance between the processes of integration and segregation where different regions of 
the brain can be simultaneously involved and the present modular structure of the brain plays an important 
role38–41. Anatomical modules of the brain, which are recognized as different mesoscopic communities in the 
network42–45, are based on spatial topography and coexpression of genes in the brain cells46. It has been suggested 
that each module performs a discrete cognitive function while specific connector nodes take on communication 
between modules40. However, the fine functional organisation inside these modules remains unexplored. Besides, 
the occurrence of simplicial complexes causes the emergent hyperbolicity or a negative curvature47 in the struc-
ture of the graph, which affects its functional properties. In this sense, the complete graph and associated tree are 
ideally hyperbolic, characterised by the hyperbolicity parameter δ = 0. The graphs with small values of δ are 
subject to intensive investigations for their ubiquity in natural and social systems, as well as in technology appli-
cations24,25,30,33,48. Moreover, current theoretical studies reveal that Gromov hyperbolic graphs with a small hyper-
bolicity parameter have specific mathematical properties48. In particular, the bounds for the δ-parameter of the 
whole graph can be derived from subjacent simpler graphs, for example, induced cycles or clique separators of a 
given length49–54. Therefore, the study of the hyperbolicity of brain graphs can reveal the presence of typical local 
structures that are potentially decomposable into some known forms, which underlie the brain’s dynamic 
complexity.

In this work, we considerably expand the analysis of human connectome beyond the simple pairwise connec-
tivity. Using the mathematical techniques of algebraic topology of graphs, we identify hierarchically organised 
complexes that encode higher-order relationships between regions of the brain and explore the hyperbolic geom-
etry of brain graphs. We consider the consensus connectomes mapped from 100 female (F-connectome) and 100 
male (M-connectome) subjects, using the brain mapper and imaging data from the Human Connectome Project, 
which is provided by the Budapest server 3.012. The weighted edges are inferred according to the electrical con-
nectivity criteria, which are most sensitive to the number of fibres observed in the tractography data. We analyse 
the connectomes that correspond to the significant variation in the number of fibres launched (see Methods). 
With the appropriate topology measures, our objectives are to determine the hidden structure of human con-
nectome endowed with the relationships between groups of nodes and express the possible gender differences 
in this context. To this end, we construct and investigate a common F&M-connectome at different numbers of 
fibres and determine its structure, parametrised by simplicial complexes, and the graph’s hyperbolicity parameter. 
Furthermore, by comparing edges in the F- and M-connectomes, we identify the excess edges that appear consist-
ently in the F-connectome with an increased number of fibres. Our mathematical analysis reveals a rich structure 
of simplicial complexes that are common to the F&M-connectome and belong to different brain anatomical 
communities and cycles that connect them inside and across the two brain hemispheres. It further confirms the 
higher connectivity of the F-connectome and demonstrates that the excess edges have a well-organised structure 
that includes a particular set of paths and brain regions.

Methods
Input data & consensus networks.  The consensus connectomes that we study are generated at the 
Budapest Reference Connectome Server v3.012 using data from the Human Connectome Project (HCP) for 500 
individuals2. As it is described in13, the server produces the connectomes for each anonymised individual based 
on its diffusion MRI data of HCP and by applying the brain mapping tools11,55,56 for parcellation, tractography, 
and graph construction. From these individual graphs, the consensus connectome with the edges that are com-
mon for a specified group of individuals is generated, corresponding to the settings of a variety of parameters13. 
Apart from the resolution, the number and biological sex of individuals can be selected, the method for com-
puting the weights of edges, as well as three options regarding the number of fibres launched in the tractography 
phase. For our study, we have selected the data that provide the consensus networks for female connectome and 
male connectome based on 100 subjects of each sex. The corresponding brain networks consist of N = 1015 nodes 
(anatomically annotated brain regions) and the weights of the connections between them determined according 
to the electrical connectivity criteria, i.e., the number of fibres between the considered pair of regions is divided 
by the average fibre length. We consider three different fibre counts, comprising of NF = 20 K, 200 K, and 1000 K 
fibres, where for short K ≡ 1000. For the additional parameters, we have set the minimum edge confidence as 
100%, minimum edge weight as 4, and the median weight calculation. The resulting adjacency matrices of the 
weighted networks, herewith called F-connectome and M-connectome, respectively, are downloaded together 
with the node labels, i.e., the names of the anatomical brain regions.

