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Abstract: The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response 
to various environmental inputs, especially amino acids. In fact, the activity of mTORC1 is highly sensitive to changes 
in amino acid levels. Over past decades, a variety of proteins have been identified as participating in the mTORC1 
pathway regulated by amino acids. Classically, the Rag guanosine triphosphatases (GTPases), which reside on the 
lysosome, transmit amino acid availability to the mTORC1 pathway and recruit mTORC1 to the lysosome upon amino 
acid sufficiency. Recently, several sensors of leucine, arginine, and S-adenosylmethionine for the amino acid- 
stimulated mTORC1 pathway have been coming to light. Characterization of these sensors is requisite for under-
standing how cells adjust amino acid sensing pathways to their different needs. In this review, we summarize recent 
advances in amino acid sensing mechanisms that regulate mTORC1 activity and highlight these identified sensors that 
accurately transmit specific amino acid signals to the mTORC1 pathway. 
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1  Introduction 
 

The mechanistic target of rapamycin complex 1 
(mTORC1), evolutionally conserved from yeast to 
mammalian, acts as a central signaling hub that inte-
grates nutrients, growth factors, and energy to regu-
late many anabolic and catabolic processes, ultimately 
controlling cell growth and metabolism (Chantranupong 
et al., 2015; Saxton and Sabatini, 2017). Deregulation 
of mTORC1 frequently happens in pathophysiological 
conditions, especially in cancer. 

The target of rapamycin (TOR) gene was originally 
identified in yeast mutants resistant to rapamycin 
which binds to the peptidyl-prolyl-isomerase FKBP12 
(Heitman et al., 1991; Koltin et al., 1991). Subsequently, 
four groups independently discovered a protein which 
is a homolog of the yeast TOR directly interacting 
with FKBP12-rapamycin in the mammal, and named 
the protein FKBP12-rapamycin-associated protein, 
rapamycin and FKBP12 target 1, rapamycin target 1, 
and mammalian TOR (mTOR), respectively (Brown 
et al., 1994; Chiu et al., 1994; Sabatini et al., 1994; 
Sabers et al., 1995). Early functional studies showed 
that mTOR carries out kinase activity to directly 
phosphorylate ribosomal protein S6 kinase 1 (S6K1) 
and eukaryotic translation initiation factor 4E-binding 
protein 1 (4EBP1), which can be regulated by amino 
acids (Burnett et al., 1998; Hara et al., 1998). However, 
alterations in amino acid sufficiency or rapamycin 
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failed to change the kinase activity of mTOR, which 
implies that mTOR might function as a complex. 

In addition to mTOR, mTORC1 is composed of 
regulatory associated protein of mTOR (Raptor) (Hara 
et al., 2002; Kim et al., 2002), mammalian lethal with 
SEC13 protein 8 (mLST8, also named as GβL) (Kim 
et al., 2003), proline-rich Akt substrate of 40 kDa 
(PRAS40) (Oshiro et al., 2007; Sancak et al., 2007; 
Vander Haar et al., 2007; Wang et al., 2007), and 
dishevelled, Egl-10 and pleckstrin (DEP) domain 
containing mTOR-interacting protein (DEPTOR) (Pe-
terson et al., 2009). Recently, study of the architecture 
of human mTORC1 revealed that mTORC1 is a dimer 
of heterotrimer mTOR-Raptor-mLST8 (Aylett et al., 
2016; Yang et al., 2016). Co-crystal structure of 
PRAS40 and mTOR-mLST8 demonstrated that PRAS40 
also binds with FKBP12-rapamycin complex binding 
domain and mLST8 WD40 domain to achieve its 
inhibition of mTORC1 (Yang et al., 2017). 

Amino acids serve as building blocks for protein 
and polypeptide synthesis, and molecular signal trans-
ducers to regulate diverse metabolic processes in 
animals (Layman et al., 2015). Defects in amino acid 
sensing pathways such as the mTORC1 pathway are 
linked to human diseases including immunodefi-
ciency syndrome, cancers, and Birt-Hogg-Dube syn-
drome (Shimobayashi and Hall, 2016). In addition, 
amino acids have been proved to efficiently activate 
mTORC1. This increases the phosphorylation of sub-
strates S6K1 and 4EBP1 to stimulate anabolic processes 
such as protein synthesis, and unc-51 like autophagy 
activating kinase 1 (ULK1) complex to suppress au-
tophagy (Jewell et al., 2013). However, different amino 
acids regulate mTORC1 in distinct ways. Here, we 
discuss the precise mechanism of specific amino acid 
sensing in the regulation of the mTORC1 pathway. 

 
 
2  Regulation of the mTORC1 pathway 

2.1  Key sites of amino acid signaling to mTORC1 

2.1.1  Plasma membrane 

Amino acid transporters at the plasma membrane, 
which are responsible for amino acid exchange be-
tween the extracellular and intracellular microenvi-
ronments, play a role in the regulation of mTORC1 
activity (Taylor, 2014). The solute carrier family 

(SLC) 1 member 5 (SLC1A5), a high-affinity gluta-
mine transporter, is required for mTORC1 activation. 
SLC7A5 forms a heterodimer with SLC3A2 and the 
heterodimer functions as the bidirectional antiporter 
for the exchange of intracellular L-glutamine which is 
accumulated by SLC1A5 for extracellular branched 
chain amino acids such as leucine, contributing to 
activation of the mTORC1 pathway eventually (Nicklin 
et al., 2009) (Fig. 1). 

