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Abstract 

Background:  Iron deficiency chlorosis (IDC) is an abiotic stress in soybean [Glycine max (L.) Merr.] that causes 
significant yield reductions. Symptoms of IDC include interveinal chlorosis and stunting of the plant. While there are 
management practices that can overcome these drastic yield losses, the preferred way to manage IDC is growing 
tolerant soybean varieties. To develop varieties tolerant to IDC, breeders may easily phenotype up to thousands of 
candidate soybean lines every year for severity of symptoms related to IDC, a task traditionally done with a 1–5 visual 
rating scale. The visual rating scale is subjective and, because it is time consuming and laborious, can typically only be 
accomplished once or twice during a growing season.

Results:  The goal of this study was to use an unmanned aircraft system (UAS) to improve field screening for tolerance 
to soybean IDC. During the summer of 2017, 3386 plots were visually scored for IDC stress on two different dates. In 
addition, images were captured with a DJI Inspire 1 platform equipped with a modified dual camera system which 
simultaneously captures digital red, green, blue images as well as red, green, near infrared (NIR) images. A pipeline was 
created for image capture, orthomosaic generation, processing, and analysis. Plant and soil classification was achieved 
using unsupervised classification resulting in 95% overall classification accuracy. Within the plant classified canopy, 
the green, yellow, and brown plant pixels were classified and used as features for random forest and neural network 
models. Overall, the random forest and neural network models achieved similar misclassification rates and classifica-
tion accuracy, which ranged from 68 to 77% across rating dates. All 36 trials in the field were analyzed using a linear 
model for both visual score and UAS predicted values on both dates. In 32 of the 36 tests on date 1 and 33 of 36 trials 
on date 2, the LSD associated with UAS image-based IDC scores was lower than the LSD associated with visual scores, 
indicating the image-based scores provided more precise measurements of IDC severity.

Conclusions:  Overall, the UAS was able to capture differences in IDC stress and may be used for evaluations of candi-
date breeding lines in a soybean breeding program. This system was both more efficient and precise than traditional 
scoring methods.

Keywords:  Unmanned aircraft system (UAS), Soybean, Iron deficiency chlorosis, Remote sensing, Random forest, 
Neural network, Image analysis
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Background
Iron deficiency Chlorosis (IDC) is a major soil borne 
stress in soybean [Glycine max (L.) Merr.] and causes sig-
nificant yield reductions. In the United States, soybean 
IDC has been reported to result in yield losses totaling 
$260 million annually [1, 2]. Soybean IDC is caused by 
a lack of available iron [Fe(II)] to the plant [3–6]. While 
iron is abundant in almost all soils, deficiencies are 
caused by several soil chemical factors and their interac-
tions that change the solubility of iron in the soil [2, 7]. 
Soybean IDC is impacted by soil pH, soil calcium car-
bonate content, soil moisture content, soil electrical con-
ductivity, iron oxide concentration, and soluble salts [2, 
8–10]. Deficiency symptoms include interveinal chlorosis 
and overall stunting of the plant [11, 12]. Soybean grow-
ers can overcome the drastic yield penalties of IDC by 
growing tolerant soybean varieties, planting companion 
crops, reducing other forms of plant stress, and supple-
menting the soil with iron chelates [13, 14].

The preferred method to minimize yield losses caused 
by IDC is growing a tolerant variety, which is why there is 
continued interest in the development of IDC tolerant vari-
eties by soybean breeders [13, 15, 16]. To accomplish this 
breeding objective, thousands of potential soybean varie-
ties need to be screened every year for IDC severity. The 
screening has traditionally been accomplished using a 1–5 
visual severity scoring system where a score of 1 is given to 
tolerant lines and a score of 5 is given to susceptible lines [6]. 
The visual rating system is labor intensive and typically only 
done at one time point in the growing season. In addition, 
intra-rater variability due to the subjectivity of the human 
eye can result in less accurate phenotypic measurements, 
and thus, researchers are investigating image-based meth-
ods for quantifying IDC severity [6, 17]. New automated 
rating systems hold potential for more objectivity and reli-
ability for phenotyping IDC stress [17, 18]. To date, these 
phenotyping methods have been implemented from tripods 
[17] and push carts [19]; however, implementation using an 
unmanned aircraft system (UAS) has not been reported.

