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Abstract
Nurse scientists play an important role in studying complex relationships among human genetics, environmental factors, and the
microbiome, all of which can contribute to human health and disease. Therefore, it is essential that they have the tools necessary
to execute a successful microbiome research study. The purpose of this article is to highlight important methodological factors for
nurse scientists to consider when designing a microbiome study. In addition to considering factors that influence host-associated
microbiomes (i.e., microorganisms associated with organisms such as humans, mice, and rats), this manuscript highlights study
designs and methods for microbiome analysis. Exemplars are presented from nurse scientists who have incorporated microbiome
methods into their program of research. This review is intended to be a resource to guide nursing-focused microbiome research
and highlights how study of the microbiome can be incorporated to answer research questions.
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Nurse scientists have emerged as leaders in the effort to better

understand the complex relationships among the human

genome, the genomes of the microbiota, and the multitude of

environmental forces that shape superorganisms and contribute

to health outcomes (Brooks et al., 2017; Cong et al., 2017;

Edwards, Cunningham, Dunlop, & Corwin, 2017; Fourie

et al., 2016). Nurses offer a unique holistic perspective on

patient health that spans areas as diverse as midwifery, cardi-

ology, nephrology, neurology, and psychology. They are thus

well suited to join the microbiome research revolution but

require additional training to increase their “omics” literacy.

Over the past several decades, authors have widely cited the

idea that the number of microbial cells in the human body

outnumbers our mammalian cells by a ratio of 10:1 (Goodman

& Gordon, 2010; Luckey, 1972; Savage, 1977). Given that

there are 37.2 trillion mammalian cells in the human body, this

idea suggests an enormous pool of cells whose effects on health

were open to study (Bianconi et al., 2013). Although more

recent calculations put the number closer to 1.3 microbial cells

per 1 mammalian cell (Sender, Fuchs, & Milo, 2016), each of

the thousands of microbial strains that comprise the micro-

biome contains a unique genome, and microbial genes do

vastly outnumber mammalian genes. Furthermore, this vast

reservoir of microbial genes plays a significant role in

maintaining the homeostasis of the host (Gilbert et al., 2018;

Khanna & Tosh, 2014; Schirmer et al., 2016; Stamper et al.,

2016). Microorganisms perform vital functions, including (but

not limited to) development of the immune system (Bartman,

Chong, & Alegre, 2015; Iebba, Nicoletti, & Schippa, 2012;

Wei et al., 2010), metabolism and digestion of food materials

(David et al., 2014; Kau, Ahern, Griffin, Goodman, & Gordon,

2011; Sonnenburg & Backhed, 2016), and synthesis of
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vitamins, cytokines, and neurotransmitters (Dinan & Cryan,

2017; Gilbert et al., 2016; Griffin et al., 2017; Schirmer

et al., 2016; Sonnenburg & Backhed, 2016).

Microbiomes are critical to health, and authors have sug-

gested that they be considered a new endocrine organ

(Baquero & Nombela, 2012; Clarke et al., 2014). The addition

of microbiome analyses to research designs has provided

valuable information related to physiologic and pathophysio-

logic processes and may have a role in the diagnosis and

treatment of disease (Bartman et al., 2015; Tamboli, Neut,

Desreumaux, & Colombel, 2004; Yang & Zubcevic, 2017).

Even in neurodegenerative diseases, such as Alzheimer’s and

Parkinson’s diseases, microorganisms may play a role, either

as potential causative or facilitating agents or as diagnostic

responders to changing physiological conditions associated

with disease progression (Keshavarzian et al., 2015; Sampson

et al., 2016; Vogt et al., 2017). Understanding the role of the

microbiome is additionally critical for interpreting results

from animal studies.

The purpose of this article is to highlight important metho-

dological factors for nurse scientists to consider when design-

ing a microbiome study. In addition to considering factors that

influence host-associated microbiomes (i.e., microorganisms

associated with organisms such as humans, mice, and rats), this

article highlights study designs and methods for microbiome

analysis. We have provided a list of commonly used definitions

in microbiome research in Table 1.