2.1.2  Golgi apparatus 

Golgi apparatus was reported as a potential 
platform for the activation of mTORC1 by amino 
acids (Thomas et al., 2014; Fan et al., 2016). Mecha-
nistically, small guanosine triphosphatases (GTPases) 
Ras-related protein Rab-1A (Rab1A) and Ras hom-
olog enriched in brain (Rheb) in coordination activate 
mTORC1 independently of Rag. Rab1A mediates the 
amino acid signal to mTORC1 on the Golgi apparatus, 
where Rheb localizes and activates mTORC1 (Thomas 
et al., 2014). However, how amino acid signal is 
transmitted to Rab1A is unclear, and amino acid 
sensors for Rab1A- and Golgi-dependent mTORC1 
pathway need further investigation. 

2.1.3  Lysosome 

The roles of lysosome in nutrient degradation, 
recycling, and signaling cooperate to regulate fun-
damental cellular processes such as nutrient sensing 
(Perera and Zoncu, 2016). Classically, amino acid signals 
transmitted to mTORC1 originate from the lysosomes 
(Sancak et al., 2010; Zoncu et al., 2011). Cell-free 
reconstitution of intact lysosomes and mTORC1 induced 
colocalization of lysosomes and mTORC1 upon amino 
acid sufficiency. However, lysosomes which have 
defects in amino acid accumulation inhibit translocation 
of mTORC1. These results suggested that the lysosome 
is the major site of amino acid signaling to mTORC1. 
RNA interference (RNAi) of lysosomal proteins in 
Drosophila cells discovered that vacuolar H+-adenosine 
triphosphatase (V-ATPase) is required for amino acid- 
dependent lysosomal recruitment and activation of 
mTORC1. V-ATPase interacts with Ragulator, Rag 
GTPases, and SLC38A9, involving both amino acid 
sensing and efflux from lysosome (Zoncu et al., 2011; 
Abu-Remaileh et al., 2017; Wyant et al., 2017). To-
gether, lysosomal amino acid signaling to mTORC1 
requires a V-ATPase-associated inside-out mechanism. 
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2.2  Tuberous sclerosis complex-Rheb GTPase 
 
The Rheb and Ras-related guanosine triphosphate 

(GTP)-binding (Rag) proteins in coordination regu-
late mTORC1 activity on the lysosomal surface in 
response to a range of environmental cues including 
amino acids, growth factors, and energy levels (Saito 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
et al., 2005; Buerger et al., 2006; Kim et al., 2008; 
Sancak et al., 2008). Tuberous sclerosis complex 
(TSC), composed of TSC1, TSC2, and TBC1D7, 
functions as a GTPase-activating protein (GAP) for 
GTP-loading Rheb which binds directly with and 
allosterically stimulates mTORC1 (Manning et al., 
2002; Tee et al., 2003; Long et al., 2005; Dibble et al., 

Fig. 1  Sensors for the mTORC1 pathway regulated by amino acids 
Schematic shows amino acid-sensing pathway upstream of mTORC1, including several complexes that control Rag 
GTPases, and amino acid sensors Sestrin2, LARS, CASTOR1, SLC38A9, and TM4SF5, as well as SAM sensor SAMTOR. 
mTORC1: mechanistic target of rapamycin complex 1; SLC1A5: solute carrier family (SLC) 1 member 5; CASTOR1: 
cellular arginine sensor for mTORC1 protein 1; SAM: S-adenosylmethionine; SAMTOR: SAM sensor upstream of 
mTORC1; V-ATPase: vacuolar H+-adenosine triphosphatase; FLCN: folliculin; FNIP: FLCN-interacting protein; LARS: 
leucyl-tRNA synthetase; TM4SF5: transmembrane 4 L six family member 5; Raptor: regulatory-associated protein of 
mTOR; DEPTOR: dishevelled, Egl-10 and pleckstrin (DEP) domain containing mTOR-interacting protein; mLST8: 
mammalian lethal with SEC13 protein 8; PRAS40: proline-rich Akt substrate of 40 kDa; MP1: mitogen-activated protein 
kinase (MAPK) kinase 1 binding partner 1; HBXIP: hepatitis B virus X-interacting protein; GATOR1/2: GAP activity to-
ward the Rag GTPases 1/2; Nprl2: nitrogen permease regulator 2-like protein; DEPDC5: DEP domain containing 5; Mios: 
meiosis regulator for oocyte development; Seh1L: Sec13-like protein; WDR24: WD repeat-containing protein 24; 
KICSTOR: named for kaptin (KPTN), integrin-α FG-GAP repeat-containing protein 2 (ITFG2), C12orf66, and seizure 
threshold 2 (SZT2)-containing regulator of mTORC1; GTP: guanosine triphosphate; GDP: guanosine diphosphate 
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2012; Yang et al., 2017). Growth factors promote 
protein kinase B (PKB)/Akt-mediated phosphoryla-
tion of TSC2, contributing to dissociation of TSC2 
from the lysosome to activate Rheb and mTORC1 
(Inoki et al., 2002; Potter et al., 2002; Menon et al., 
2014). In contrast, energy starvation stimulates adeno-
sine monophosphate (AMP)-activated protein kinase 
(AMPK)-induced phosphorylation of TSC2, enhancing 
the interaction of TSC2-Rheb to inhibit Rheb and 
mTORC1 (Inoki et al., 2003). In addition to these 
inputs, amino acids are thought to be presented to 
mTORC1 in a completely different way. Under amino 
acid sufficiency, the Rag GTPases recruit mTORC1 
to the lysosomal surface (Kim et al., 2008; Sancak  
et al., 2008). Surprisingly, arginine and growth fac-
tors collectively promote TSC dissociation from the 
lysosome thereby activating Rheb and mTORC1 
(Carroll et al., 2016). Under amino acid starvation, 
TSC relocates to the lysosome through the recruitment 
of Rag GTPases and stimulates GTP hydrolysis from 
Rheb, resulting in complete inactivation of mTORC1 
(Demetriades et al., 2014). In conclusion, TSC-Rheb 
is essential for mTORC1 mediated by various mi-
croenvironmental factors, including amino acids. 