High throughput phenotyping (HTP) refers to the abil-
ity for researchers to collect detailed information dur-
ing a plant life cycle in a non-invasive way [20, 21]. This 
can be done in both controlled and field environments 
and with a wide array of platforms and sensors includ-
ing ground based and aerial systems [18, 20]. In recent 
years, there has been a growing interest in the utilization 
of aerial HTP platforms, especially for use in germplasm 
assessment within breeding programs [22]. While many 
traits are currently being measured in soybean using 
these platforms, including plant maturity, canopy cover-
age, and yield estimation [23, 24], for example, the main 
goal of this project was to use an unmanned aircraft sys-
tem (UAS) to improve plant assessments of soybean iron 

deficiency chlorosis (IDC). The objective of this research 
was to use images collected from a UAS to measure IDC 
severity and determine the accuracy and precision of 
these predictions.

Methods
Plant material, location, and field design
A series of 36 trials consisting of breeding lines at differ-
ent stages in the UMN breeding program, ranging from 
the advanced yield trial stage to the regional trial and 
commercial testing stage, was used in this study (Fig. 1). 
Breeding lines belonged to maturity groups ranging from 
00 to II. Individual trials consisted of breeding lines of 
similar relative maturity. The number of entries in each 
trial ranged from 16 to 80. Each plot (experimental unit) 
was planted as a single row 91 cm in length and 76.2 cm 
apart. Plots were arranged in a randomized complete 
block design with two replications. All plots (a total of 
3824) were planted on June 1, 2017.

The location for this study was a field site near Dan-
vers, MN (45.274285, − 95.718046) in Swift County. This 
field has a history of soybean IDC and has been rotated 
between corn and soybean for several years. Before plant-
ing, soil cores were taken and the soil was confirmed to 
have a pH in the range of 7.5 to 8.2, a range known to 
induce iron deficiency in soybeans [2, 8].

A total of nine ground control points (40 cm × 20 cm 
cement pavement blocks painted red) were placed in the 
field (Fig. 1). These were placed randomly throughout the 
field site location in such a way to cover the entire area 
of interest and remained in the field for the duration of 
the season. The ground control point coordinates were 
collected at one time-point during the summer using a 
Trimble Handheld GPS unit.

Reflectance calibration panels were also created for use 
in this project. A total of three calibration targets (2 feet by 
2 feet matte boards) were made with each target consisting 
of four levels of grey—5%, 20%, 40%, and 55% reflectance 
painted with ‘black’, ‘iron mountain’ ‘flannel gray,’ and ‘sil-
ver bullet,’ and for each % reflectance respectively (BEHR 
paint brand, Santa Ana, California) Paint was mixed with 
a 50/50 mix by weight with barium sulfate to ensure a near 
Lambertian surface. A total of three layers of paint were 
used on top of one coat of primer. An ASD (Analytical 
Spectral Devices) Handheld 2: hand held VNIR spectrora-
diometer was used to measure the reflectance of the panels 
with the built-in halogen bulb for source lighting.

IDC ground‑based phenotyping
Soybean IDC was rated on July 12 and August 1, 2017, 
herein referred to as date 1 and date 2 respectively. On date 
1, soybeans ranged in vegetative growth stages from V3–
V6 and on date 2, soybeans ranged in growth stages from 
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V6–R2. Soybeans were rated on both dates with a 1–5 visual 
rating scale. With this scale, a rating of “1” indicates a plot 
that is 100% green (no yellowing), a score of “2” indicates 
slight yellowing with some plants in the plot turning yellow, 
a score of “3” indicates moderate yellowing with most plants 
turning yellow in the plot, a score of “4” indicates intense 
yellowing where all plants are yellow and some are becom-
ing stunted and necrotic, and a score of “5” indicates most 
severe IDC symptoms where the entire plot is damaged and 
dying or completely dead [6, 25]. Each plot was measured by 
an expert rater who understands IDC stress symptoms. This 
ground-based phenotyping served as the reference data in 
this study for training and validating models. In addition, 
252 plots were scored independently by two trained raters 
for the assessment of inter-rater variability. These plots were 
chosen because they displayed variation in IDC severity 
because of their placement in a part of the field with optimal 
IDC stress for detecting differences between varieties.