Factors Influencing the Human Microbiome

The human microbiome is affected by numerous factors that

researchers must take into account when designing studies,

including genetics, age, diet, antibiotics, and environment

(Figure 1). These factors cause alterations in the microbiome,

which may lead to negative or positive effects on health (Boku-

lich et al., 2016; Conlon & Bird, 2014; Cresci & Bawden,

2015). For instance, dietary intake and antibiotic use can cause

dysbiosis, a pathologic alteration in the native microbial com-

munity, in the gut microbiota and contribute to diseases such as

obesity, asthma, diabetes, inflammatory bowel disease, and

cardiovascular disease (Bokulich et al., 2016; David et al.,

2014; Zoetendal & de Vos, 2014). In turn, several factors can

influence dietary intake and nutrition, including cultural or

religious beliefs, geographical location, and socioeconomic

status, adding further complexity to the research design and

external validity of study results (Burkitt, Walker, & Painter,

1972; Darmon & Drewnowski, 2015; Griffin et al., 2017; McI-

nerney et al., 2016). Conversely, breast milk and pre- and pro-

biotics contribute to the abundance of microbes that overall

benefit immune health and function (Conlon & Bird, 2014;

Langdon, Crook, & Dantas, 2016). Because of their influence

on microbial communities, it is important to take these factors

into consideration when designing a research study.

As with human studies, researchers must take into account

several factors that influence the animal microbiome when

designing animal studies. For example, animal age, species,

Table 1. Common Terms in Microbiome Research.

Term Definition

16S ribosomal RNA (rRNA) gene The gene encoding for the small subunit of the prokaryotic ribosome, which contains nine variable
regions that can be targeted with PCR (Janda & Abbott, 2007).

16S rRNA gene amplicon sequencing A PCR-based sequencing method targeting microbial rRNA genes, which is used to identify and
determine the relative abundance of microorganisms present within a given sample and to compare
microbial communities between samples (Janda & Abbott, 2007).

Alpha diversity Microbiota diversity within an individual site or sample diversity; one value per sample (Jost, 2007).
Beta diversity Between-sample changes in taxon diversity (Jost, 2007).
Dysbiosis A breakdown in the homeostasis of a microbial community, leading to overgrowth of detrimental

microorganisms (Tamboli et al., 2004).
Metabolomics The comprehensive, qualitative, and quantitative study of all the small molecules in an organism that

result from cellular metabolism and give insight to the network of biochemical reactions in a cell (Liu
& Locasale, 2017).

Metagenome/metagenomics The combination of microbial genomes and genes in an environment or sample/the direct genetic
analysis of genomes contained within an environmental sample (Thomas, Gilbert, & Meyer, 2012).

Microbiome The collection of microbial organisms and genetic information (i.e., genomes) at a given site (i.e., skin,
oral, stool, others; Ursell et al., 2012).

Microbiota The microbial taxa associated with multicellular organisms, from plants to humans (Ursell et al., 2012).
Operational taxonomic unit Similar sequences are clustered together to represent a microbial taxon based on a predetermined

similarity identity cutoff. Thresholds of 97–100% have been used to represent an approximate
“species” level grouping (Edgar, 2018).

Shotgun metagenome sequencing A DNA sequencing method that enables comprehensive sampling of all genes in all organisms in a given
complex microbial sample instead of targeting a specific marker gene (Sharpton, 2014).

Shotgun metatranscriptome sequencing
(metatranscriptomics)

Analysis of all messenger RNAs encoded by a group of microorganisms within a complex sample.
Metatranscriptomics describes the pool of expressed genes at a given time point in a complex
microbial sample (Warnecke & Hess, 2009).

Note. PCR ¼ polymerase chain reaction.

126 Biological Research for Nursing 21(2)



diet, and housing considerations (such as grouped vs. single

animal housing) are strong drivers of the microbiome and can

actually have a stronger influence on research results than the

main independent variable of interest (Hoy et al., 2015; Lees

et al., 2014; McCord et al., 2014). Other factors, such as time of

sample collection and accounting for circadian rhythmicity of

microbial relative abundance, may not have as strong a micro-

biome effect as the previous factors but should still be taken

into consideration and controlled during study design and inter-

pretation of results (Liang, Bushman, & FitzGerald, 2015).

Providing and maintaining a rationale for a consistent sampling

time will account for potential variation in bacterial expression

patterns throughout the circadian day.

Setting Up a Microbiome Research Project

Advances in human microbiome research depend on precise

study execution, control, and reproducibility. Aside from the fac-

tors described above, researchers must consider a number of other

elements to ensure high-quality data analysis and results. These

elements include study design, sample collection methods, and

processing and storage for downstream analysis. We provide a

summary of the specific recommendations for human and animal

microbiome studies that we describe in this article in Table 2.

Study Design

Because no standard methods have yet been established in

microbiome research, effect sizes vary by disorders (Kelly

et al., 2015; La Rosa et al., 2012). For singular microbiome

studies, doing a pilot study first will help define adequate sam-

ple and effect sizes. Alternatively, large cohort studies like the

Human Microbiome Project (HMP) and tools like “Evident”

(https://github.com/biocore/Evident) have published methods

to estimate sample sizes based on projected effect sizes (Good-

rich et al., 2014).

