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Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a highly conserved member of
nuclear receptor superfamily of ligand-dependent transcription factors that is
expressed in liver and gastrointestinal organs (pancreas, stomach, and intestine).
In liver, HNF4α is best known for its role as a master regulator of liver-specific
gene expression and essential for adult and fetal liver function. Dysregulation of
HNF4α expression has been associated with many human diseases such as
ulcerative colitis, colon cancer, maturity-onset diabetes of the young, liver
cirrhosis, and hepatocellular carcinoma. However, the precise role of HNF4α in
the etiology of these human pathogenesis is not well understood. Limited
information is known about the role of HNF4α isoforms in liver and
gastrointestinal disease progression. There is, therefore, a critical need to know
how disruption of the expression of these isoforms may impact on disease
progression and phenotypes. In this review, we will update our current
understanding on the role of HNF4α in human liver and gastrointestinal
diseases. We further provide additional information on possible use of HNF4α as
a target for potential therapeutic approaches.
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Core tip: Our current understanding of the molecular etiology of human liver and
gastrointestinal diseases is limited and there is a critical need to explore novel
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E-Editor: Wu YXJ hypotheses and risk factors that may contribute to these diseases. Hepatocyte nuclear
factor 4-alpha (HNF4α) has been well recognized as an important transcription factor
that regulates gene expression involved in the differentiation of liver and gastrointestinal
cells. Dysregulation of HNF4α function is associated with many diseases related to these
cells. Here we attempt to update our understanding on the role of HNF4α in the
pathogenesis of these diseases for use as target for better therapeutic modality.
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INTRODUCTION
Hepatocyte nuclear factor 4-alpha (HNF4α) is a transcription factor with important
roles in liver and gastrointestinal tract development, hepatocyte differentiation, and
lipid and glucose metabolism[1]. The HNF4α gene is located on chromosome 20, with
transcription  regulated  by  two  promoters  (P1  and  P2)  and  alternative  splicing
variants, resulting in 9 distinct isoforms (α1-α9)[1,2]. Adult hepatocytes exclusively
express P1 isoforms, while both promoters are active in intestinal epithelia within
distinct compartments[1,2]. The importance of HNF4α in development is highlighted by
embryonic  lethality  of  gene  knockout  in  mice[3].  Targeted  knockout  in  colonic
epithelium disrupts  architecture,  decreases  enterocyte  numbers  and  goblet  cell
maturation, and perturbs transcriptional profiles[4],  while liver-targeted knockout
results  in  hepatomegaly with altered liver  architecture,  and decreased glycogen
storage[5]. Furthermore, expression of HNF4α in mesenchymal stem cells is sufficient
to induce epithelioid changes and some hepatocyte functionality including urea
production and albumin secretion[6].

The regulation of HNF4α expression, activity, and localization is highly complex
(reviewed in[1,7]),  reflective of downstream transcri-ptional networks with diverse
functional roles including drug metabolism, bile acid synthesis and conjugation, lipid
homeostasis,  gluconeogenesis,  ureagenesis,  cell  adhesion,  proliferation,  and
apoptosis[7].  Regulation of  HNF4α occurs  at  multiple  levels:  Epigenetic[8,9];  tran-
scriptional,  including  promoter  regulation,  transcript  secondary  structure,  and
microRNA-mediated  inhibition[7,10];  and  post-translational,  including  protein
phosphorylation, degradation, and nuclear localization[1,11,12]. HNF4α transcription
factor binding sites are also widely dispersed in the human genome, as evidenced by
changes in mRNA levels  of  ~2500 genes upon over-expression of  HNF4α in cell
culture[13].  HNF4α expression and activity are altered in numerous disease states
involving multiple organ systems, and immunohistochemical detection in the clinical
setting has potential diagnostic and prognostic value. This review article updates the
understanding of HNF4α role in liver and gastrointestinal pathogenesis and presents
potential  therapeutic  approaches  and strategies  for  possible  treatment  based on
HNF4α involvement.

HNF4ALPHA ACTIVITY IN LIVER PATHOGENESIS
HNF4α perturbations in disease states have been most extensively investigated in the
context of liver disease. Most of the major liver diseases have been associated with
altered HNF4α expression, isoform ratios, and localization, including inflammation,
alcoholic liver disease, non-alcoholic fatty liver disease, fibrosis and cirrhosis, viral
hepatitis,  and  the  hepatocellular  carcinoma  (Table  1).  Most  commonly,  HNF4α
expression at the protein and transcript levels is decreased across liver diseases, an
observation substantiated by human, animal model, and cell culture-based studies in
many cases (Table 2). Altered expression of HNF4α in response to relatively non-
specific stimuli, such as inflammation[14] and injury-induced acute phase response[15],
as  well  as  in  a  remarkable  spectrum of  disease  suggests  centrality  of  HNF4α in
response to most modes of hepatocyte injury and stress resulting in de-differetion
state of liver function (Table 1,  Figure 1)[16].  There is,  therefore,  a critical  need to
understand the role of HNF4α in the molecular epidemiology of the de-differentiation
state of liver function across these liver diseases for the potential restoration of normal
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liver function.