UAS platform, sensor, flight plan
In this study, a pipeline was created from image cap-
ture to image analysis. Table  1 highlights the major 
steps in this pipeline including (1) UAS image collec-
tion, (2) orthomosaic generation, and (3) image pro-
cessing. In step 1, aerial data were collected on the 

same dates as ground based data (July 12 and August 
1) with a DJI Inspire 1 equipped with a modified dual 
camera system, “Sentera Double 4 K agricultural” (Sen-
tera Inc, Minneapolis, MN). The images were captured 
in 12.3 mega-pixel (MP) red (650  nm × 70  nm width), 
green (548  nm × 45  nm width), blue (446  nm × 60  nm 
width) and 12.3 MP red (650  nm × 70  nm width), 
green (548  nm × 45  nm width), Near Infrared (NIR, 
840 nm × 20 nm width). Each camera has a 60° field of 
view. The UAS was flown using the autonomous flight 
mission planning of AgVault software. All missions 
were conducted at an altitude of 60.96  m with a UAS 
speed of 5 m/s and images captured with 70% end lap 
and side lap. The resulting images had a ground sam-
pling distance of 1.6  cm. All flights were conducted 
within 2 h of solar noon to limit shadow effects.

Image data processing
After image collection, image orthomosaics were gen-
erated using Pix4D Desktop (Pix4D, SA). The WGS 84 
datum was used with a projected coordinate system of 
UTM zone 15 N. Images captured by the Sentera dual 
camera system were uploaded into the same project and 
given group names of “RGB” and “NIR” for the two sets 
of images respectively. For this study, only RGB data 

Fig. 1  Soybean iron deficiency chlorosis testing field site location near Danvers, MN. The field used in this study is located in Six Grove Township, 
MN (45.274285, − 95.718046) in Swift County. The yellow circles highlight the nine ground control points in the field for geometric calibration and 
the red squares highlight the radiometric calibration panels. These panels were painted with four levels of grey for empirical line method calibration. 
Overlaid to the field orthomosaic is a vector file delineating the plot boundaries of 3386 soybean plots. Each plot boundary is colored based on the 
trial each plot belongs to. A total of 36 trials was grown
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were used in image processing. The default process-
ing options template, “Ag RGB,” was used for generat-
ing geo-referenced orthomosaics. This option generates 
mosaics from overlapping nadir images and outputs a 
full resolution GeoTIFF file and merges tiles. In addi-
tion, the “Ag RGB” processing template has faster pro-
cessing speed and is compatible with RGB cameras.

Pix4D Processing occurs in three major steps includ-
ing initial processing; point cloud and mesh; and digi-
tal surface model, orthomosaic, and index generation. 
Nine ground control points were input into the Pix4D 
project directly following the initial processing step 
using the ray cloud editor.

In step 3, orthomosaics were processed and data 
extracted from each plot. Orthomosaics were loaded 
into Erdas Imagine and unsupervised classification 
using k-means clustering into five classes was done on 
an indexed map of the ratio of red and green (R − G)/
(R + G). After unsupervised classification, the five 
classes were manually grouped into the “plant” class 
and the “soil” class based on human observation of the 
five classes. The classes were recoded, and a mask was 
set based on the new classification.

Accuracy assessment of the plant and soil classifica-
tion was conducted using Erdas Imagine software (Hexa-
gon Geospatial, United States). The accuracy assessment 
toolkit was used to assign 1000 points across the field 
of interest. An equalized random sampling scheme was 
used to set 500 sampling points of soil and 500 of plant 
classified pixels. The reference data was created by visu-
ally assigning each point as plant or soil based on human 
interpretation of the non-classified original orthomosaic. 