2.3  Rag GTPases 

The landmark discovery in understanding the 
regulation of mTORC1 pathway by amino acids is the 
identification of Rag GTPases that mediate amino 
acid signaling to mTORC1. The Rag GTPases have 
four Rag proteins in the mammal: functionally equiv-
alent RagA or RagB (RagA/B) forms a heterodimer 
with functionally equivalent RagC or RagD (RagC/D) 
(Schürmann et al., 1995; Sekiguchi et al., 2001). In 
yeast, Gtr1, a homolog of RagA/B, interacts with Gtr2, 
a homolog of RagC/D (Hirose et al., 1998; Nakashima 
et al., 1999). Using chemical purification of the Raptor 
in HEK293 cells (Sancak et al., 2008) and RNAi 
screen of 132 GTPases in Drosophila cells (Kim et al., 
2008), Rag GTPases were identified as participating 
in mTORC1 mediated by amino acids. Loss of the 
Rag GTPases in the mammal and Drosophila cells 
caused mTORC1 inactivity in response to amino acid 
sufficiency (Kim et al., 2008; Sancak et al., 2008). 
Neonatal mice with a constitutively active allele of 
RagA which stimulates the activity of mTORC1 in 
nutrient starvation failed to induce autophagy and 
survive the fasting periods (Efeyan et al., 2013). 

Overall, the Rag GTPases play a central role in the 
amino acid-mediated mTORC1 pathway (Fig. 1). 

Importantly, the guanine nucleotide-loading status 
of the Rag heterodimer controls Rag activity and 
regulates mTORC1 lysosomal localization and activity. 
When cells are rich in amino acids, activated Rag 
heterodimer in which RagA/B is loaded with GTP 
while RagC/D is loaded with guanosine diphosphate 
(GDP) (RagA/BGTP-RagC/DGDP) enhances the Rag 
GTPases-Raptor interaction, and recruits mTORC1 to 
the lysosome (Kim et al., 2008; Sancak et al., 2008, 
2010). Instead, GDP-loaded RagA/B in complex with 
GTP-loaded RagC/D (RagA/BGDP-RagC/DGTP) in-
hibits mTORC1 activity. A recent study has shed light 
on a “locking mechanism” of the nucleotide-binding 
status of the Rag heterodimer (Shen et al., 2017). In 
brief, loading GTP with one subunit of the Rag het-
erodimer inhibits the GTP-loading and triggers GDP- 
loading with another subunit. If unexpected GTP 
loading with both subunits occurs, the subunit with 
the later-loaded GTP induces faster hydrolysis. In 
addition, nutrient-induced alteration of the nucleotide- 
loading state of Rag heterodimer as an affinity switch 
governs the dynamic interactions between Rag GTPases, 
mTORC1, and Ragulator (Lawrence et al., 2018). 
RagA/BGTP-RagC/DGDP exhibits higher affinity for 
mTORC1, but reduces lysosomal association with 
Ragulator, leading to a decrease of the lifetime  
of mTORC1 on the lysosome. However, although 
RagA/BGDP-RagC/DGTP shows higher affinity for Ra-
gulator, it is unable to capture mTORC1 dispersed in 
cytoplasm. 

2.4  Regulation of the Rag GTPases 

The guanine nucleotide-loading status of GTPases 
is regulated by multiple factors including GAPs that 
stimulate GTP hydrolysis, guanine nucleotide ex-
change factors (GEFs) that facilitate GDP dissocia-
tion, and the guanine nucleotide dissociation inhibi-
tors that prevent GDP dissociation. 