Alcoholic liver disease
Expression of HNF4α and carboxylesterase 1 (CES1), an enzyme involved in trigly-
ceride metabolism, was reduced in patients with alcoholic steatohepatitis and mice
with  methionine  and  choline-deficient  diet-induced  inflammation[17].  Alcohol
repressed both HNF4α and CES1 expression in  primary hepatocyte  cell  culture.
Knockout of CES1 in mice exacerbated alcohol-induced steatosis and steatohepatitis,
as well as diet-induced liver inflammation[17].

Non-alcoholic fatty liver disease
HNF4α has important roles in liver lipid and lipoprotein metabolism[18]. Hepatocyte-
targeted knockout of HNF4α in mice resulted in lipid accumulation, changes in VLDL
secretion and bile acid uptake, and alterations in peripheral blood cholesterol and
triglycerides[19].  Acute  knockout  of  HNF4α in  adult  mice  resulted in  hepatocyte
proliferation and vacuolization, and hepatomegaly[20].

HNF4α mRNA and protein levels were decreased in patients with non-alcoholic
steatohepatitis (NASH), as well as in cultured hepatocytes and in livers of mice with
genetic obesity (ob/ob) or on high fat diet[18]. Network analysis of transcriptomic data
in patients with non-alcoholic steatohepatitis identified HNF4α as a central regulator,
although transcription of HNF4α itself was not significantly altered[21]. In contrast to a
prior study[18], limited immunohistochemistry on 12 liver specimens of patients with
NASH, non-alcoholic fatty liver disease (NAFLD) activity (NAS) score 5-7, showed
minimal increased immunoreactivity (24%-40% positive cells) compared to a single
control (17% positive cells)[21]. Cytoplasmic retention of HNF4α in high fat diet mice
with steatosis has also been observed, corresponding to reduced transcription of
target genes and HNF4α phosphorylation by protein kinase C isotypes[22].  Taken
together, these studies consistently indicate a significant decrease in HNF4α activity
in NAFLD, although observations of HNF4α expression levels and localization are
less uniform. This could be related to disruption of the transcription factor network
responsible for the de-defferentiated state, which is partially controlled by HNF4α
activity (Figure 1).

Hepatic fibrosis and cirrhosis
To explore  and establish an understanding of  the molecular  basis  for  decreased
HNF4α activity across US racial population, we performed a mass spectrometry-
based proteomics study using clinical tissue samples from Caucasian Americans (CA)
and African Americans (AA) and demonstrated, for the first time, that differentially
expressed proteins (DEPs) in cirrhotic livers are actually distinct from hepatocellular
carcinoma (HCC) and the expression of these proteins are also racially dependent
[23].  For  example,  Figure  2C  shows  the  heat  map (truncated)  of  DEPs  between
cirrhotic and HCC groups, and that there is a high degree of interaction between
HNF4α (a focus hub) and some of these DEPs like serotransferrin (TF) and apolipo-
protein lipase A1(APOA1) (Figure 2E). Note also that the level of TF and APOA1
proteins in AA cirrhotic and HCC samples (Figure 2F, upper panel) is equal as in CA
protein samples. Furthermore, the levels of HNF4α protein in AA samples are lower
compared to CA samples (Figure 2F, lower panel). It is known that AA patients with
cirrhotic liver and HCC usually have elevated levels of serum markers of iron stores
and  altered  cholesterol  and  triglyceride  levels[24,25],  hence  the  levels  of  both  are
elevated in AA samples. The expression of both TF and APOA1 genes is known to be
regulated by the transcription factor HNF4α[26]. The differential expression of HNF4α
has been shown in colitis and colitis-associated colon cancer[2], and more recently by
our group[27]  in cirrhotic livers and HCC. In our study, we used immunohistoche-
mistry to validate the expression of HNF4α isoforms in HCV cirrhotic livers and HCC
tissues among CA and AA tissue samples (Figure 3). As shown in Figures 4A and 4B,
the staining reactivity of P1- HNF4α isoforms are lower in cirrhotic HCV livers of AAs
(grey bars) as compared to CAs (black bars), whereas the observed increase in P1/P2-
HNF4α staining (Figure 4A) but not P1 staining (Figure 4B) in HCC for AAs relative
to CAs suggests a potential involvement of P2- HNF4α.