Gromov hyperbolicity parameter of graphs.  A generalization of the Gromov notion of hyperbolicity47 
is applied to graphs endowed with the shortest-path metric. Specifically, the 4-point Gromov criterion states that 
a graph G is δ-hyperbolic iff for any four vertices A B C D( , , , ) there is a fixed small value δ(G) such that the fol-
lowing relation beween the sums of distances   ≡ d + ≤A B d C D( , ) ( , )  ≡ + ≤d A C d B D( , ) ( , )  ≡ 

+d A D d B C( , ) ( , ) implies δ+ − − ≤d A D d B C d A C d B D G( , ) ( , ) ( , ) ( , ) 2 ( ). Thus, for a δ-hyperbolic graph, 
there is δ(G) such that any four nodes of the graph satisfy the condition
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From the triangle inequality, the value of −( )/2L M  is bounded brom above by the minimal distance 
≡d min d A B d C D{ ( , ), ( , )}min  in the smallest sum  . This relationship enables a direct computation of the hyper-

bolicity parameter of a graph, which is given by its adjacency matrix. In particular, by sampling a large number 
(109) 4-tuples of vertices we plot δ A B C D( , , , ) against the corresponding dmin; the plot saturates at larger dis-
tances. We compute the average δ〈 〉 for all dmin as well as δ δ= max A B C D{ ( , , , )}max G  as the largest value observed 
in the entire graph, which gives δ(G).

We also determine the distribution P(d) of the shortest-path distances d on the graph. The largest distance 
defines the graph’s diameter D, which gives the upper bound to the hyperbolicity parameter, δ ≤G D( ) /2. As 
mentioned above, the hyperbolic graphs with a small parameter δ have a specific structure of subgraphs, from 
which the upper bound of δ(G) can be derived50–54. In this context, the following definitions apply. A subgraph Γ 
of G is called isometric if the distance between every pair of vertices ∈ ΓA B( , )  is equal to the distance between 
them measured on G, i.e., =Γd A B d A B( , ) ( , )G . A cycle Cn is a sequence of n pairwise connected vertices with 

+ →n 1 1; an induced cycle does not contain a chord, an edge connecting nonconsecutive vertices. A clique of 
size ≡ +s q 1max  is the full graph of s vertices and −s s( 1)/2 edges.

Q-analysis of graphs: definition of structure vectors.  Considering a connectome as an undirected and 
unweighted graph G, the higher-order connectivity of its vertices can be appropriately parametrised by the max-
imal complete subgraphs (or cliques) whose vertices belong to a clique complex C(G) in the graph G36. Two 
cliques σr and σq of the orders r, q can be interconnected by sharing some vertices; then the structure made by the 
shared vertices represents a common face of both cliques. For example, if for <r q all vertices of σr belong to σq, 
then the simplex σr represents a face of the order r in the simplex σq. The simplicial complex represents the aggre-
gate of cliques that share the faces of different orders = ′ −q q0, 1, 2 1max , where ′q max indicates the order of 
the largest clique in the complex. The order of a simplicial complex is the largest order of a simplex in it; we denote 
by qmax the order of the largest complex in the entire graph.

