Skip to main content
. 2019 Aug 13;70(Suppl 1):S165–S186. doi: 10.3233/JAD-190181

Table 2.

Summary of AD studies by risk factor

Risk Factor Short reference Exposure measure Age group* RR I2 (%) Bias (Egger’s p) n
Demographics
Education Xu 2016 [19] Lowest versus reference quartile adj 1.78 (1.43, 2.22) 36.0 absent 9
Xu 2015 [20] Low (<16 y) versus high (≥16 y) adj 1.60 (1.32–1.94) 57.0 0.00 14
Caamano-Isorna 2006 [18] Lower versus highest levels adj 1.32 (1.09, 1.59) absent 9
Xu 2016 [19] Highest versus reference quartile adj 0.44 (0.32, 0.60) 41.5 0.018 10
Lifestyle
Alcohol Drinker versus non-drinkers
Anstey 2009 [27] Drinker versus non-drinkers LL 0.66 (0.47, 0.94) 0.0 2
Xu 2015 [20] Ever versus never LL/? 0.43 (0.17, 0.69) 0.0 0.33 3
Anstey 2009 [27] Heavy/excessive versus non-drinker LL 0.92 (0.59, 1.45) 0.0 0.22 3
Xu 2015 [20] High versus low/none LL/? 0.96 (0.18, 1.74) 78.8 0.56 3
Xu 2015 [20] Light-moderate consumption versus non-drinkers LL/? 0.61 (0.54, 0.68) 0.0 0.44 5
Anstey 2009 [27] Light to moderate versus non-drinker LL 0.72 (0.61, 0.86) 56.4 0.36 6
Cognitive engagement Xu 2015 [20] High participation in cognitive activity LL/? 0.53 (0.42, 0.63) 90.5 0.00 5
Diet Singh 2014 [50] Adherence to Mediterranean diet-highest versus lowest LL 0.64 (0.46, 0.89) 0.0 2
Xu 2015 [20] Caffeine/coffee drinking ML/? 0.69 (0.47, 0.90) 0.0 0.96 3
Wu 2016 [51] <1 cup coffee per day versus 1-2 cups LL 0.71 (0.54, 0.94) 0.0 0.98 3
Kim 2015 [52] Coffee intake-highest versus lowest LL 0.71 (0.52, 0.97) 0.0 3
Liu 2016 [32] Coffee intake-highest versus lowest ML/LL 0.73 (0.55, 0.97) 0.0 0.80 4
Barranco 2007 [53] Coffee consumption versus non-consumption ? 0.73 (0.54, 0.99) 0.0 2
Xu 2015 [20] Fat, DHA LL/? 0.76 (0.52, 1.11) 68.3 0.04 4
Wu 2015 [30] Fat, DHA/EPA-highest versus lowest LL 0.89 (0.74, 1.08) 36.3 0.01 3
Xu 2015 [20] Fat, EPA ? 0.96 (0.75, 1.16) 0.0 0.25 3
Zhang 2016 [31] Fat, DHA-0.1-g/d increment ML/LL 0.63 (0.51, 0.76) 94.6 0.10 3
Zhang 2016 [31] Fat, PUFA-8-g/d increment ML/LL 0.96 (0.65, 1.27) 34.6% 2
Zhang 2016 [31] Fat, EPA-0.1-g/d increment ML/LL 1.04 (0.85, 1.23) 5.1 0.10 2
Wu 2015 [30] Fish intake-highest versus lowest LL 0.64 (0.44, 0.92) 59.0 0.10 6
Xu 2015 [20] Fish intake LL/? 0.66 (0.43, 0.90) 64.7% 0.54 6
Zhang 2016 [31] Fish-increment of 1 serving/wk ML/LL 0.93 (0.90, 0.95) 74.8% 0.174 5
Xu 2015 [20] Folate-high serum folate levels LL/? 0.51 (0.29, 0.73) 16.0% 0.29 4
Kim 2015 [52] Tea intake-highest versus lowest LL 1.12 (0.83, 1.50) 0.0% 3
Xu 2015 [20] Vitamin C intake LL/? 0.74 (0.55, 0.93) 0.0% 0.19 6