Increased extracellular matrix rigidity, as shown in CCl4 or 5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) induced fibrosis in rat livers, modulates hepatocyte function
and cytoskeletal arrangement in part through inhibition of the HNF4α transcriptional
network[28].  HNF4α transcriptional  repression  in  the  context  of  cell  culture  was
prevented by treatment with Rho-dependent kinase (ROCK) inhibitor. In rats with
hepatic fibrosis induced by dimethylnitrosamine (DEN) or bile duct ligation, forced
hepatic  expression  of  HNF4α  decreased  fibrosis  in  improved  liver  function[29].
Similarly,  forced  re-expression  of  HNF4α  improved  functionality  in  isolated
hepatocytes and reversed liver failure in a CCl4-induced rat model[30]. These studies
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Table 1  Expression of hepatocyte nuclear factor 4alpha and variants in various disease states

Disease state HNF4α expression Organism Model Ref.

Development

Hypertriglyceridemia
(preterm infants, children)

Decreased, P1 promoter
methylation

Human -
[8,9]

Intrauterine growth
restriction

Decreased, hypermethylated
promoter

Human -
[73]

High fat diet (in utero) Increased Mouse HFD
[87]

Metformin exposure (in
utero)

Increased, hypomethylated
promoter

Mouse Metformin
[74]

Liver

Acute phase response Decreased activity Mouse Injury
[15]

Inflammation (IL-1β) Decreased Human, mouse Hepatoma cells
[14]

TNFα-induced
hepatotoxicity

Decreased Human, Mouse Hepatoma cells
[88,89]

Alcoholic liver disease Decreased Mouse Ethanol, MCD diets
[17,89]

α1-antitrypsin Decreased Mouse Human ATZ
[90]

Fibrosis Decreased Human Hepatocytes
[24]

Cirrhosis Decreased Human, rat DEN
[41,91]

Hepatocellular carcinoma P2 increased, P1 decreased Human, rat DEN
[32,41,59]

Decreased, expressed in
metastases, increased P1:P2

Human, mouse, rat HCC cells, DEN
[13,31,33,40,41,59,92]

Hepatitis B virus Decreased Human Hepatoma cells
[46,47]

Hepatitis C virus Increased Human Hepatoma cells
[93,94]

Decreased Human, mouse Hepatocytes, hepatoma cells,
HCV+ HCC

[35,95]

Hepatitis E virus Increased phosphorylation,
cytoplasmic retention

Human Hepatoma cells
[48]

Non-alcoholic
steatohepatitis

Modestly increased Human -
[21]

Decreased, cytoplasmic
retention

Mouse db/db or HFD
[18,22]

Iron overload Decreased Human, mouse Hepatoma cells, iron rich diet
[49]

Endocrine

Type 2 diabetes Decreased, P1 promoter
hypermethylation

Human -
[72]

Increased in liver mouse HFD, steptozotocin
[76]

Mature onset diabetes of the
young (MODY)

HNF4α variants Human -
[66-69]

Obesity HNF4α variant Human -
[79]

Islet cell hypoxia Decreased mouse ob/ob
[96]

Intestine

Micrbiome colonization Decreased Zebrafish -
[52]

IBD Decreased Human, mouse -
[56,57]

Crohn disease HNF4α variant, decreased Human -
[55,56,98]

Ulcerative colitis HNF4α variant Human -
[53,54]

Colorectal carcinoma Decreased or cytoplasmic
retention, altered P1:P2,
expressed in metastases

Human, mouse Mutagen
[59,99,100]

Intestinal type ampullary
carcinoma

Increased Human -
[10]

Upper GI

Gastric carcinoma Increased, altered P1:P2 Human Carcinoma cells
[59,62,78,102]

Barrett esophagus (intestinal
metaplasia)

Increased Human, mouse Explant
[63,64]

Stomach intestinal
metaplasia

Increased Human -
[59]

Kidney

Renal cell carcinoma Decreased, expressed in
metastases, increased P1:P2

Human -
[59,103,104]
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Atypical fanconi syndrome HNF4α variant Human -
[66]

Lung

Mucinous adenocarcinomas Increased in some Human -
[82,100]

Ovary

Ovarian mucionous
neoplasm

Expressed Human -
[81]

Heart

Cardiac fibrosis Increased Mouse Angiotensin II
[83]

IL-1β: Interleukin 1beta; MCD: Methionine-choline deficient; HFD: High fat diet; TNFα: Tumor necrosis factor alpha; ATZ: Mutant Z form of alpha1-
antitrypsin deficiency (ATD); HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; IBD: Inflammatory bowel disease.

indicate that HNF4α expression is decreased in hepatic fibrosis, and forced expression
in this setting appears to promote hepatocyte and liver function.