2.4.1  GEFs for the Rag GTPases 

To identify the interacting proteins of the Rag 
GTPases, Ragulator was discovered as a pentameric 
complex of p18, p14, mitogen-activated protein kinase 
(MAPK) kinase 1 binding partner 1 (MP1), C7orf59, 
and hepatitis B virus X-interacting protein (HBXIP), 
also known as late endosomal and lysosomal adaptor 
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and MAPK and mTOR activator (LAMTOR) complex 
of LAMTOR1 to LAMTOR5, respectively (Sancak  
et al., 2010; Bar-Peled et al., 2012). With the absence 
of Ragulator components in cells, the Rag GTPases 
fail to reside on the lysosome, and recruit mTORC1 to 
the lysosomal surface, leading to the mTORC1 pathway 
inactivation (Sancak et al., 2010; Bar-Peled et al., 2012). 
Myristoyl and palmitoyl modifications of LAMTOR1 
are required for Ragulator specific localization to the 
lysosome (Nada et al., 2009). Structure of the complex 
Rag GTPases and Ragulator (Rag-Ragulator) demon-
strated that C-terminal domains of Rags directly bind 
with LAMTOR2-LAMTOR3, and LAMTOR1 bridges 
LAMTOR2-LAMTOR3 with LAMTOR4-LAMTOR5 
and enhances Rag-Ragulator interaction (de Araujo  
et al., 2017; Su et al., 2017; Yonehara et al., 2017; 
Zhang et al., 2017). Thus, Ragulator tethers the Rag 
GTPases to the lysosomal membrane. 

The nucleotide loading state of the Rag GTPases 
is also important for its interaction with Ragulator. 
Nucleotide-free Rag GTPases bind to Ragulator more 
strongly than nucleotide-loading. Ragulator acceler-
ates both GTP and GDP dissociation from RagA/B 
(Bar-Peled et al., 2012). Moreover, silencing LAMTOR2, 
RagB is unable to load GTP under a leucine stimula-
tion condition (Lee et al., 2018). These results indi-
cate that Ragulator is a GEF for RagA/B. However, a 
recent study has shed light on the mechanism acti-
vating the Rag GTPases by SLC38A9 and Ragulator 
which function as GEFs for RagA and RagC, respec-
tively (Shen and Sabatini, 2018). First, Ragulator 
accelerates GTP release from RagC, not RagB, thus 
opening up the nucleotide-binding pocket. Second, 
SLC38A9 promotes GDP release from RagA. 

2.4.2  GATOR functions as a GAP for RagA/B 

GAP activity toward the Rag GTPases (GATOR) 
complex is an octamer of two subunits including 
GATOR1 (DEP domain containing 5 (DEPDC5), 
nitrogen permease regulator 2-like protein (Nprl2), 
Nprl3) and GATOR2 (meiosis regulator for oocyte 
development (Mios), Sec13, Sec13-like protein (Seh1L), 
WD repeat-containing protein 24 (WDR24), WDR59). 
Lack of components of GATOR1 and GATOR2 
caused mTORC1 to be insensitive to amino acid 
deprivation and sufficiency, respectively, indicating 
that GATOR1 and GATOR2 are functionally con-
trary regulators for mTORC1 (Bar-Peled et al., 2013). 

GATOR1 binds to, and stimulates GTP hydrolysis of 
RagA/B, suggesting that GATOR1 is a GAP for 
RagA/B (Bar-Peled et al., 2013). The architecture of 
GATOR1 and GATOR1-Rag visualized by cyro- 
electron microscopy delineated that Nprl2 connects 
DEPDC5 and Nprl3, and DEPDC5 directly binds to 
RagA (Shen et al., 2018). However, further bio-
chemical assays showed that Nprl2-Nprl3, not DEPDC5, 
receives amino acid signals from GATOR2 and ex-
ecutes the GAP activity to RagA. Interestingly, an 
inhibitory mode of GATOR1-Rag interaction has 
been identified such that a high-affinity binding of 
DEPDC5 and RagA prevents Nprl2-Nprl3-mediated 
GAP activity toward RagA. 

Several factors are involved in GATOR1-Rag 
interaction. KICSTOR (named for kaptin (KPTN), 
integrin-α FG-GAP repeat-containing protein 2 (ITFG2), 
C12orf66 and seizure threshold 2 (SZT2)-containing 
regulator of mTORC1) was discovered to bind and 
recruit GATOR1 complex on the lysosomal mem-
brane regardless of amino acid levels. Loss of SZT2 
released the inhibitory function of GATOR1 by dis-
sociation from Rags, which contributes to mTORC1 
persistent activation upon amino acid deprivation, 
showing that KICSTOR negatively regulates mTORC1 
through promoting GATOR1-Rag interaction (Peng 
et al., 2017; Wolfson et al., 2017). In contrast to 
KICSTOR, tyrosine kinase Src positively regulates 
mTORC1 through disrupting GATOR1-Rag interac-
tion (Pal et al., 2018). 

Ubiquitination plays a role in GATOR1-Rag in-
teraction. E3 ubiquitin ligases S-phase kinase-associated 
protein 2 (Skp2) and RING finger protein 152 (RNF152) 
mediate K63-linked ubiquitination of RagA and re-
cruit GATOR1 to the lysosomal surface in an amino 
acid-dependent manner (Deng et al., 2015; Jin et al., 
2015). Deng et al. (2015) suggested that amino acid 
starvation increases RNF152-mediated RagA ubiqui-
tination and its interaction with GATOR1 which in-
hibits RagA GTPase activity, eventually leading to 
mTORC1 inactivity. Surprisingly, Jin et al. (2015) 
revealed that, conversely, replenishing amino acid after 
starvation promotes Skp2-mediated RagA ubiquiti-
nation and its interaction with GATOR1. This is 
likely a negative feedback to control mTORC1 hy-
peractivity. In addition, E3 ubiquitin ligase Kelch-like 
protein 22 (KLHL22)-induced K48-linked polyubiq-
uitination and degradation of DEPDC5 release the 
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inhibitory function of GATOR1, contributing to acti-
vating mTORC1 under a condition of amino acid 
repletion (Chen et al., 2018). 