Xu 2015 [20] Vitamin E intake LL/? 0.73 (0.62, 0.84) 0.0% 0.81 6
Shen 2015 [54] Vitamin D deficiency (25(OH)D level < 50 nmol/L) LL/? 1.21 (1.02, 1.41) 0.0% 2
Physical activity Santos-Lozano 2016 [55] Physically active (according to international PA guidelines:>150 min/week of MVPA) versus inactive LL 0.60 (0.51, 0.71) 5.6% 0.34 5
Xu 2015 [20] High participation in leisure-time PA LL/? 0.65 (0.46, 0.84) 81.0% 0.09 10
Santos-Lozano 2016 [55] Higher versus lower PA ML/LL 0.65 (0.55, 0.75) 39.3% 0.83 9
Daviglus 2011 [56] Higher versus lower PA ? 0.72 (0.53, 0.98) 9
Xu 2017 [29] Higher versus lower PA ML/LL 0.80 (0.69, 0.94) 0.0% 8
Hamer 2009 [28] Highest versus lowest PA ML/LL 0.55 (0.36, 0.84) 79.5% <0.01 6
Beckett 2015 [57] Highest versus lowest PA ML 0.61 (0.52, 0.73) 0.0% 0.02 9
Xu 2017 [29] Highest versus lowest PA ML/LL 0.74 (0.58, 0.94) 46.3% 8
Sleep Bubu 2016 [58] All sleep problems/disorders listed in International Classification of Sleep Disorders versus none ML/LL 1.47 (1.28, 1.69) 66.9% 0.79 6
Smoking Zhong 2015 [22] Current versus never LL 1.40 (1.13, 1.73) 66.8% <0.01 12
Anstey 2007 [49] Current versus former LL/? 1.70 (1.25, 2.31) 0.0% 0.70 4
Anstey 2007 [49] Current versus never LL/? 1.79 (1.43, 2.23) 0.0% 0.89 4
Almeida 2002 [23] Current versus never/non-smokers ? 1.99 (1.33, 2.98) 56.5% 7
Peters 2008 [59] Current versus never/non-smokers ML/LL/? 1.59 (1.15, 2.20) 69.9% 0.19 8
Zhong 2015 [22] Ever versus never LL 1.12 (1.00, 1.26) 55.9% <0.01 23
Almeida 2002 [23] Ever versus never ? 1.10 (0.94, 1.29) 93.5% 0.53 7
Zhong 2015 [22] Former versus never LL 1.04 (0.96, 1.13) 2.8% <0.01 13
Xu 2015 [20] Former versus never 1.00 (0.92, 1.08) 0.0% 0.27 9
Peters 2008 [59] Former versus never ? 0.99 (0.81, 1.23) 46.8% 0.79 8
Medical
Arthritis Xu 2015 [20] History of arthritis (self-report) LL/? 0.63 (0.42, 0.84) 0.0% 0.83 2
Atrial fibrillation Kalantarian 2013 [60] Yes versus no (ECG, medical history, ICD-9, unclear) LL 1.47 (0.92, 2.34) 68.2% 3
Xu 2015 [20] Yes versus no (medical records, self-report health questionnaire) LL 1.29 (0.97, 1.60) 60.6% 0.94 3
BMI Anstey 2011 [17] Change (increase) continuous measures of BMI LL 0.72 (0.62, 0.84) 71.5% 2
Xu 2015 [20] High BMI (>28/30) in midlife versus normal ML/LL/? 1.61 (1.11, 2.12) 69.2% 0.11 6
Xu 2015 [20] High BMI (>25–30/abdominal obesity/BMI increase) in late-life LL/? 0.80 (0.64, 0.97) 72.9% 0.95 12
Anstey 2011 [17] Obese versus normal ML/LL 2.04 (1.59, 2.69) 82.8% 3
Loef 2013 [44] Obese versus normal ML/LL 1.98 (1.24, 3.14) 4
Meng 2014 [61] Obese versus normal ML 1.88 (1.32, 2.69) 59.1% 0.55 5