Applying the Bron-Kerbosch algorithm57, the adjacency matrix of the graph G is converted into the incidence 
matrix Λ, which contains all cliques in the graph by identifying the vertices that belong to them; using this infor-
mation, we then find how different cliques interconnect via shared nodes to make the higher-order structures. 
The overall hierarchical organisation of the graph can be quantified26,27,58–61 by three structure vectors having the 
components along different topology levels = q q1, 2, 3, max . Specifically, for each considered graph, we 
determine:

•	 FSV—the first structure vector Q{ }q , where each Qq represents the number of q-connected components;
•	 SSV—the second structure vector n{ }q , where nq indicates the number of connected components from the 

level q upwards;
•	 TSV—the third structure vector Q̂{ }q  is introduced to quantify the degree of interconnectivity between cliques 

at each level q, and can be derived from the other two as = −Q̂ Q n1 /q q q.

These structure vectors provide a measure of the graph’s global architecture (see62 for the application of 
Q-analysis for the vertex neighbourhood). Note that, in this context, the 1-skeleton of the simplicial complex 
consists of nodes and edges, representing the topological graph, which is analysed by graph theory methods. We 
also determine some graph measures63,64 and community structure43,65,66 of the corresponding topological graphs, 
see Results. Visualisation and standard graph parameters are made by using Gephi software67.

Results
Consensus networks of human connectome.  According to the parameter settings (see Methods), the 
considered F-connectome consists of the edges that appear in all 100 female subjects, and similarly, the 
M-connectome contains the edges that are present in all 100 male subjects. For the illustration, the F-connectome 
at 1000 K fibres is shown in Fig. 1 with the labelled brain regions as nodes. Here, we use the simplicial complexes 
parametrisation (see Methods) and the graph’s hyperbolicity measures to uncover the hidden structure of human 
connectome, which is encoded in the higher-order connectivity between groups of nodes. Furthermore, using 
these mathematical measures, we analyse the variations of the brain connectivity patterns in female and male 
connectomes, depending on the number of fibres NF launched in the tractography. As it is shown in Fig. 2a–d, the 
number of connections increases with NF and differs between F- and M-connectomes, resulting in different 
degree distributions, cf. Fig. 2b. However, these distributions fall to the same curve when plotted against the res-
caled node’s connectivity 〈 〉k k/ , as shown in Fig. 2c. In the node’s first neighbourhood, the average connectivity 
correlates with the node’s degree ki in an assortative manner i.e., 〈 〉 ∼ μk knn i  with a positive exponent μ, cf. Fig. 2a, 
with the outlier nodes representing big hubs (“rich club” organisation14). The scaling range and the exponent μ are 
slightly larger in the F-connectome. We show in the following that a significant difference between these connec-
tomes lies in the structure of simplicial complexes.

To proceed, we first identify all edges that (although with different weights) are common for both 
F-connectome and M-connectome, here called C F M& -connectome at different NF. Table 1 and Fig. 2 summarise 
the number of edges and mutual relationships of different connectomes. Figure 3 shows the corresponding graphs 
with the labelled brain regions, obtained for NF = 200 K and 1000 K. Specifically, we find that:
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•	 The number of established edges in each considered connectome increases with the number of fibres 
launched NF;

•	 The common C F M& -connectome practically coincides with the M-connectome at each NF, whereas the F-con-
nectome contains an increasing number of excess edges with the increasing NF;

•	 The common C F M& -connectome at a higher NF inherits all edges from the C F M& -connectome at a lower NF;
•	 A significant fraction of the excess edges found in the F-connectome at a lower NF appear in the common 

C F M& -connectome but at a higher NF;
•	 There is a large number of the excess edges in the F-connectome that are never found in the common C F M&

-connectome at a higher NF; the patterns of these edges make the fundamental difference between the human 
female and male connectomes.

The structure of simplicial complexes in brain graphs.  According to Table 1 and Fig. 2, at each NF, 
the common F&M-connectome practically coincides with the male connectome (apart from the exact weights of 
edges) while there are many excess edges in the female connectome. Here, by applying Q-analysis (see Methods) 
to the corresponding graphs at different numbers of fibres NF, we show that (i) the common human connec-
tome possesses a nontrivial hidden structure encoding multi-vertex connectivity; (ii) the excess edges of the 
F-connectome are not random but exhibit a highly organised structure, which thus implies a specific function-
ality, cf. Fig. 3.