Class values were hidden during the reference data col-
lection in order to ensure unbiased values. An error 
matrix was used to compute the overall accuracy, pro-
ducer accuracy, and user accuracy. The overall classifi-
cation accuracy was computed by summing the major 
diagonal numbers (correctly classified) divided by the 
sum of all sample units in the entire matrix. The producer 
accuracy was computed by dividing the total number of 
correct sample units in each specific category by the total 
number of the specific sample units of reference data. 
The user accuracy was computed by dividing the total 
number of correct sample units in the specific category 
by the total number of sample units classified as the spe-
cific category.

The masked plant canopy was further classified to 
green, yellow, and brown plant pixels using an additional 
k-means clustering step. This was done to mimic how 
researchers typically rate IDC plots and was based previ-
ous studies [17, 19]. These features were then extracted 
using QGIS software (QGIS Geographic Information 
System. Open Source Geospatial Foundation Project. 
http://qgis.osgeo​.org). In QGIS, a polygon shapefile was 
created where field plot polygons were used to iden-
tify each of the 3824 plots. The zonal statistics plugin 
was used to extract the proportion of green, yellow, and 
brown pixels in each plot.

Two modeling algorithms, neural network and ran-
dom forest, were used to relate these three features to 
the ground based visual scores [26]. Both algorithms are 
available in the predictive analytics software package 
within JMP Pro (JMP®, Pro 10, SAS Institute Inc., Cary, 
NC, 1989–2007). In both cases, the IDC visual score data 

Table 1  Pipeline for image capture and analysis for iron deficiency chlorosis assessment

The flight path is set up in Pix4D capture with 70% overlap of images. Individual photos are orthomosaiced in Pix4D and k-means clustering is used to mask the 
plants from the soil background. An additional classification of green, yellow, and brown pixels is performed on the plant objects. In QGIS, plots are defined, and the 
proportions of green, yellow, and brown pixels are extracted from each plot. Finally, predictions are made to correlate these three features with ground based visual 
score estimates rated on a one through 5 scoring system

Category Step Details

UAS image collection Set up UAS DJI Inspire 1 with Sentera Double 4 K sensor

Prepare flight path AgVault mobile app or Pix4D capture app

Fly UAS for data collection 70% image overlap, 61 m altitude

Image orthomosaic using Pix4D Initial processing Key points extraction and matching, camera model optimization, 
geolocation

Point cloud and mesh Point densification and 3D textured mesh creation, insert ground 
control points

Digital surface model, orthomosaic, and index Creation of digital surface model, Orthomosaic, reflectance map, 
and index map

Image processing Plant and soil classification k-means clustering and recode to plant and soil

Green, yellow, brown pixel classification k-means clustering on masked canopy and recode to green, 
yellow, brown

Neural network/random forest with ground data Subset into training and validation sets, ground based data is 
response variable and green, yellow, brown pixel counts are 
used as features

http://qgis.osgeo.org
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was treated as a character and 77% of the data, at ran-
dom, was used to train the models and 33% of the data, at 
random, was used for validation. The random forest used 
100 trees in the forest with 10 minimum splits per tree. 
The neural network was run using default settings in JMP 
software. The hidden layer structure used 3 TanH func-
tions and a learning rate of 0.1. Results are reported in a 
confusion matrix.

Each of the 36 trials in the field were analyzed using 
a linear model including the IDC score as the response 
variable, a fixed effect for entry, a fixed effect for block, 
and a random residual. The least significant difference 
(LSD) was calculated by multiplying the square root of 
the mean square error from the statistical model by the 
0.2 t-value for each test. The LSD was calculated for all 36 
tests on ground-based UAS scores for both dates of data 
collection.