Sample Collection Methods

Most biological sample collection protocols for human micro-

biome studies are noninvasive or minimally invasive and cause

minimal risk to the participants (except for collection of hard

tissues from the oral cavity and vagina and rectal swabs; Kuc-

zynski et al., 2011; McInnes & Cutting, 2010). Although fecal

sampling for microbiome studies is noninvasive, participants

may view this route of sample collection as unpleasant, and

researchers should consider and account for potential attrition

in participants in longitudinal studies (Ricardo-Rodrigues

et al., 2015). Devoting time to education on procedures for

sample collection and return can increase compliance and will

increase the sample yield (Wolf et al., 2001).

Researchers collect samples once or multiple times over a

specific study period, and in some cases, favor longitudinal

studies (Faust, Lahti, Gonze, de Vos, & Raes, 2015). Regard-

less of the number of collection time points, however, accurate

collection techniques and sample handling are crucial for pre-

venting sample contamination and postcollection microbial

growth (Jordan et al., 2017; Vogtmann et al., 2017). Use of

either repeated sampling or time series sampling gives insight

into the volatility, resilience, composition, and relative

Figure 1. Some common factors affecting the microbiome: Humans and animals.
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abundance of microbial communities and can provide baseline

data for genetically distinct individuals (David et al., 2014). It

should be noted that because of genetics, diet, and study com-

pliance, human microbiome studies can have much higher

interindividual variability than animal studies. For these rea-

sons, longitudinal studies can provide a more comprehensive

perspective on microbiota diversity (within-subject and

between-subject diversities) compared to single time point

cross-sectional sampling. Although previously cost prohibitive

for many researchers due to the historically high cost of micro-

biome sequencing, longitudinal microbiome studies have

become more accessible to more investigators because of the

reduced cost of next-generation sequencing (NGS) methods

and increased automation for the DNA extraction and sequen-

cing processes. Therefore, investigators should plan to perform

replicate sampling from the same individual (Gohl et al., 2016).

The numbers of recommended replicates vary based on the

research question and statistical tests used, but generally two

to three replicates are recommended per sample site. The Man-

ual of Procedures for the HMP has described in detail the

methods for sample collection, transport, and storage for each

microbial habitat; the information is publicly accessible

(McInnes & Cutting, 2010).

Sample Processing and Storage

Methodologies used for sample processing, storage, and trans-

port can impact DNA and RNA recovery and the final observed

microbial community structure. Because these steps occur at

the beginning of the workflow, they affect all downstream

Table 2. Recommendations for Conducting a Microbiome Study.

Recommendations for a Microbiome Study

� Study design
� Power and sample size can be estimated by calculating effect sizes of beta diversity metrics and using statistical tests such as

PERMANOVA (Kelly et al., 2015).
� Refer to established microbiome protocols, such as the Manual of Procedures for the Human Microbiome Project, to guide research

plan and study considerations.
� Using a control group allows investigators to account for microbiome changes over time (as compared to treatment effect).
� The confounding factors listed in Figure 1 should be evaluated and controlled for in the planning stages of the research study.

� Sample collection
� As many studies require a large number of samples, developing a standardized sample tracking system will allow close monitoring of

sample inflow and organization.
� A minimum of two to three replicate samples should be collected, especially when sampling areas of high variability such as the skin or

mouth.
� If a device is used to collect samples (such as cotton swab), a device with no sample present should additionally be analyzed to

evaluate for microbial contamination of the sampling device.
� There are minimum reporting standards on samples that are contributed to open-source platforms. Recording the sample metadata

(or details about where the sample came from) at the beginning of the study will save time during data analysis (Field et al., 2008).
� Standardized environmental conditions should be maintained during sample storing and shipping. Consult with previous protocols or

the lab processing microbiome samples, if applicable, about optimal sample preparation and storage for the methodology used.
� Sample analysis
� DNA extraction methods and kits influence results. Ensure sample-processing consistency for all samples in a study and record the

kit and extraction protocols used.
� Decision of whether to use16S rRNA versus shotgun metagenomics sequencing should be made based on study question,

microorganisms and/or genes of interest, and research hypotheses.
� When using 16S rRNA sequencing, selection of PCR primers should be guided by previous studies, particularly when attempting to

distinguish between closely related species.

Special considerations for human studies

� Study design
� Account for attrition when calculating sample sizes, particularly if repeated sampling or fecal/blood sampling is involved.
� A standardized education plan for study participants can increase participant involvement and may decrease attrition rates.
� Account for dietary intake, antibiotic, and other medications used and geographical location.