Hepatocellular carcinoma
A number of studies have examined HNF4α expression patterns in hepatocellular
carcinoma (HCC), including differences in P1 and P2 promoter-derived isoforms.
Total HNF4α transcripts were lower in 224 cases of HCC than 220 controls[31]. Rats
with DEN-induced hepatocarcinogenesis exhibit decreased hepatic HNF4α expre-
ssion[29].  However, tissue microarray immunohistochemistry on 615 human HCCs
showed inverse  correlation of  P2  and P1 HNF4α[32].  High P2 HNF4α expression
correlated with poor differentiation, vascular invasion, and shorter overall patient
survival. Conversely, relatively high P1 HNF4α immunoreactivity in HCC correlated
with better differentiation and longer overall survival among a small cohort of 16
patients[33]. However, decreased expression of HNF4α is not uniform in HCC. A series
of 196 human HCCs in a heterogeneous background of liver disease, showed 52 (26%)
were positive for intense-to-moderate immunoreactivity to HNF4α[34].

HNF4α expression in HCC has been linked to Hippo pathway signaling [31]. Tissue
microarray IHC on 75 HCCs revealed increased immunoreactivity for yes-associated
protein 1 (YAP1), and lower HNF4α than adjacent tissues[31]. The YAP1/ HNF4α ratio
increased  with  high  Edmondson  grade.  HNF4α  appears  to  be  degraded  in  a
proteasome-dependent pathway in the presence of YAP1, and expression of HNF4α
in cultured cells  or  mice  with  YAP-mediated HCC (mst1/2 conditional  mutant)
resulted in decreased liver size, transcription of YAP-TEAD target genes, and Ki67
proliferative indices.

Transient knockdown of HNF4α initiates transformation of immortalized hepato-
cytes through a feedback loop involving miR-24, IL6R, STAT3, miR-124, and miR-
629[35,36]. Hepatocytes with knockdown of HNF4α or overexpression of either miR-24
or miR-629 (both HNF4α suppressors)  were capable of tumor formation in nude
mice[36]. Delivery of miR-124, a transcriptional target of HNF4α, suppressed tumor
growth in HCC xenografts  and DEN-treated mice.  As a corollary in cell  culture,
knockdown of HNF4α in hepatoma cells also promoted transcription of genes related
to the epithelial-mesenchymal transition (EMT) and neoplasia[37,38].

Conversely, overexpression of HNF4α in hepatoma cell lines induced differen-
tiation into hepatocytes and suppressed HCC growth and metastases[39,40].  Forced
HNF4α  expression  in  a  rat  model  of  DEN-induced  liver  carcinoma  reduced
carcinogenesis and decreased EMT[41]. Expression in fibroblasts actually induced a
mesenchymal-to-epithelial transition[5].

HNF4α directly interacts with the promoter and induces expression of apoptosis
signal-regulating kinase 1 (ASK1)[13]. RT-PCR of human HCC and surrounding non-
neoplastic tissue revealed downregulation of HNF4α in 45 of 60 cases (75%) and
corresponding ASK1 downregulation in 44 of 50 cases (73%)[13]. Low ASK1 or HNF4α
mRNA levels  correlated with larger  tumor size  and advanced stage.  Low ASK1
mRNA also correlated with shorter patient survival, in part due to correlation with
tumor size, and ASK1 injection directly into xenograft tumors or systemically in mice
reduced growth of HCC[13].

Viral hepatitis
The  viral  hepatitis  are  associated  with  decreased  HNF4α  and/or  activity.  The
hepatitis B (HBV) viral genome contains an HNF4α binding motif in the promoter
core, and viral transcription and regulation are dependent on hepatocyte HNF4α[42-45].
Interleukin 35 enhanced HBV replication through enhanced HNF4α binding to the
core promoter, an effect impaired by promoter mutation or knockdown of HNF4α
expression. However, HBV infection or overexpression of vial protein HBx in hepa-
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Figure 1

Figure 1  Overview of regulatory and target genes involved in differentiated and de-differentiated stages of liver development. Examples of relevant HNF4α
target genes identified by our group[27] are individually numbered.

toma cells reduced HNF4α expression and downstream transcriptional targets[46,47].
Electroporation of hepatoma cells with HCV DNA lead to viral replication and

decrease  in  HNF4α  mRNA  and  protein,  as  well  as  decreased  downstream
transcriptional targets[35]. Overexpression of viral proteins including core protein or
non-structural  proteins  (NS5A)  was  sufficient  to  significantly  decrease  HNF4α
expression. A transcriptome comparison of hepatocellular carcinomas associated with
HCV infection in either African American or Caucasian groups identified differential
expression of HNF4α target genes such as SAA1[27]. Immunohistochemistry demon-
strated decreased HNF4α expression in HCV positive cirrhosis and hepatocellular
carcinoma (n = 72) relative to normal livers, although levels of suppression varied by
ethnicity[27].