Results and discussion
Ground‑based phenotyping
A total of 3386 plots were assessed for severity to IDC 
stress on a 1–5 scale on two separate dates (July 12 and 
August 1, 2017). The distributions of each of the two 
dates of data, as well as their relationships, can be seen 
in Fig. 2. In total, 15%, 45%, 30%, 9%, and 1% were rated 
1–5, respectively, on date 1. On date 2 30%, 41%, 18%, 8%, 
and 3% were rated 1–5, respectively. In total, there was 
a much higher abundance of entries given a score of “1” 

on date 2 as compared to date 1. Nevertheless, the overall 
average score in the field was 2.1 on both dates of visual 
scoring. The comparison between raters was also investi-
gated on a subset of 252 plots. For these plots, two peo-
ple independently scored the plots to provide an estimate 
of inter rater variability in visual scores. The correlation 
between rater 1 and rater 2 was 0.93.

UAS imagery for IDC phenotyping
In the first step of the image analysis pipeline, plant can-
opy was masked from the soil using k-means clustering 
(Fig. 3), an unsupervised machine learning approach that 
has been successfully used in many agriculture applica-
tions [27, 28]. This approach resulted in an overall classi-
fication accuracy of greater than 95%. The user accuracy 
was 94% and 97% for soil and plant classification, respec-
tively. Table  2 is a confusion matrix highlighting the 
results of the accuracy assessment of this classification.

Previous studies have utilized a variety of techniques 
to mask plant canopies. In a publication by Yu et  al., 
for example, plant and soil classification was achieved 
using a random forest model and resulted in an accu-
racy of 99.9% [23]. The results here had an accuracy of 
95.6%, however, plants under chlorosis or necrosis stress 
result in spectral properties very similar to that of the 
soil background. In addition, many misclassification 
errors occurred at the edges of the canopy where soil and 
plant canopy pixels were overlapping. One advantage 

Fig. 2  Relationships between two dates of iron deficiency chlorosis (IDC) severity (a) and two separate raters scoring plots (b). IDC severity was 
measured on a total of 3386 plots on both July 12 and August 01. The correlation of ratings between date 1 and date 2 was found to be 0.80. A 
subset of 252 plots were measured by two independent raters on date 1. The correlation of ratings between raters was found to be 0.93
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of this study, however, is the ability to classify plant and 
soil without training data. The unsupervised classifica-
tion approach using k-means clustering resulted in pixels 
with similar spectral values being clustered together. This 
clustering occurs with no former knowledge or input, 

and can often provide new insights into the data [18]. 
With supervised approaches such as the random forest, 
a training data set must be generated by manually inter-
preting the classes pixels belong to. Other studies have 
used thresholding approaches to differentiate plants from 
soil. In these scenarios, the image is often thresholded 
based on the hue, saturation, value format of the image 
or based on indices or ratios of different color bands [17, 
24, 29].

The percent green, yellow, and brown pixels were also 
classified using a similar approach as the plant canopy 
classification (Fig.  3). These features were used in two 
different machine learning models (random forest and 
neural network) to predict IDC severity scores. The 
confusion matrices for the random forest models for 
date 1 and date 2 are shown in Tables 3 and 4 for date 
1 and date 2, respectively. Overall, the classification 
accuracy was 68% for date 1 and 77% for date 2. The 
increase in classification accuracy between date 1 and 
date 2 is likely the result of the size of the plants, with 
more pixels representing plant material at date 2 than 
at date 1.

The average canopy coverage of each plot can indi-
cate the overall biomass and light interception of the 
plots. Canopy coverage was thus calculated as the ratio 

Fig. 3  Iron deficiency chlorosis classification. The Orthomosaic (top) is first classified into plant and soil pixels (bottom left). The plant pixels are then 
classified in a second step to green pixels (%G), yellow pixels (%Y), and brown pixels (%B) (bottom right). These features are then related back to 
ground-based visual scores through random forest and neural network models to classify tolerant and susceptible plots

Table 2  Accuracy assessment of  pixel-based classification 
method for plant and soil classification