In Fig. 4 the results for the three structure vectors, defined in Methods, are presented for different NF. As Fig. 4 
shows, the structure of connectomes becomes richer with the increased number of fibers NF. In particular, the 
cliques of a systematically larger order q appear and the degree of their inter-connectivity increases as measured 
by TSV. Moreover, the larger number of edges in the F-connectome leads to a much richer structure of the simpli-
cial complexes, which is expressed by all structure vectors, cf. right panels of Fig. 4. We also notice that the 

Figure 1.  The female connectome at the highest resolution consisting of 1115 nodes (brain regions) and 11339 
edges between them. The network is deduced from the HCP data provided at the server12 with weighted edges 
as the median for 100 female subjects and NF = 1000 K fibres launched between each pair of nodes.
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difference between the M- and F-connectomes systematically increases with the increased NF. Representative 
quantitative properties are given in Tables SI-I and SI-II in Supplementary Information. Noticeably, the =Qq 0 
component of the FSV, which gives the number of fragments of the graph, suggests that besides the largest com-
ponent some vertices and small clusters remain disconnected. The number of fragments decreases and the con-
nectivity increases with the increasing NF. The corresponding number of edges in the largest cluster is given in 
Table 1. The organisation of the present edges at each NF manifests in the presence of simplicial complexes with 
the largest order qmax. From Fig. 4 and Table SI-II, we see that the F-connectome possesses the cliques of a higher 
order; the difference increases from =q 5max

M  and =q 6max
F , at 20 K, to =q 13max

M  and =q 20max
F , at 1000 K. The 

number of cliques of the highest order is different, as well as their connection to the other cliques at the level just 
below the qmax. Apart from the increased number of topology levels, the F-connectome also exhibits a significant 
degree of interconnections between the big cliques. For example, the TSV for the F-connectome at the level 
q = 13, which equals to qmax

M , is still very high, about 55%. Below, we identify the excess edges in the F-connectome 
and examine the patterns which they make. We note that the presence of larger simplicial complexes and their 
better inter-connections in the F-connectome, as compared to the M-connectome, agree well with the observed 
differences in some non-local graph properties, for example, the degree-related correlations, cf. Fig. 2a. Similarly, 
this structure of simplicial complexes can be compatible with the better expander graph and the width of balanced 
cuts in the female connectomes, reported in22 by graph-theory analysis. Meanwhile, the dissimilarity in the node’s 
degree distributions can be scaled out. Hence, the insightful differences among these connectomes are in the 
architecture of connections, not merely in their number. For completeness, in Table 2 we show a summary of 
different graphs’ properties.

Hyperbolicity of the human connectome.  Another hidden geometrical property of the connectomes is 
their hyperbolicity in the graph-metric space, as we show in the following. A previous study68 refers to the brain 
network embedded in a hyperbolic space, i.e., the volume of the skull. Theoretically, the hyperbolicity of a 
path-connected geodesic metric space was proved69,70 to be equivalent to the hyperbolicity of the graph associated 
with it. In the brain graphs studied above, the hierarchical organisation of simplicial complexes reduces the 

Figure 2.  Assortative correlations among the degree of the neighbouring nodes (a), the degree distributions (b) 
and the scaled degree distributions (c) for the consensus female F- and male M-connectome at the different 
number of fibres NF, as the legend indicates. (d) Schematic view of the number of edges E and their co-
occurrence in the connectomes at the increasing number of fibres NF, see also Table 1. The common C F M&

-connectome at a large NF, inherits all edges from the C F M&  at a lower NF, black lines, plus a fraction of the 
excess edges of the F-connectome, shown by pink lines. The top line (red) shows the number of robust excess 
edges in F-connectome which do not appear in any of the common C F M& -connectomes at a larger NF.