2.4.3  FLCN-FNIP functions as a GAP for RagC/D 

Folliculin (FLCN), an evolutionally conserved 
protein, interacts with FLCN-interacting protein 1/2 
(FNIP1/2) and is involved in the mTORC1 pathway 
(Baba et al., 2006; Hasumi et al., 2008; Takagi et al., 
2008). Subsequent studies showed that FLCN-FNIP 
shifts to the lysosome and binds with the Rag GTPases 
in the absence of amino acids. Loss of FLCN-FNIP in 
cells suppressed lysosomal recruitment of mTORC1 
and desensitized the mTORC1 pathway to amino 
acids, indicating that FLCN is necessary for mTORC1 
regulation by amino acids (Petit et al., 2013; Tsun  
et al., 2013). Tsun et al. (2013) further suggested that 
FLCN-FNIP functions as a GAP for RagC/D and 
promotes GTP hydrolysis of RagC/D. 

 
 

3  Sensors for the mTORC1 pathway regu-
lated by amino acids 
 

What properties should a sensor have in an 
amino acid-stimulated mTORC1 pathway? First, sen-
sors should bind directly with substrates at a physio-
logically relevant concentration (Table 1). Second, 
sensor-substrate interaction should be necessary for 
its function in the mTORC1 pathway. Third, sensors  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

should directly or indirectly signal amino acid avail-
ability to the mTORC1 pathway. Several sensors have 
been identified for the mTORC1 pathway stimulated 
by leucine, arginine, and methionine (Fig. 1). 

3.1  Sensors for arginine-mediated mTORC1 

Arginine can significantly regulate mTORC1 
signaling, and deprivation of arginine strongly sup-
presses mTORC1 in various cell types. Recently, 
arginine sensors have been found for the mTORC1 
pathway, including CASTOR1, SLC38A9, and 
TM4SF5. 

3.1.1  CASTOR1 

Cellular arginine sensor for mTORC1 protein 1/2 
(CASTOR1/2), initially named GATS protein-like 
3/2, was found to be a GATOR2-interacting protein 
and cytosolic arginine sensor (Huttlin et al., 2015; 
Chantranupong et al., 2016). Sequence analysis re-
vealed that CASTOR1 has two conversed aspartate 
kinase, chorismate mutase, tyrA (ACT) domains which 
have important roles in small molecule binding, such 
as amino acids (Grant, 2006; Chantranupong et al., 2016), 
while structural analysis suggested that CASTOR1 
has four ACT domains (Gai et al., 2016; Saxton et al., 
2016b; Xia et al., 2016). Co-immunoprecipitation 
assay suggested that CASTOR1 and CASTOR2 
could form homodimers and heterodimers, but only 
CASTOR1 dimers, including CASTOR1-CASTOR1 
and CASTOR1-CASTOR2, interact with GATOR2  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Affinities of sensors for their substrates including leucine, arginine, SAM, and methionine and corre-
sponding intracellular and lysosomal concentrations of those substrates 

Amino acid/ 
metabolite 

Binding  
protein 

Kd/Ki/IC50 
(μmol/L) 

Intracellular concentration in 
HEK293T (μmol/L) 

Lysosomal concentration in 
HEK293T (μmol/L) 

Amino acid 
repletion 

Amino acid 
starvation 

Amino acid  
repletion 

Amino acid 
starvation 

Leucine Sestrin1 10–15 192.55 20.25 53.99 48.09 

Sestrin2 20 

LARS 45 

Arginine CASTOR1 30 344.29 38.68 119.42 73.66 

SLC38A9 100–200 

TM4SF5 10.5–37.9 

SAM SAMTOR 7 33.24 Unknown 3.63 Unknown 

Methionine Unknown Unknown 157.48 19.49 118.18 53.77 

SAM: S-adenosylmethionine; LARS: leucyl-tRNA synthetase; CASTOR1: cellular arginine sensor for mTORC1 protein 1; SLC38A9: 
solute carrier family 38 member 9; TM4SF5: transmembrane 4 L six family member 5; SAMTOR: SAM sensor upstream of mTORC1; 
Kd/Ki/IC50: dissociation constant or inhibition constant or half maximal inhibitory concentration. Data from Chen et al. (2011), Han et al. 
(2012), Chantranupong et al. (2016), Wolfson et al. (2016), Abu-Remaileh et al. (2017), Gu et al. (2017), Wyant et al. (2017), and Jung  
et al. (2019) 
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in an arginine-sensitive manner. Under arginine de-
pletion condition, GATOR2 binds to the CASTOR1 
dimers. In contrast, re-addition of arginine triggers 
dissociation of GATOR2 from CASTOR1 dimers 
(Chantranupong et al., 2016). In addition, dimeriza-
tion of CASTOR1 is important for its interaction with 
GATOR2 and the mTORC1 pathway in response to 
arginine (Saxton et al., 2016b). Further binding assay 
revealed that arginine binds directly to CASTOR1 
dimers to disrupt CASTOR1-GATOR2 interaction 
(Chantranupong et al., 2016). Loss of CASTOR1 
resulted in the mTORC1 being insensitive to arginine 
deprivation. Also, a CASTOR1 mutant that could not 
bind to arginine has a defect in transmitting arginine 
sufficiency to the mTORC1. Altogether, CASTOR1 
is an arginine sensor for the mTORC1 pathway. 