One thousand random points were generated and placed on the orthomosaiced 
image using the equalized random sampling method. The predicted data 
was generated from k-means clustering and the reference data was manually 
created using visual observations of the images. Accuracy assessment results 
were generated using ERDAS IMAGINE software. An overall classification of 
95.6% was achieved

The diagonal elements are italicized to highlight the number of correctly 
classified pixels in terms of plant or soil classifications

Reference data User 
accuracy 
(%)Soil Plant Row total

Predicted data

 Soil 469 31 500 93.8

 Plant 13 487 500 97.4

 Column total 482 518 1000

 Producer accuracy (%) 97.3 94.0

Overall accuracy (%) = 95.6
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of “plant classified pixels” to “soil plus plant classified 
pixels” and compared across the five different severity 
classes. The average canopy coverage for each IDC class 
was as follows: class 1 = 0.264, class 2 = 0.246, class 
3 = 0.189, class 4 = 0.096, and class 5 = 0.039. Each of 
these levels was considered significantly different from 
each other class at the 0.05 probability level using Tuk-
ey’s honest significant difference, indicating the IDC 
score explained variation in plot biomass.

UAS imagery is a reliable measure for detecting differences 
among entries
Another method to test the suitability of the UAS scores 
is to test if the scores can differentiate breeding lines in 
the field. A common procedure for this assessment is to 

calculate the LSD for comparing performances of breed-
ing lines in typical randomized field trials. For reporting 
of variety trials, a relaxed significance threshold (e.g., 
P < 0.20) is commonly used for declaring differences 
among varieties to increase power and reduce type II 
errors. Based on this, if the LSD is low, the precision of 
the data is higher, and the researcher is better able deter-
mine differences among breeding lines. The LSD values 
from the ground-based data and the UAS data were com-
pared among the 36 experimental trials, or sets of lines, 
for both dates of data collection. In 32 of the 36 trials on 
date 1 and 33 of 36 trials on date 2, the LSD was smaller 
when using the UAS IDC scores in the linear model com-
pared to the visual scores (Fig. 4). There was an average 
0.15- and 0.20-point reduction in LSD (ranging from 0.35 
increase to a 0.50 decrease) with UAS scores compared to 
the visual scores for date 1 and date 2 respectively. This 
reduction in LSD indicates that the UAS data is more 
precise than visual scores and offers appropriate informa-
tion for use in a breeding program.

Many previous studies have shown great success and 
accuracy in collecting phenotypic traits from unmanned 
aircraft systems both in soybeans and in other crops [22, 
23, 30, 31]. In addition, previous studies have successfully 
used image-based methods for classifying and quanti-
fying soybean IDC stress [17, 32]. However, to date, no 
study has demonstrated combining the powers of high 
throughput image collection from unmanned aircraft 
systems with image-based classification for IDC.

UAS imagery compared to other methods for IDC assessment 
and limitations
Previous studies have tested the use of image analy-
sis procedures to quantify IDC stress [17–19]. Their 
approaches achieved a mean per class accuracy of ~ 96% 
and 81%. While the previous studies showed relatively 
high accuracy, the throughput of taking photos from 
a tripod or push cart is much lower in comparison to a 
UAS. Spatial resolution achieved, however, was much 
higher (6 pixels/mm from tripod compared to 1.6  cm/
pixel from the UAS). This decrease in spatial resolution 
resulted in blending of pixels and thus less resolution 
to depict subtle changes of individual leaves becoming 
chlorotic.

For this study, a flight path was chosen to cover a 
large area within one UAS battery life, and to limit 
variation in sun positioning and cloud shadows during 
flight, as these variables are known to present prob-
lems with image analysis applications. Future research 
should be done to test if an increase in spatial resolu-
tion through improved camera sensors or lower flight 
altitudes would improve predictive abilities. Care 

Table 3  Random forest confusion matrix for date 1 of data 
collection (July 12)

The % green, % yellow, and % brown pixels from each of the research plots were 
used as features in a random forest model. This confusion matrix shows how well 
the random forest model predicted the iron deficiency chlorosis (IDC) score from 
ground-based reference data where each plot was rated on a one through five 
scale. The overall accuracy was 68%