NF M F CF&M Fe0 Fec+ Fecc+ Fex

20000 776 1548 764 784 753 27 4

200000 4285 7634 4269 3365 2170 — 1195

1000000 7110 11339 7110 4229 — — ≥1195

Table 1.  For the number of launched fibres NF, the corresponding number of edges are shown in the consensus 
male (M) and female (F) connectomes, the edges C F M&  common to F&M connectomes, and the total number 
Fe0 of excess edges in the F-connectome; the fractions of Fe0 indicated as Fec+ and Fecc+ are the edges that appear 
in the common connectomes at the two higher NF, respectively, while Fex are the excess edges also at the higher 
NF. The difference between M and CF&M at 20 K and 200 K consists of 12 and 16 edges, which all appear in CF&M 
at 1000 K.
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distances between nodes in the graph’s metric space, which implies their hyperbolicity. Here, using the 4-point 
Gromov criterion (see Methods), the hyperbolicity parameters are determined for F- and M-connectomes 
obtained by varying the number of fibres NF. In this context, we consider the corresponding adjacency matrix of 
the largest connected cluster as an unweighted symmetrical graph. Figure 5A shows the results for the largest 
available =N K1000F . In the bottom panels, the histograms of the distances between all pairs of vertices are 
plotted. Although the diameter D = 8 applies to both graphs, typical distances in the F-connectome appear to be 
smaller. In the top panels, we plot the values of the δ-parameter against the minimum distance dmin of a given 
4-tuple, as described in Methods. Specifically, lower sets of curves represent the average value δ〈 〉 for a given dmin. 
Whereas the top lines contain the recorded maximum value δmax from all considered 4-tuples.

We observe that the values of δ〈 〉 are very low, practically never exceed 0.25, which suggests the impact of the 
types of local structures populated by cliques. They are 0-hyperbolic subgraphs (atoms)52 and induced cycles, 
whose hyperbolicity depends on the length of the cycle and can be expressed as a multiple of 1/448. Moreover, 
δ = 3/2max  suggests that dominant isometric subgraphs, which determine the value of δmax for the whole graph54 
in both connectomes, can be cycles Cn that have ≥n 6 but with the diameter ≥D 3. While we regularly obtain 
δ = 3/2max  in the M-connectome, it was necessary to sample 109 different 4-tuples to find it in the F-connectome. 
Meanwhile, the value of δ = 1max  occurs often in the F-connectome. It suggests that the dominant subgraphs can 

Figure 3.  Networks of connections established among labelled brain regions at different numbers of launched 
fibres NF: (a) Common M&F connectome at =N K200F  and (c) common M&F connectome at =N K1000F , 
the weights of M-connectome are shown. (b,d) The patterns of the additional edges appearing in the 
F-connectome (F-excess), which are not present in the M-connectome at NF = 200 K and =N K1000F , 
respectively. The numbers of edges in the corresponding graph are indicated at each figure. The number of edges 
is inherited in the target graph at =N K1000F  from the graphs at =N K200F . Explicitly, the graph (c) inherits 
all edges from the graph (a). The 2170 edges from the graph (b) appear in the common connectome (c), whereas 
1195 edges of the graph (b) are inherited as the excess edges in the graph (d).
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be composed of cliques that are one-edge apart, which, according to the results in32,52, yields that δ δ= + 1max clique  
or they contain short cycles isomorphic to 4-cycle48. The situation is considerably different at the lower number of 
fibres where both F- and M-connectomes have gradually fewer edges (see Table 1). Consequently, the distances 
between vertices increase as well as the diameters of the graphs. The increased distances lead to the appearance of 
larger cycles and yield the distortion of the hyperbolicity parameter51 while the graphs remain hyperbolic; we find 
the upper bound δ ≤ 4max  in both connectomes, as shown in Fig. 5B.