3.1.2  SLC38A9 

According to the transporter classification da-
tabase, SLC38A9 belongs to the amino acid/auxin 
permease family which is characterized by 10 or 11 
transmembrane domains (Saier et al., 2016). In addi-
tion to the 11 transmembrane domains, SLC38A9 has 
a distinct about 110-residue cytosolic N-terminal 
domain (SLC38A9N) responsible for its interaction 
with Rag-Ragulator (Jung et al., 2015; Rebsamen  
et al., 2015; Wang et al., 2015). Overexpression of 
SLC38A9 or SLC38A9N renders mTORC1 activity 
resistant to amino acid starvation, especially arginine 
or leucine starvation. Lacking SLC38A9 confers argi-
nine, but not leucine, insensitivity on mTORC1 signal-
ing. Biochemical analysis suggested that SLC38A9 
interacts with Rag-Ragulator, which is dependent on 
SLC38A9N and sensitive to arginine. Interestingly, 
SLC38A9N also binds to Rag-Ragulator, and the 
interaction is insensitive to amino acid. Altogether, 
these results demonstrated that SLC38A9 is a candi-
date for an arginine sensor. 

The following study validated that SLC38A9 is a 
bona fide arginine sensor for mTORC1 (Wyant et al., 
2017). Mutants of SLC38A9 that could not bind  
to arginine or Rag-Ragulator fail to convey arginine 
sufficiency to mTORC1 in the SLC38A9-null cells. 
In vitro binding assay showed that arginine strengthens 
the interaction of SLC38A9 with Rag-Ragulator at a 
lysosomal arginine concentration of 100–200 μmol/L. 
However, in cells, arginine blunts the interaction of 
SLC38A9 with Rag-Ragulator (Wang et al., 2015). 

Recent work has shed light on the relationship be-
tween SLC38A9, Ragulator, and Rag GTPases (Shen 
and Sabatini, 2018). SLC38A9 preferentially binds  
to RagA/BGDP-RagC/DGTP heterodimer. Consequently, 
arginine deprivation which promotes the formation  
of RagA/BGDP-RagC/DGTP enhances interaction of 
SLC38A9 with Rag-Ragulator in cells. In vitro bind-
ing assay indicated that arginine promotes the inter-
action of Rag GTPases with SLC38A9. GDP-loaded 
RagA associates more strongly with SLC38A9 than 
GTP-loaded RagA. These results elucidated that the 
nucleotide state of Rag is the dominant effect on the 
mTORC1 pathway. 

Apart from being an arginine sensor for the 
mTORC1 pathway, SLC38A9 is also an effluxer for 
several essential amino acids, especially for leucine. 
Interestingly, lysine promotes the interaction of 
SLC38A9 and Rag-Ragulator, indicating that lysine 
could regulate mTORC1 through SLC38A9 (Wyant 
et al., 2017). In addition, SLC38A9 plays a crucial 
role in the lysosomal cholesterol-activated mTORC1 
pathway (Castellano et al., 2017). Altogether, SLC38A9 
is a complicated and multifunctional protein, and future 
work may focus on the exploration of high-resolution 
structures and other crucial functions of SLC38A9. 

3.1.3  TM4SF5 

Interestingly, a very recent study identified 
transmembrane 4 L six family member 5 (TM4SF5) 
as a potential lysosomal arginine sensor for the 
mTORC1 pathway (Jung et al., 2019). TM4SF5 is an 
N-glycosylated protein with four transmembrane 
domains, two extracellular loops, an intracellular loop, 
and two cytosolic terminal tails (Wright et al., 2000). 
TM4SF5, especially the extracellular loops which are 
in the lysosomal lumen, binds to arginine with an 
affinity that is compatible with the lysosome arginine 
concentration. Furthermore, the TM4SF5 mutant that 
could not bind to arginine has a defect in activating 
the mTORC1 pathway upon arginine sufficiency. 
Loss of TM4SF5 could partially inhibit the mTORC1 
pathway upon arginine sufficiency. Thus, TM4SF5 is 
a lysosomal arginine sensor. Surprisingly, TM4SF5 
interacts with another arginine sensor SLC38A9, and 
Jung et al. (2019) established a new model that 
TM4SF5 senses and signals lysosomal arginine to 
SLC38A9 which mediates arginine efflux, contrib-
uting to activation of the mTORC1 pathway. However, 
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the relationship between TM4SF5 and other compo-
nents of mTORC1 such as Rag GTPases, GATOR, 
Ragulator, and FLCN-FNIP remains elusive. 