Hepatitis E virus open reading frame 3 (ORF3) in cultured hepatoma cells resulted
in increased HNF4α a phosphorylation, impaired nuclear translocation, and down-
regulation of target genes[48]. There was no detected effect on HNF4α expression.

Iron overload
Iron overload in an iron-rich diet  mouse model reduced HNF4α and miR-122 in
liver[49]. Liver-targeted adenovirus delivery and overexpression of miR-122 resulted in
reduced hepatic inflammation but did not significantly affect iron overload.

HNF4ALPHA ACTIVITY IN COLON PATHOGENESIS
HNF4α plays an important role in colon development[50], and has been implicated in
intestinal epithelial  differentiation, lipid metabolism, and epithelial  junctions[1,51].
Expression levels appear to be negatively regulated by gut microbiota, evidenced by a
zebrafish  model[52].  Altered HNF4α expression and activity,  as  well  as  germline
variants, have been associated with inflammatory bowel disease (IBD) and colorectal
carcinoma[2].

Inflammatory bowel disease
Genome-wide associations studies have linked HNF4α variants with susceptibility to
ulcerative colitis  in two independent studies[53,54].  An HNF4α P2 promoter single
nucleotide  polymorphism has  also  been associated with  childhood-onset  Crohn
disease[55].  In addition to germline variants, HNF4α transcripts were significantly
decreased in intestinal biopsies from patients with IBD[56].

Intestine targeted knockout of HNF4α in mice increased susceptibility to dextran
sulfate sodium (DSS) induced colitis[1,56].  In another study, knockout of P1 and P2
isoforms of HNF4α in mice resulted in spontaneous intestinal inflammation that
worsened with time,  leading to epithelial  injury,  crypt  hyperplasia,  and prolife-
ration[57]. HNF4α derived from P1 or P2 promoters have distinct effects on colonic
epithelium, as demonstrated with an exon swapping mouse model[2]. Mice expressing
only P1 promoter-derived α1 isoform HNF4α developed fewer and smaller tumors
than wild type mice after treatment with DSS and azoxymethane (AOM), and less
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Table 2  Effects of experimental perturbations of hepatocyte nuclear factor 4alpha

HNF4α manipulation Organism Model Effect Ref.

Development

Overexpression of α1D Human iPSCs Promoted endoderm
differentiation

[105]

Liver

Overexpression Human Marrow-derived
mesenchymal stem cells

Epithelioid changes, glycogen
storage, albumin secretion

[6]

Rat DEN Suppressed carcinogenesis,
suppressed EMT, decreased
fibrosis, restored hepatic
function in cirrhosis

[5,26,41]

Rat mst1/2 conditional mutant Reduced liver size and HCC
proliferative indices

[31]

Mouse Hepatoma cell xenograft Decreased tumorigenesis and
proliferation

[39,40]

Mouse Acute liver failure Increased survival, urea
production

[86]

Knockdown Human Hepatocyte culture, HBV
infection

Increased hepcidin
expression, impaired
transcription and replication
of HBV, transformation and
tumorigenicity in mice

[13,36,42,43,106]

Liver targeted knockdown Mouse - Increased hepatocyte
proliferation and
promitogenic transcription

[38]

Expression of α7 only Mouse - Steatosis, downregulation of
CAR

[75]

Liver targeted knockout Mouse DEN Upregulation of miR-194 and
-192, reduced transcriptional
response to extracellular
matrix rigidity, increased
hepatocyte proliferation,
HCC risk, steatosis

[20,24,107,108]

Intestine

Overexpression Mouse, rat Embryonal carcinoma cells,
co-culture

Differentiation to polarized
epithelium, tight junction
proteins

[109,110]

Exon swapping, P1 or P2
only

Mouse DSS Altered enterocyte migration,
ion transport, barrier
function, susceptibility to
DSS colitis and associated
cancer

[2]

Intestine targeted knockout Mouse DSS Transcription profiles similar
to IBD, altered embyonic
development, Paneth cell
alterations, susceptibility to
colitis

[50,56,111,112]

Intestine targeted knockout
of P1 and P2

Mouse - Spontaneous intestinal
inflammation

[57]

Dominant negative
expression

Mouse, Human Enterocytes Decreased expression of
apolipoprotein A

[113]

Upper GI

Esophagus overexpression Mouse Esophageal explants Induced partial columnar cell
phenotype

[63]

Stomach overexpression Human Gastric carcinoma cells Resistance to multiple
chemotherapeutics

[102]

Stomach knockdown Human Gastric carcinoma cells Increased susceptibility to
chemotherapeutics

[102]

Stomach targeted knockout Mouse - Reduced chief cell size,
epithelial proliferation and
migration

[61]

Endocrine

HNF4α7 only expression Mouse - Dyslipidemia, mild steatosis
[75]

HNF4α1 only expression Mouse - Impaired glucose tolerance,
hyperinsulinemia

[75]
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Knockout in pancreatic beta
cells