The structure of common F&M-connectome and the excess edges in Female connectome.  By 
performing the edge-by-edge comparisons in the corresponding graphs, see Fig. 3, we identify every edge in 
terms of its source and destination vertex and the weight. For the highest NF, the common F&M-connectome 
consists of 7110 edges which coincide with the structure of the M-connectome, cf. Table 1 and Fig. 2. The corre-
sponding network of the M-connectome, as shown in Fig. 6a, possesses a characteristic community structure 
related to different anatomical brain regions. Apart from the heterogeneity of the structure due to different 
degrees and weights of edges, this community structure is essential for the brain functional complexity39–45 for 
both F- and M-connectomes. As mentioned above, the F-connectome possesses an extra structure on the top of 
the common F&M-connectome; it consists of many edges that connect different brain regions. The number of the 
extra edges varies with the number of launched fibres NF, as shown in Table 1. A subgraph of the identified excess 
edges in the F-connectome, here termed F-excess1195, consists of 1195 edges which systematically appear in the 
F-connectome, first at =N K200F  and then at =N K1000F  with increased weights; these edges are not present 
in the corresponding M-connectomes, and thus are not part of the universal F&M-connectome at the largest NF. 
A part of this graph, containing only the edges of a substantial weight, is shown in Fig. 6b. In the Supplementary 

Figure 4.  The components of three structure vectors defined in Methods (FSV,SSV, TSV) plotted against the 
topology level q for the consensus connectomes determined from 100 male (left) and 100 female (right) subjects 
with the varied number of fibres NF, indicated in the legend.

Graph 〈k〉 〈〉 〈Cc〉 ρ mod D δmax qmax

F-conn (Fig. 1) 12.07 3.45 0.69 0.025 0.59 (6) 8 3/2 20 (1)

M-conn (Fig. 6a) 7.01 3.97 0.67 0.014 0.62 (6) 8 3/2 13 (6)

F-excess (Fig. 3d) 4.17 4.36 0.13 0.008 0.654 11 5/2 3 (149)

F-excess1195 (Fig. SI-3) 1.77 5.91 0.064 0.005 0.689 17 4 2 (112)

F-excess1195w18 (Fig. 6b) 1.41 6.54 0.031 0.008 0.764 19 4 2 (18)

randomised-F-excess1195 0.94 9.95 0.006 0.003 0.898 30 5 2 (1)

Table 2.  Summary of graph parameters for the F-connectome and the M-connectome (which is equivalent to 
the common F&M-connectome) and the excess edges (F-excess) in the F-connectome at 1000 K. The 
parameters of the F-excess1195 and its subgraph with large weights of edges F-ex1195w18, as well as its 
randomised version are shown. The quantities are computed for undirected graphs: the average degree 〈k〉, path 
length 〈〉 and clustering coefficient 〈Cc〉, the graph’s density ρ, modularity mod and (the number of 
communities), diameter D, hyperbolicity parameter δmax, and the highest topology level qmax with the number 
(Qq) of the simplexes of that order.
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Information list L-I, the names of source and target brain regions of these edges are given. The complete graph 
F-excess1195 is also shown in Fig. SI-3.

It should be stressed that the excess edges observed in the F-connectome are attached to the central brain 
graph, the common F&M-connectome, at a large number of vertices. By considering F-excess as a separate graph, 
cf. Fig. 6b, we observe that these excess edges make nonrandom patterns and have a significant variation in 
weights (cf. Fig. SI-1); they involve 348 different brain areas in both hemispheres as well as the edges that connect 
the left and right hemispheres. The properties of the F-excess1195 subgraph are also summarised in Table 2, and 
the distribution of distances P(d), as well as the hyperbolicity parameters with δ = 4max  are shown in Fig. 5B. 
Noticeably, the pattern of these extra connections in the F-connectome adds some larger cycles and 112 triangles. 
However, they are well embedded in the structure of the F&M-connectome, such that they do not appear as iso-
morphic cycles, and, consequently, do not increase the hyperbolicity parameter of the F-connectome. For com-
parison, we show the corresponding features of the randomised version of the F-excess1195 graph. Note that for 
this purpose we randomise the edges within each hemisphere separately while keeping the cross-hemisphere edges 
intact, so that the brain anatomical structure is observed. The parameters of the randomised graph are also shown 
in Table 2. Note that several other graph-theoretic properties, see the studies in reference22, also differ in female 
and male connectomes.