The diagonal elements are italicized to highlight the percentage of correctly 
classified field plots in terms of IDC score

Reference data

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Predicted data

 1 76.4 22.8 0 0.8 0

 2 14.3 68.2 16.1 1.2 0.2

 3 0.8 19.2 65.3 14.7 0

 4 0 3.9 19.7 61.9 14.5

 5 0 0 0 100 0

Overall accuracy (%) = 68

Table 4  Random forest confusion matrix for date 2 of data 
collection (August 1)

The % green, % yellow, and % brown pixels from each of the research plots were 
used as features in a random forest model. This confusion matrix shows how well 
the random forest model predicted the iron deficiency chlorosis (IDC) score from 
ground-based reference data where each plot was rated on a one through five 
scale. The overall accuracy was 77%

The diagonal elements are italicized to highlight the percentage of correctly 
classified field plots in terms of IDC score

Reference data

1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

Predicted data

 1 85.1 14.9 0 0 0

 2 10.4 79.6 9.3 0.5 0.2

 3 0.2 13 74 12 0.8

 4 0 0.6 9.9 73.6 15.9

 5 0 0 3.1 18.4 78.5

Overall accuracy (%) = 77
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should be taken to ensure that flights conducted limit 
shadowing caused by soybean plots by flying near solar 
noon, and that the cloud cover during flights be con-
sistent—full cloud cover or no cloud cover is optimum. 
The system presented in this paper reduced flight time 
by flying at a higher altitude and will allow researchers 
to achieve a much higher temporal assessment of IDC 
severity as well as the ability to rate more plots in any 
given growing season.

Additionally, the confusion matrices show that many 
of the misclassified scores are mostly between nearby 
classes. If a breeder simply wishes to select against scores 
of 4 or 5, for example, the UAS image-based scores would 
be very adequate for breeding purposes. To test this, 
scores of 4 and 5 were binned together as “high stress” 
and scores of 1, 2, and 3 were binned together as “low 
stress.” The overall accuracy of the random forest model 
in correctly placing the entries into these two categories 
was 89%.

A final caution that researchers should consider in 
employing UAS imagery for IDC detection is that other 
soybean stresses or field variables may mimic IDC 

symptoms detected by image analyses. One major biotic 
factor to soybean production, for example, is soybean 
cyst nematode. Research plots may experience stunting 
and chlorosis from nematode presence, which could be 
rated as IDC susceptible using this system. In addition, 
healthy weeds in the field would be detected by this sys-
tem as healthy vegetation, and thus, healthy plots. These 
cautions were addressed by site selection with limited 
known off-target stressors and by proper weed control 
prior to all UAS flights, and should be considered by 
researchers wishing to employ this technology.

Conclusions
In this study, we achieved high efficiency in collecting 
data with autonomous UAS flights, greater than 77% 
accuracy in classifying plots on a 1–5 severity scale, and 
confidence in this system for IDC assessment through an 
average reduction in LSD values across a series of experi-
mental trials. This method is high-throughput, objective, 
and more precise than traditional ground based visual 
assessments. In addition, it allows researchers to collect 

Fig. 4  A total of 36 trials consisting of soybean breeding lines, each arranged in a randomized complete block design in the field, were analyzed 
using a linear model for both visual score and unmanned aircraft system (UAS) predicted values on both dates (July 12 and August 01). Bars indicate 
the least significant difference (LSD) values to separate mean scores of breeding lines for each trial in the field. In 31 of the 36 trials on date 1 (top) 
and 33 of 36 trials on date 2 (bottom), the LSD was decreased when using the UAS predicted IDC scores (black inside bars in the linear model 
compared to the visual scores (dashed outside bars)
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information from more plots in a given year and at a 
much higher temporal frequency than before.

Abbreviations
IDC: iron deficiency chlorosis; UAS: unmanned aircraft system; NIR: near infra-
red; HTP: high throughput phenotyping; LSD: least significant difference.
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