Mouse - Reduced glucose stimulated
insulin secretin, similar to
MODY

[65,70,71]

Overexpression in
pancreatic beta cells

Human islet cells Induced cell cycle entry
without expansion

[114]

iPSCs: Induced pluripotent stem cells; DEN: Diethylnitrosoamine; HBV: Hepatitis B virus; DSS: Dextran sodium sulfate; HNF47: Hepatocyte nuclear
factor 4alpha7; HNF41: Hepatocyte nuclear factor 4alpha1.

susceptibility to DSS-induced colitis. In contrast, expression of only P2 promoter-
derived α7 isoform HNF4α resulted in greater tumor load and number than wild type
mice and were highly sensitive to DSS-induced colitis[2]. HNF4α directly modulated
expression of Na+/H+ exchanger isoform 3 (NHE3), which has been implicated in IBD
pathogenesis[58].

Colorectal carcinoma
Isoform-specific HNF4α antibody immunohistochemistry on 18 colorectal carcinomas
demonstrated uniform immunoreactivity for P2 and 5/18 (28%) positive for P1[59]; a
similar pattern was observed in metastases to lung. Another immunohistochemical
study of 450 human colorectal carcinomas revealed either loss or cytoplasmic locali-
zation of P1 HNF4α in ~80% of tumors[60]. This pattern appears to be attributable, at
least in part, to interaction of HNF4α and Src kinase. Src-mediated phosphorylation of
an N-terminal HNF4α tyrosine, present in P1 but not P2 isoforms, influences HNF4α
protein stability, transactivation function, and nuclear localization[60]. Consis-tent with
HNF4α P1 downregulation being and important feature of colorectal carcinomas,
mice expressing only α7 isoform (P2 promoter) HNF4α developed greater tumor load
and tumor size than wild type mice in a DSS and azoxymethane (AOM) model[2].
Conversely, expression of only the α1 isoform (P1 promoter) resulted in fewer and
small tumors than wild type mice.

HNF4ALPHA ACTIVITY IN UPPER GASTROINTESTINAL
TRACT PATHOGENESIS
Gastric epithelial development and maintenance are dependent on intact HNF4α.
Stomach targeted knockout  of  HNF4α alters  gastric  epithelial  architecture,  with
changes  including  reduced  chief  cell  size  and  endoplasmic  reticulum  content,
increased proliferation of the stem cell zone, and altered mucous neck cell migra-
tion[61].

Transcriptomic  analysis  of  22  human  gastric  carcinoma  specimens  and  non-
neoplastic controls identified upregulation of HNF4α in carcinoma[62]. P1 promoter
HNF4α  isoforms  were  detected  in  8  of  14  gastric  carcinomas  by  immunohisto-
chemistry,  while  normal  gastric  mucosa  had  positive  immunoreactivity  for  P2
isoforms only[59]. Knockdown of HNF4α in gastric carcinoma cell lines and xenograft
mouse  models  reduced  tumor  growth  and  angiogenesis[62].  Metformin  reduced
HNF4α  expression  in  gastric  carcinoma  cell  lines  and  mouse  xenografts,  and
significantly impaired xenograft tumor growth when systemically administered[62].

HNF4α expression appears to be involved in intestinal metaplasia of the upper
gastrointestinal tract. Aberrant P1 promoter-driven HNF4α immunoreactivity was
observed in gastric  intestinal  metaplasia,  although the number of  cases tested is
unknown[59].  While HNF4α is not expressed in normal squamous epithelia of the
esophagus,  HNF4α  was  expressed  along  with  CDX-2  in  esophageal  goblet  cell
metaplasia (Barrett esophagus)[63]. A gene expression profiling study also identified
enrichment  of  HNF4α  expression  among  Barrett  esophagus  specimens [ 6 4 ].
Overexpression of HNF4α in adult mouse esophageal explants resulted in decreased
squamous marker such as p63 and induced an expression profile (CK8, E-cadherin,
and villin positive) suggestive of a columnar phenotype[13].

HNF4ALPHA ACTIVITY IN PANCREAS AND ENDOCRINE
PATHOGENESIS
HNF4α variants have been well described as causing maturity onset diabetes of the
young 1 (MODY1), characterized by diminished glucose-stimulated insulin secretion
and susceptibility to type 2 diabetes[65-69]. In mouse models of pancreatic β cell HNF4α
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Figure 2

Figure 2  Differentially expressed proteins in normal and liver disease states. Heat maps of differentially expressed proteins (DEPs) (truncated) that were
selected following supervised analysis (A) Normal vs. Cirrhosis, (B) Normal vs. Hepatocellular carcinoma, (C) Cirrhosis vs. Hepatocellular carcinoma, and (D) Venn
Diagram comparing the significantly DEPs identified. (E) Interactive Network Analysis of DEPs in cirrhosis and hepatocellular carcinoma as compared to normal shows
HNF4α as a focus hub to many DEPs. (F) A representative of immunoblot analysis of TF and APOA1 (upper panel), HNF4α (lower panel) in tissue samples of AA &
CA. GAPDH was used as a loading control, as published in[23].

knockout,  there  was  a  similar  reduction of  glucose  stimulation of  insulin  secre-
tion [65,70,71].  The  underlying  mechanism  is  related  to  endoplasmic  reticulum
homeostasis in pancreatic islet cells[65].