Discussion
By analysing the HCP data provided at the Budapest connectome server, we acquired three sets of networks rep-
resenting the consensus female and male connectomes at different numbers of launched fibres 20 K, 200 K, and 
1000 K. In addition to the standard graph parameters, by using algebraic topology methods we discovered a latent 
geometry that encodes higher-order connections in these brain graphs. Our main findings are:

•	 Higher-order connectivity of the common F&M-connectome. We have shown that the human connectome, 
consisting of the edges that are common to both F&M connectomes, possesses a hidden structure beyond the 
node’s pairwise connectivity. The higher-order connections between the groups of brain regions are suitably 
encoded by simplexes organised into larger complex structures and quantified by structure vectors, cf. Fig. 4. 
Remarkably, the complexity of the human connectome increases with the number of launched fibres, reach-
ing the simplicial complexes of the order + =q 1 14max  at =N K1000F . Specifically, there are six such 
cliques, which contain nodes in different brain modules (see Fig. SI-2 and the list L-I in Supplementary Infor-
mation). We note that these simplicial complexes belong to different communities, which are anatomical 
mesoscopic structures of the brain graphs, cf. Fig. 6a. This architecture of connections in the brain graphs can 
be characterised by the tools of hyperbolic geometry. In particular, we find that they are Gromov hyperbolic 
graphs with small hyperbolicity constant δ = 3/2max , which characterises both F- and M-connectomes at 
1000 K launched fibres. Hyperbolicity varies with the network density, which is directly related to NF. In con-
trast, randomised (separately within each hemisphere) links exhibit much smaller simplexes ( =q 3max

rand ) and 
increased hyperbolicity parameter that points to larger cycles. These findings indicate that the brain func-
tional geometry consists of massive simplicial complexes as part of anatomical communities within each 
hemisphere as well as cycles that connect different regions inside and between the two hemispheres. 

Figure 5.  (A) Hyperbolicity parameters δmax (upper curves, full lines) and δ〈 〉 (lower curves, dashed lines) 
plotted against dmin for the female and male consensus connectomes for NF = 1000 K fibres launched. Three lines 
1,2 and 3 are for 107, 108 and 109 sampled 4-tuples, respectively. Bottom row: The distribution P(d) of the 
shortest-path distances d for the corresponding female and male connectomes. (B) Hyperbolicity parameters 
δmax and δ〈 〉 (top panels) and the shortest-path distances distribution (bottom panels) of the consensus female 
and male connectomes for the numbers of fibres NF = 20 K and 200 K indicated on the panel, and for the excess 
edges in the female connectome at 200 K, described in the text as F-excess1195. The number of sampled 4-tuples 
is 109.
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Understanding the potential implications of hyperbolicity for the integration-segregation dynamics of the 
brain circuits remains an open question for future study.