Beydoun 2008 [45] Obese versus normal ML/LL 1.80 (1.00, 3.29) <0.01 4
Anstey 2011 [17] Obese versus not Obese LL 1.46 (0.97, 2.21) 42.3% 2
Anstey 2011 [17] Overweight versus normal ML/LL 1.35 (1.19, 1.54) 92.0% 3
Loef 2013 [44] Overweight versus normal ML/LL 1.44 (0.96, 2.15) 4
Anstey 2011 [17] Underweight versus normal ML/LL 1.96 (1.32, 2.92) 69.1% 3
Cancer Ma 2014 [62] History of cancer versus none (ICD code diagnosis) LL 0.63 (0.56, 0.72) 0.0% 0.28 5
Xu 2015 [20] Yes versus no (Questionnaire/self-report, ASL-Mi1 tumor registry) LL/? 0.65 (0.57, 0.73) 6.7% 0.81 6
Carotid atherosclerosis Xu 2015 [20] Yes versus no (carotid medina wall thickness) 1.65 (1.03, 2.26) 31.1% 2
Cholesterol Anstey 2017 [63] High cholesterol (>6.5 mmol/l) versus non-high-midlife ML 2.14 (1.33, 3.44) 12.9% 3
Meng 2014 [61] High cholesterol (>6.5 mmol/l) versus non-high ML 1.72 (1.32, 2.24) 8.5% possible 4
Xu 2015 [20] Elevated serum total cholesterol level ML/LL/? 1.07 (0.89, 1.28) 59.9% 0.02 16
Daviglus 2011 [56] Highest versus lowest quartile ? 0.85 (0.65, 1.12) 3
Anstey 2017 [63] Highest versus lowest quartile-Total cholesterol, late-life LL 0.93 (0.69, 1.26) 50.5% 0.28 4
Anstey 2017 [63] Low HDL-C LL 0.78 (0.54, 1.13) 65.4% 3
Anstey 2008 [17] Second versus lowest quartile-total cholesterol LL 0.85 (0.67, 1.10) 40.1% 3
Depression Cherbuin 2015 [14] Categorical clinical thresholds (>20/21 CES-D or equivalent) LL 2.04 (1.40, 2.98) 54.9% possible 10
Diniz 2013 [24] Continuous (mostly CES-D &variants) ? 1.65 (1.42, 1.92) 2.0% absent 17
Xu 2015 [20] Continuous (self-reporting, CES-D, HAM, Questionnaire, DSM-IV, Diagnosis, CAMDEX, Neuropsychiatric interview, SCL-90) LL/? 1.08 (1.04, 1.13) 40.3% 0.00 24
Cherbuin 2015 [14] Continuous symptomology measures-CES-D, HAM, GDS, SCL-90, the NEO LL 1.06 (1.02, 1.10) 62.1% possible 10
Diabetes Zhang 2017 [64] Any diabetes (Type I or II) ? 1.53 (1.42, 1.63) 18.5% absent 17
Meng 2014 [61] Any diabetes (Type I or II) ML/LL 1.40 (1.25, 1.57) 10.6% 4
Vagelatos 2013 [16] Type II diabetes, self-report and blood sampling ML/LL 1.57 (1.41, 1.75) 38.7% 0.22 15
Gudala 2013 [65] Type II diabetes (self-reported, registry-based/antidiabetics use) ML/LL 1.56 (1.41, 1.73) 9.8% 0.93 20
Cheng 2012 [48] Type II diabetes (according to standard criteria) ML/LL 1.54 (1.40, 1.70) 71.7% <0.01 18
Lu 2009 [15] Type II diabetes (medical history, laboratory test, antidiabetic medications) LL 1.39 (1.16, 1.66) 0.0% <0.01 8
Xu 2015 [20] Type II diabetes (self-report, family report) ML/LL 1.33 (1.14, 1.52) 70.4% 0.06 22