Variation in HNF4α expression has also been observed in patients with type 2
diabetes and metabolic syndrome. For example, a monozygotic twin study identified
HNF4α P1 promoter hypermethylation as a significant correlate to type 2 diabetes
[72]. P1 promoter methylation has also been linked to hypertriglyceridemia in preterm
infants  and  children,  as  well  as  intrauterine  growth  restriction,  indicating  that
epigenetic modulation of HNF4α is linked to the metabolic syndrome[8,9,73]. In contrast,
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Figure 3

Figure 3  Differential expression of hepatocyte nuclear factor 4alpha in cirrhotic and hepatocellular
carcinoma livers. Representative H&E and P1/P2 HNF4α stained samples of HCV cirrhotic and hepatocellular
carcinoma of Caucasian (A) and African American (B) tissue samples, as published in[27].
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Figure 4

Figure 4  Immunoreactivity of hepatocyte nuclear factor 4alpha isoforms in cirrhotic and hepatocellular
carcinoma livers. Data are presented as the mean ± standard error (n=4 tissue sections from 24 paraffin embedded
tissue blocks). Data were evaluated for stastistical significance by one-way analysis of variance and are represented
as follows: aP<0.05, bP<0.001as compared to normal for P1/P2 HNF4α (A) and P1- HNF4α (B). Black bar (CA) =
Caucasian Americans; Gray bar (AA) = African Americans, as published in[27]

fetuses  of  metformin-treated  mice  exhibited  hypomethylation  of  promoter  and
increased expression of HNF4a[74]. Exon swap mice expressing only HNF4α7 were
dyslipidemic  with  mild  hepatic  steatosis,  and  HNF4α1  only  expression  led  to
impaired glucose tolerance and hyperinsulinemia[75].  A large genome-wide meta-
analysis also identified variants at the HNF4α locus in association with obesity[76].
HNF4α and transcriptional target genes were increased in livers of mice with type 2
diabetes in a model of high fat diet followed by streptozotocin injection[76]. In pan-
creatic cancer cells, HNF4α has been shown to promote resistance to gemcitabine by
downregulating hENT1[77]. Therefore, targeting HNF4α might reverse gemcitabine
resistance and provide novel treatment strategies for pancreatic adenocarcinoma.

DIAGNOSTIC AND PROGNOSTIC UTILITY OF HNF4ALPHA
HNF4α has been proposed as an immunohistochemical marker useful for pathologic
differential diagnosis and prognosis in specific circumstances. HNF4α immunohisto-
chemistry  can  be  helpful  in  distinguishing  gastric  primary  adenocarcinoma
(essentially uniformly positive) from metastatic breast carcinoma (rarely positive)[78-80].
A tissue microarray study of  348 lung adenocarcinomas identified 54 cases with
positive  immunoreactivity  for  HNF4α,  with  enrichment  among  mucinous
adenocarcinomas[81]. HNF4α positivity was associated with shorter overall survival
among patients with lung adenocarcinoma[81]. However, an independent study of 1021
non-small  cell  lung  carcinomas  identified  only  20  cases  (2%  overall,  4%  of
adenocarcinomas, 11% of mucinous adenocarcinomas) with positive immunorea-
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ctivity for HNF4α, and these correlated with absence of lymph node metastases and
lower clinical stage[81]. A high percentage of metastatic colorectal carcinomas in lung
specimens  were  positive  for  HNF4α,  but  performance  of  this  marker  was  not  a
significant  improvement over  the more commonly used CDX2 and CK20 in this
context[81]. HNF4α is also not specific to adenocarcinomas from the GI tract, as HCCs,
renal cell carcinomas, and ovarian mucinous neoplasms may be expected to exhibit
positive immunoreactivity in some cases[59,80].

Promoter-specific HNF4α antibodies for immunohistochemistry have also revealed
substantial variation in neoplastic immunoreactivity for isoforms[59]. For example, 10
of 10 renal cell carcinomas examined were positive for P1 and negative for P2 HNF4α,
whereas  gastric  and  colorectal  carcinomas  were  uniformly  positive  for  P2  and
variably positive for P1 HNF4α[59].