3.2  Sensors for leucine-mediated mTORC1 

Leucine is an essential amino acid that serves as 
not only a building block for protein synthesis but 
also a signal molecule that regulates protein metabo-
lism, including autophagy (Grinde and Seglen, 1981; 
Wu et al., 2012; Yan et al., 2012) and the mTORC1 
pathway (Hara et al., 1998; Gao et al., 2015). Leucine 
regulates the mTORC1 pathway through leucine 
sensors, such as leucyl-tRNA synthetase (LARS) and 
Sestrin2 (Han et al., 2012; Wolfson et al., 2016), and 
leucine metabolite acetyl-coenzyme A which pro-
motes EP300-mediated acetylation of the Raptor (Son 
et al., 2019). 

3.2.1  LARS 

LARS catalyzes the ligation of leucine and 
tRNALeu to form leucyl-tRNALeu (Park et al., 2005). 
Interestingly, LARS was identified as a regulator for 
leucine-stimulated TORC1 from yeast to the mammal 
(Bonfils et al., 2012; Han et al., 2012). In the mammal, 
LARS specifically and directly binds to RagD 
GTPase, and functions as a GAP for RagD in a leucine- 
dependent fashion (Han et al., 2012). In addition, 
LARS likely functions as a leucine sensor for the 
mTORC1. The Michaelis constant (Km) of LARS for 
leucine activation is about 45 μmol/L (Chen et al., 
2011). Silence of LARS renders mTORC1 resistant to 
leucine and unable to translocate to the lysosome. 
LARS mutant without leucylation activity leads to 
mTORC1 being less sensitive to leucine (Han et al., 
2012). Interestingly, He et al. (2018) found that LARS 
signals intracellular leucine to mTORC1 through direct 
leucylation on lysine 142 (K142) of RagA. K142 
leucylation regulates the interaction of RagA with 
Ragulator and GATOR1, and promotes the formation 
of GTP-loaded RagA which has higher GTPase ac-
tivity. This result indicated that aminoacyl-tRNA 
synthetases act as potential amino acid sensors by 
direct lysine aminoacylation on the specific target 
proteins in response to amino acid sufficiency. 

3.2.2  Sestrins 

Sestrins, highly conserved proteins, have been 
proved to play crucial roles in oxidative damage and 

mTOR signaling (Ho et al., 2016). Sestrin1 and Sestrin2 
were initially identified as p53 target genes (Buck-
binder et al., 1994; Velasco-Miguel et al., 1999; Bu-
danov et al., 2002), involved in cellular stress and 
mTOR signaling (Budanov and Karin, 2008; Lee  
et al., 2010). Sestrin1 and Sestrin2 were previously 
considered to inhibit the mTORC1 pathway through 
the activation of AMPK and TSC (Budanov and Ka-
rin, 2008). However, subsequent studies found that 
Sestrin2 still suppresses the mTORC1 pathway in the 
absence of AMPK and TSC (Parmigiani et al., 2014; 
Peng et al., 2014), indicating that AMPK and TSC  
are not necessary for Sestrin2-mediated inhibition of 
mTORC1. Indeed, Sestrin2 negatively regulates 
mTORC1 in a GATOR- and Rag GTPase-dependent 
manner (Chantranupong et al., 2014; Parmigiani et al., 
2014; Peng et al., 2014). Sestrin2 binds to GATOR2, 
and functions upstream of the Rag GTPases and 
GATOR1 in the amino acid-sensing mTORC1 path-
way (Chantranupong et al., 2014). 

Amino acid deprivation obviously promotes 
Sestrin2-GATOR2 interaction, but leucine restimula-
tion disrupts the interaction in cells and in vitro 
(Wolfson et al., 2016). As well as leucine, methionine 
and isoleucine stimulation both disrupt Sestrin2- 
GATOR2 interaction at concentrations about 50 and 
100 μmol/L, respectively, much higher than the  
5 μmol/L of leucine (Wolfson et al., 2016). The fol-
lowing evidence demonstrates that Sestrin2 is a leu-
cine sensor for the mTORC1 pathway. First, Sestrin2 
binds directly to leucine at an affinity that is com-
patible with the concentration at which mTORC1 is 
activated. Second, cells lacking Sestrins confer leu-
cine insensitivity on the mTORC1. Third, Sestrin2 
mutants that cannot bind with leucine are unable to 
transmit leucine sufficiency to the mTORC1 (Wolfson 
et al., 2016). The crystal structure of Sestrin2-leucine 
further supports the concept that Sestrin2 is a leucine 
sensor (Saxton et al., 2016c). However, it was argued 
that the crystal structure of Sestrin2 in the presence of 
leucine is highly similar to the absence of leucine 
(Kim et al., 2015; Lee et al., 2016; Saxton et al., 2016c). 
The authors analyzed the apo-Sestrin2 structure (Kim 
et al., 2015) and the 3.0 Å structure of Sestrin2 which 
was purified without adding exogenous leucine (Saxton 
et al., 2016a). However, both structures have leucine 
present, indicating that the apo-Sestrin2 structure is 
elusive. 
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3.3  Sensors for methionine-mediated mTORC1 