Vagelatos 2013 [16] Type II diabetes, self-report and blood sampling ML/LL 1.57 (1.41, 1.75) 38.7% 0.22 15
Homocysteine Van Dam 2009 [21] Hyperhomocysteinema LL 2.50 (1.38, 4.56) 81.6% 3
Xu 2015 [20] High total homocysteine levels ML/LL/? 1.15 (1.09, 1.23) 45.0% 0.00 8
Hormones Wang 2016 [66] High versus normal levels of thyrotropin LL 1.70 (1.18, 2.45) 42.2% 0.75 2
Wang 2016 [66] Low versus normal levels of thyrotropin LL 1.69 (1.31, 2.19) 38.0% 0.74 4
Lv 2016 [67] Low plasma testosterone (in elderly men) ? 1.48 (1.12, 1.96) 47.2% 0.15 7
Wang 2016 [66] Per SD increment in thyrotropin levels LL 0.89 (0.78, 1.01) 31.3% 0.01 6
Hyper/Hypotension Meng 2014 [61] All combined-high SBP, DBP, hypertension ML/LL 1.31 (1.01, 1.70) 45.7% 5
Meng 2014 [61] High DBP ML/LL 2.38 (1.34, 4.23) 0.0% 3
Meng 2014 [61] High SBP ML/LL 1.77 (0.93, 3.37) 0.0% 3
Xu 2015 [20] Higher SBP ? 1.02 (0.92, 1.13) 68.7% <0.01 28
Meng 2014 [61] Hypertension versus none ML/LL 1.10 (0.88, 1.37) 48.6% 2
Guan 2011 [65] Hypertension versus none ML/LL 1.01 (0.87, 1.18) 37.2% 9
Xu 2015 [20] Lower DBP LL/? 1.14 (0.89, 1.39) 60.0% <0.01 6
Power 2011 [68] Per 10 mmHg DBP ML 0.93 (0.84, 1.04) 12.4% 0.85 4
Power 2011 [68] Per 10 mmHg DBP LL 0.94 (0.85, 1.04) 14.0% 0.45 5
Power 2011 [68] Per 10 mmHg increment SBP ML 0.95 (0.90, 1.00) 69.4% 4
Power 2011 [68] Per 10 mmHg increment SBP LL 0.95 (0.91, 1.00) 0.0% 0.54 5
Sharp 2011 [69] History of/current hypertension ? 1.59 (1.29, 1.95) 37.4% <0.01 6
Power 2011 [68] History of hypertension ML/LL 0.98 (0.80, 1.19) 41.8% 0.69 12
Inflammatory markers Koyama 2013 [70] C-reactive protein LL 1.36 (1.13, 1.63) 40.3% 3
Koyama 2013 [70] Interleukin-6 LL 1.15 (0.84, 1.59) 0.0% 4
Metabolic syndrome Xu 2015 [20] NCEP ATP III criteria LL/? 0.71 (0.49, 0.93) 36.5% 0.30 4
Peripheral artery disease Xu 2015 [20] Ankle to Brachial Index < 0.9–11 LL/? 1.68 (0.97, 2.38) 0.0% 0.51 2
Renal Disease Xu 2015 [20] eGFR (MDRD), I/SCr, questionnaire LL/? 1.13 (0.68, 1.59) 0.0% 0.67 3
Serum uric acid Du 2016 [71] Serum uric acid levels ? 0.66 (0.52, 0.85) 6.0% low risk 3
Stroke Xu 2015 [20] Self-reported history of stroke LL/? 0.97 (0.71, 1.24) 40.9% 0.03 –9
Zhou 2015 [72] Stroke diagnosis based on the International Classification of Diseases LL 1.59 (1.25, 2.02) 0.0% 5
TBI Xu 2015 [20] Head trauma with/without loss of consciousness LL/? 1.18 (0.89, 1.47) 7.5% 0.16 6
Li 2017 [73] Prior TBI LL/? 1.24 (1.04, 1.49) 26.8 0.32 8
Perry 2016 [74] Prior TBI ? 0.95 (0.58, 1.54) 51.4% 0.83 7
Pharmacological
Antacids Virk 2015 [75] Aluminum containing antacids ? 0.70 (0.30, 1.80) 0.0% ns 2