Hepatocellular carcinomas with β-catenin activation are associated with relatively
favorable prognosis, and often exhibit significantly higher uptake of the magnetic
resonance contrast agent gadoxetic acid disodium[34]. HNF4α expression correlated
with  nuclear  β-catenin  immunoreactivity  and  expression  of  the  contrast  agent
transporter OATP1B3, as well as tumor differentiation, indicating potential utility in
HCC prognostication.

HNF4ALPHA ACTIVITY AS A THERAPEUTIC POTENTIAL
Given the widespread expression of HNF4α, and demonstrable roles in development,
homeostasis, and disease in multiple tissue types, systemically administered direct
inhibitors or activators might be expected to exhibit significant undesirable effects. An
illustrative example is the opposing effects of HNF4α on fibrosis in cardiac and liver
tissue.  In  cardiac  tissue,  HNF4α is  downstream of  AMPK,  and  upregulation  of
expression was seen in an angiotensin II-induced cardiac fibrosis mouse model[82].
Metformin inhibition or  knockout  of  AMPK reduced cardiac  fibrosis,  in  part  by
preventing increased HNF4α expression. In contrast, liver fibrosis-associated with
decreased HNF4α transcription regulation was restored by forced re-expression of
HNF4α which led to reduced fibrosis and reversal fatal liver failure in a rat model[26].
These data suggest that de-differentiation state of liver function likely the cause of
terminal  liver  failure  and  that  resetthing  the  transcription  factor  network  has
therapeutic potential for correcting liver failure.

Exposure to flavonoids appears to affect HNF4α expression and activity, although
mechanisms  underlying  these  phenomena  are  unclear.  The  flavonoid  luteolin
impaired HBV replication and particle  release  from cultured HepG2 cells  while
suppressing HNF4α transcription and reduced viral antigen detection in peripheral
blood in a mouse model of acute HBV infection[43]. Treatment of HepG2 cells with the
flavonoid derivative 4’-nitro-6-hydroxyflavone reduced expression of the HNF4α
target  gene  microsomal  triglyceride  transfer  protein  (MTP)  in  a  transcriptional
reporter system[83].

HNF4α antagonists have been described and demonstrated to impair transcription
factor activity and exhibit cytotoxicity in human HCC cell lines and xenograft mouse
models[84]. The HNF4α antagonist BI6015 also decreased survival of multiple gastric
carcinoma cells lines in culture[62]. EC-50 values were estimated in the low micromolar
range, but dose-response was non-sigmoidal[62]. The specificity of these compounds, as
well as toxicity to non-neoplastic tissues, remains to be fully examined.

Pharmacological manipulation of HNF4α regulatory pathways and transcriptional
targets holds promise for therapeutic development. For example, systemic treatment
with the AMPK inhibitor metformin impaired gastric carcinoma tumor growth in a
xenograft  mouse  model[62].  Similarly,  metformin  reduced  cardiac  fibrosis  in  an
angiotensin II mouse model, an effect correlating to decreased HNF4α expression[82].
Systemic administration of the HNF4α transcriptional target miR-124 suppressed
hepatocellular carcinoma growth in xenograft and DEN-treated mouse models[36].

Engineered cellular therapies with manipulation of HNF4α have been explored in
few studies. Conditioned media of mesenchymal stem cells (MSCs) stably expressing
HNF4α  inhibited  proliferation  of  SK-Hep-1  and  HepG2  cells  in  culture,  and
intravenous injection of HNF4α-expressing MSCs into nude mice xenograft models
reduced tumor  size[85].  Peritoneal  injection of  immortalized hepatocytes  overex-
pressing HNF4α improved survival  and serologic  liver  enzyme markers  in  a  D-
galactosamine  rat  model  of  acute  liver  failure,  as  compared  to  immortalized
hepatocyte controls[86].

CONCLUSION
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HNF4α is a highly conserved member of nuclear receptors superfamily of ligand-
dependent transcription factors that is expressed in liver, stomach, intestine, pancreas
and kidney. HNF4α is known for its role in the liver where it is a master regulator of
liver-specific gene expression and essential for adult and fetal liver function (Figure
1). Dysregulation of HNF4α transcriptional activity is linked to several pathological
disorders, such as liver cirrhosis, hepatocellular carcinoma, Maturity Onset Diabetes
of  the  Young 1  (MODY1),  colitis  and colon cancer.  Although there  are  growing
evidences  for  the  role  of  different  HNF4α isoforms in  the  pathogenesis  of  these
diseases, the exact molecular epidemiology and the molecular mechanisms involved
are yet to be established. It is anticipated that the identification of specific interacting
partners associate with these isoforms in each disease state is essential for differential
expression of target genes, and hence signaling pathways. In turns, these targets could
be used as diagnostic tools and for the treatment of diseases liked to transcriptional
dysregulation of HNF4α.
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