Special considerations for animal studies

� Study design
� Animals should be purchased by the same vendor throughout the study, as use of multiple vendors can introduce confounding

environmental variability.
� Animals housed in the same cage will display similar bacterial abundance patterns. Investigators should set up multiple cages for each

group and consider cohabitation of animals in the final statistical analysis, if applicable (Kim et al., 2017).

Note. PCR ¼ polymerase chain reaction; rRNA ¼ ribosomal RNA; PERMANOVA ¼ permutational analysis of variance.
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stages. A standardized sample tracking system using electronic-

and paper-based methods with an established labeling system

will allow close monitoring of the samples through collection,

processing, storage, and downstream analysis. The tracking sys-

tem is also critical for long-term storage because it could provide

precise locations of samples in an �80�C freezer.

Sample processing will generally follow the instructions

from a commercial kit chosen based on the research question

and previously published studies. Sample storage prior to

nucleic acid extraction includes flash freezing either on dry ice

or liquid nitrogen followed by long-term storage at �20�C or

�80�C. Commercially available alternatives allow for

medium-term storage at room temperature in stabilizing and

inactivating reagents, allowing for home collection and postal

shipment of oral, vaginal, and fecal samples (e.g., products

from companies such as DNA Genotek, Norgen Biotek, Zymo,

and others). DNA-based analyses are less sensitive to short-term

environmental shifts than RNA-, metabolite-, or protein-based

analysis; thus, DNA sampling is less onerous. Metabolomics or

metatranscriptomics studies require more rigorous standardiza-

tion of sample processing and storage methods for rapid stabili-

zation of samples due to the faster nature of by-product

degradation. For example, in metabolomics analysis protocols,

a standardized weight of fecal sample is aliquoted to an Eppen-

dorf tube, flash frozen in liquid nitrogen, and eventually freeze-

dried by lyophilization before shipment for processing in order

to ensure accuracy and reproducibility of sample results (Deda,

Gika, & Theodoridis, 2018).

Maintaining constant environmental conditions is critical

during storage and shipping. The number of freeze–thaw

cycles, resulting from fluctuation of environmental conditions,

can impact microbial composition and nucleic acid integrity

(Sergeant, Constantinidou, Cogan, Penn, & Pallen, 2012).

Investigators should thoroughly document any significant envi-

ronmental changes that occur to samples and should then

account for potential effects on the data with statistical model-

ing (Chen et al., 2012).

Microbiome Sequencing Methods

Rigorous study design, sample collection, and storage and con-

trolling for environmental confounders are all important factors

in planning microbiome research, but understanding and proper

selection of appropriate sequencing methods is vital for a suc-

cessful study. Despite the power of cultivation-independent

molecular methods, all such methods contribute bias. Sequen-

cing results, therefore, are a proxy for the “true” microbial

community, and it is important to understand the limitations

of different molecular approaches. In this section, we review

some commonly used approaches for microbiome sequencing.

16S rRNA Sequencing Versus Shotgun Metagenomics
Sequencing

Before the development of nucleic acid–based molecular tools,

including DNA-based amplification techniques such as the

polymerase chain reaction (PCR), characterization of the

human microbiota was limited to microscopy and laboratory

cultivation of organisms (Ursell et al., 2012). Consequently, the

microorganisms that were studied in depth were those that

could be successfully grown in vitro (such as Escherichia coli)

but were not necessarily dominant organisms in the original

sample. This limitation led to a sparse view of complex micro-

bial communities, elsewhere labeled the “great plate count

anomaly” (Staley & Konopka, 1985), and prevented scientists

from comprehensively identifying microbial populations

throughout the body. Although important developments in cul-

tivation approaches have enabled recovery of previously

“unculturable” organisms (Nichols et al., 2010), most organ-

isms remain resistant to growth under laboratory conditions. To

circumvent such difficulties, cultivation-independent methods

have been widely employed to characterize complex microbial

communities (Amann, Ludwig, & Schleifer, 1995).