Virk 2015 [75] Antacid ? 0.83 (0.39, 1.78) 0.0% ns 2
Antihypertensives Xu 2015 [20] Anti-hypertensives LL/? 0.71 (0.59, 0.83) 52.7% 0.36 5
Xu 2017 [38] Anti-hypertensives LL 0.83 (0.64, 1.07) 40.5% possible 6
Chang-Quan 2011 [76] Anti-hypertensives ML/LL/? 0.92 (0.79, 1.08) 0.0% 0.66 5
Guan 2011 [77] Anti-hypertensives ML/LL 0.92 (0.79, 1.08) 0.0% 0.66 5
Anti-inflammatories Wang 2015 [78] Aspirin LL/? 0.74 (0.57, 0.97) 67.9% 8
Etminan 2003 [79] Aspirin ML/LL 0.85 (0.71, 1.03) 80.5% 0.90 5
Wang 2015 [78] Non-aspirin NSAIDs LL/? 0.61 (0.43, 0.88) 68.6% 0.04 7
Szekely 2004 [25] NSAIDs-exposure for 2 or more years ML/LL/? 0.42 (0.26, 0.66) 0.0% 3
Xu 2015 [20] NSAIDs LL/? 0.67 (0.44, 0.90) 65.8% <0.01 9
Szekely 2004 [25] NSAIDs-lifetime exposure ML/LL/? 0.74 (0.62, 0.89) absent 4
Wang 2015 [78] All NSAIDS LL/? 0.69 (0.56, 0.86) 79.7% 0.10 12
Etminan 2003 [79] All NSAIDs ML/LL 0.84 (0.54, 1.05) 62.3% 0.95 6
HRT LeBlanc 2001 [80] Any use versus never use LL 0.50 (0.30, 0.80) 0.0% 2
Xu 2015 [20] Any use versus never use LL/? 0.61 (0.46, 0.76) 38.1 <0.01 4
O’Brien 2014 [81] Any use versus never use ? 0.69 (0.48, 1.00) 31.4% 0.78 8
Insulin sensitizers Ye 2016 [82] Insulin-sensitizers versus non-insulin sensitizers ? 0.90 (0.55, 1.45) unobvious 2
Statins Zhou 2007 [83] Any use versus non-user ? 0.90 (0.65, 1.25) 0.0% 3
Xu 2015 [20] Current use versus never use LL/? 0.59 (0.45, 0.73) 26.4% 0.29 5
Xu 2015 [20] Former versus never use ? 1.28 (0.69, 3.24) 74.6% 2
Xu 2015 [20] Longer use versus never use ? 0.24 (0.07, 0.70) 0.0% 2
Wong 2013 [84] Users versus non-users ? 0.70 (0.60, 0.80) 18.2% minimal
Richardson 2013 [35] Users versus non-users ML/LL/? 0.79 (0.63, 0.99) 91.6% 0.38 10
Environmental
Pesticides Yan 2016 [85] Pesticide exposure LL/? 1.37 (1.08, 1.75) 0.0% 0.66 3
Xu 2015 [20] Occupational exposure to pesticides LL/? 1.26 (0.93, 1.59) 5.4% 0.78 3

Note.*the primary age represented per pooled effect (RR) is denoted by bold text. ‘adj’ denotes age-adjusted (baseline age is not relevant to measures of self-reported educational attainment), ‘ML’ denotes midlife (baseline age < 65), ‘LL late-life (baseline age 65+) and ‘?’ unknown. ‘RR’ denotes risk ratio, which is the pooled effect size. ‘–’ denotes not reported. ‘∼’ indicates there were too few primary studies to calculate Egger’s p. bias as indicated by visual inspection of funnel plot. Egger’s values are as reported in primary reviews, but not a recommended measure of bias when for n < 10. ‘n’ is the number of primary studies included in the meta-analysis for each RR.