SAMTOR was originally named C7orf60, but 
was renamed S-adenosylmethionine (SAM) sensor 
upstream of mTORC1 according to its functions in 
the mTORC1 pathway (Gu et al., 2017). SAMTOR 
was identified as an interacting protein of GATOR1 
and KICSTOR through the BioPlex database (https:// 
bioplex.hms.harvard.edu). Overexpression of SAMTOR 
inhibits mTORC1, indicating that SAMTOR is a neg-
ative regulator for the mTORC1. Sequence analysis 
predicted that SAMTOR has a SAM-binding domain. 
Indeed, SAM binds SAMTOR and disrupts the in-
teraction of SAMTOR with GATOR1 and KICSTOR 
(Gu et al., 2017). SAM is derived from methionine, 
and methionine starvation reduces SAM concentration 
(Gu et al., 2017; Quinlan et al., 2017). Accordingly, 
methionine starvation strengthens the interaction of 
SAMTOR with GATOR1 and KICSTOR, and SAM 
stimulation reverses the effect. In addition, Sutter et al. 
(2013) reported that methionine and SAM inhibit 
autophagy through TORC1, but SAM, not methionine, 
is sensed directly by TORC1. Thus, these results 
indicated that SAMTOR likely serves as a SAM 
sensor for the methionine-mediated mTORC1. Loss 
of SAMTOR renders mTORC1 insensitive to methionine 
deprivation. Importantly, SAMTOR mutants that cannot 
bind to SAM are incapable of transmitting methionine 
sufficiency to the mTORC1 (Gu et al., 2017). 

 
 

4  Perspectives 
 

mTORC1 is not equally responsive to individual 
amino acids; arginine and leucine are particularly 
efficient for mTORC1 activation (Hara et al., 1998). 
How arginine and leucine are sensed by the mTORC1 
pathway has been partially elucidated through the 
discovery of their own specific sensors CASTOR1, 
SLC38A9, TM4SF5, Sestrin2, and LARS (Han et al., 
2012; Rebsamen et al., 2015; Wang et al., 2015; 
Chantranupong et al., 2016; Wolfson et al., 2016; 
Wyant et al., 2017; Jung et al., 2019). However, 
knowing other amino acid sensors for the mTORC1 
pathway and whether these sensors are limited to 
specific intracellular organelle, cell type, tissue, or 
even species remain elusive.  

Glutamine activates mTORC1 both independently 
and dependently on the Rag GTPases (Durán et al., 
2012; Stracka et al., 2014; Jewell et al., 2015). In the 

Rag-independent manner, ADP ribosylation factor 
(Arf1) GTPase promotes mTORC1 translocation to 
lysosomes and activates mTORC1 in response to 
glutamine (Stracka et al., 2014; Jewell et al., 2015). 
Thus, regulators of Arf1 GTPase have the potential to 
be glutamine sensors. Lysine seems to have similar 
functions to those of arginine (Liu et al., 2012; Wyant 
et al., 2017). Lysine deprivation is less inhibitory to 
mTORC1 than that of leucine and arginine (Hara et al., 
1998; Wyant et al., 2017). SLC38A9 contributes to 
conveying arginine and lysine sufficiency to the 
mTORC1 pathway, but it is more sensitive to arginine 
(Wyant et al., 2017). Instead, lysosomal amino acid 
transporter 1 (LAAT-1) transports lysosomal arginine 
and lysine, while it is more susceptible to lysine (Liu 
et al., 2012). It is possible that LAAT-1 is not only a 
transporter, but also a sensor for lysine. 

In addition, increasing numbers of small GTPases 
containing Rags, Rheb, Arf1, Rab, Ras-related pro-
tein Ral-A, and Ras homolog gene family Rho are 
involved in mTORC1 activity (Nguyen et al., 2017). 
Classically, the Rag GTPases reside on the lysosomal 
surface and recruit mTORC1 to the lysosome in re-
sponse to amino acid sufficiency (Sancak et al., 2008). 
It will be interesting to discovery how other GTPases 
regulate mTORC1 subcellular localization, and how 
these different proteins are responsive to and integrate 
amino acid signals. The intracellular organelle-specific 
amino acid sensors may be linked to small GTPases 
which localize to various intracellular organelles 
including lysosome, mitochondria, endoplasmic re-
ticulum, and Golgi apparatus. 
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中文概要 
 
题 目：参与受氨基酸调控的哺乳动物雷帕霉素靶蛋白复

合物 1 信号通路的感受体的研究进展 
概 要：哺乳动物雷帕霉素靶蛋白复合物 1（mTORC1）

能够感受一系列细胞内外的环境因素（如氨基

酸），从而控制细胞生长和代谢。在过去的几十

年里，众多蛋白被发现能够参与受氨基酸调控的

mTORC1 信号通路中。Rag GTPases 能够将氨基

酸的信号传递给 mTORC1 并招募 mTORC1 到溶

酶体表面。近年来，参与 mTORC1 信号通路的蛋

氨酸代谢物、亮氨酸以及精氨酸的感受体逐渐被

发现。感受体的鉴定有助于理解细胞是如何通过

调整内部氨基酸感应通路来满足自身需求。本文

综述了氨基酸调控 mTORC1 信号通路的分子机

制，并探讨了感受体如何将特定氨基酸信号精确

传递给 mTORC1 信号通路。 
关键词：哺乳动物雷帕霉素靶蛋白复合物 1（mTORC1）；

氨基酸；感受体；溶酶体；Rag GTPases 
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