•	 Structure of the excess edges in F-connectomes. F-connectome systematically appears to be better connected, 
i.e., has a more significant number of edges at every NF. Here, a more detailed inspection of the source-and-
target brain region and the weight that identifies an edge indicates that two groups of excess edges occur: 
(1) The edges appearing in the F-connectome at a relatively low number of fibres which can appear in the 
M-connectome but only if a much larger number of fibres is launched; (2) The edges that robustly appear only 
in the F-connectome and have not been established in the M-connectome, including the highest available 
number 1000 K of fibres. From the second group, the identity of 1195 edges that first appear at 200 K in the 
F-excess subgraph and are not present in the common F&M-connectome at 1000 K are given in Supplemen-
tary Information. In particular, Fig. SI-3 shows the complete graph, while the list L-II contains only the edges 
with large weights. A comparison with the (inside the hemisphere) randomised graph has shown that these 
F-excess edges, considered as a separate graph, also have an organised structure involving a large number of 
brain regions, cf. Fig. 6b. Direct analysis and its hyperbolicity parameter suggest a geometry dominated by 
cycles and small simplexes.

To summarise, our study reveals how the functional geometry of human connectome can be expressed by 
higher-order connectivity, described by simplicial complexes and induced cycles. This kind of structure is built 
into the anatomical communities of the brain at the mesoscopic scale in both brain hemispheres. However, the 
precise role of these simplicial complexes for the dynamical segregation in brain functional complexity remains 
to be better understood. In this context, the developed methodology provides new topological measures of the 
consensus brain networks and quantifies the perceptive differences between connectomes. Specifically, in the 
studied female and male consensus connectomes, a part of connections is more natural to invoke in the female 
than in the male brain, where much more fibres need to be launched to identify them. Whereas the other fraction 
of such connections consists of edges that appear exclusively in the consensus female connectome, they have not 
been identified in the consensus male connectome.

It should be stressed that the considered consensus networks represent a kind of typical structures with the 
fixed number of vertices as 1015 brain regions while the edges are common for all 100 male and similarly for all 
100 female, recorded within HCP in a representative set of (young and healthy) individuals. Note that, in each 
particular subject, the number of brain connections can deviate, e.g., being even considerably more abundant 
than in the respective consensus network. Moreover, the structure of possible connections is expected to vary 
with age, particular practice and with a development of diseases. Based on the brain imaging data, the methodol-
ogy developed in this work would be suitable to reveal subtle differences between pairs of brains as well as changes 
in the brain of the same individual. Similar studies have been done with the patterns induced by the brain sponta-
neous fluctuations and content-related activity recorded by EEG27,30,71, complementing the traditional methods. 
The application of our methodology to these issues warants a separate study which would include a more detailed 
investigation of the role of orientation and the weights of the edges.

Figure 6.  (a) The common F&M-connectome at =N K1000F  with labelled brain regions belonging to the 
brain anatomical communities, indicated by different colours. Weights of the edges are from the 
M-connectome. (b) The robust structure of the excess connections among brain regions (labels) in the 
consensus female connectome that cannot be found in the consensus male connectome with up to 1000 K fibres 
launched. Different colours indicate weighted communities. We show only the 490 edges with the significant 
weight in the tale of the weight distribution, cf. Fig. SI-1, and the involved 348 brain regions.
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Conclusions
Our analysis has revealed that the human connectome possesses a hyperbolic geometry and a complex struc-
ture on the scale between the node’s edges and the mesoscopic anatomical communities within the cerebral 
hemispheres. This structure, composed of simplicial complexes of different sizes and cycles that connect them, 
accurately describes the higher-order connectivity among different regions of the brain, divided into anatomi-
cal modules. Therefore, it can provide a reliable basis for understanding the functional complexity of the brain. 
Moreover, the female connectome appears to have a structure different from the common F&M-connectome, not 
only in the number of edges but also in its organisation expressed by these higher-order connections. It might be 
conjectured that these excess connections imply additional functionality of the female connectome, which can 
have evolutionary, biological, biochemical, and even social origins. These issues go beyond our mathematical 
analysis of brain graphs. However, we believe that our findings can motivate further studies to better understand 
the origin and functional consequences of the apparent gender differences in the human connectome.

Data Availability
All data used in this work are available from the Budapest reference connectome 3.0, https://pitgroup.org/con-
nectome/.
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