The most commonly used methods today include 16S ribo-

somal RNA (rRNA) gene amplicon sequencing and “shotgun”

metagenome sequencing. Both approaches are culture-

independent techniques that use DNA sequence data to infer

the presence and relative abundance of microorganisms and

specific genes from those organisms. The use of molecular

sequence data to identify microorganisms is necessary because

microorganisms have a limited number of morphologies and

look similar to one another, and many organisms share func-

tional features or phenotypes (e.g., metabolic activity) even

when they are not closely related. Prior studies in which inves-

tigators used morphology or metabolic activity as a guide to

phylogeny were eventually revealed to be highly problematic

(Fox et al., 1980). DNA-dependent analyses also allow for the

identification and classification of many types of organisms

that are historically laborious or currently impossible to grow

in a controlled laboratory setting (Morgan & Huttenhower,

2012). In addition, these methods have been more accessible

to a broad range of scientists due to the availability of highly

reliable commercial kits and limited equipment needs. Less

specific experience is needed to perform DNA extraction, PCR,

and sequencing than to perform cultivation, and many of these

tasks can be outsourced to external facilities. Thus, researchers

require a basic understanding of these processes for properly

interpreting results. Major advances in sequencing technology,

bioinformatic algorithms, and computational capacity have

facilitated the development of the throughput of these methods,

concomitant with reduced cost.

16S rRNA gene amplicon sequencing. Until recently, the most

common method for investigating the microbiome was 16S

rRNA gene amplicon sequencing (Schmidt, DeLong, & Pace,

1991). The rRNAs were identified as phylogenetic markers

very early on (Woese & Fox, 1977) due to a number of favor-

able features: (a) the presence of rRNA genes in all known

organisms due to the integral role of rRNA as a component

of the ribosome and, therefore, in messenger RNA (mRNA)

translation (Birtel, Walser, Pichon, Burgmann, & Matthews,

2015); (b) the presence of highly conserved regions of the gene,

Maki et al. 129



allowing for the design of broad-range PCR primers; (c) the

presence of highly variable regions, allowing for the use of the

gene for phylogenetic analysis; (d) the low rate of rRNA lateral

gene transfer between different microbial lineages (Kurland,

Canback, & Berg, 2003); and (e) the absence of translation

of the gene, thereby avoiding codon degeneracy issues that

complicate PCR primer design in protein-coding genes.

Because the small-subunit rRNA gene (i.e., 16S or 18S

rRNA gene) is present in the genomes of all microorganisms,

the regions of the gene which are highly conserved (or

unchanged) are ideal target sites for the so-called universal

primers. Universal primers are used to target a wide range of

microorganisms, including unknown organisms that have not

been cultivated. Between these highly conserved regions in the

16S rRNA gene are nine hypervariable regions that have chan-

ged over the course of microbial evolution (Figure 2). These

regions, which are more similar between closely related organ-

isms and more different between more distantly related organ-

isms, can thereby serve as a guide to microbial taxonomy. For

taxonomic purposes, the full 16S rRNA gene (approximately

1,542 base pairs [bp] in E. coli; see Figure 2) is traditionally

used (Brosius, Palmer, Kennedy, & Noller, 1978). When

attempting to determine whether two microorganisms belong

to the same species (itself a difficult concept in the field of

microbiology; Rossello-Mora & Amann, 2001), researchers

have traditionally used a threshold of 97% similarity for exclu-

sion (i.e., two organisms with 16S rRNA genes with lower than

97% similarity are considered to be distinct species; Stackeb-

randt & Goebel, 1994). Although some of the newest sequen-

cing technologies are able to sequence the entire 16S rRNA

gene (e.g., Oxford Nanopore and Pacific Biosciences), histori-

cally, much shorter sequences have been employed for analysis

of microbial communities. Even now, full gene sequencing is

expensive and requires sophisticated sequencing pipelines

(Yang, Wang, & Qian, 2016).

The more traditional approach to 16S rRNA sequencing has

been to choose one or two hypervariable regions to target via

PCR for short-read NGS. The ability to acquire a very large

number of short sequences (on the scale of 100–500 bp [bp])

necessitated the development of new techniques to allow for

rapid analysis of large datasets. Prior to starting a microbiome

study, it is important that researchers consult both the literature

and experts in field; this practice can help them tailor the choice

of the primer set to the goals of the study. Not all primer sets

work for all organisms. For example, some hypervariable

regions are suitable for distinguishing between closely related

species from the same genus, but other regions may have no

differences between the two species (Ionescu et al., 2016).

Figure 2. Targeting the small-subunit (16S) ribosomal rRNA (rRNA) gene in microbial communities using polymerase chain reaction (PCR).
(A) Schematic of the conserved and variable regions of the 16S rRNA gene and PCR primers. The 16S rRNA gene has nine variable regions that
are dispersed throughout the conserved regions of the gene. Primers used for sequencing of broad categories of microorganisms (e.g., all
bacteria) are designed in the conserved (orange) region, and the generated amplicons span one or more variable (white) regions. The box
indicates the approximate region targeted by the commonly used primers 341F and 806 R. (B) A full-length sequence (1,541 bases) of the “top”
strand of a 16S rRNA gene of Escherichia coli (GenBank Accession Number J01859). The forward primer location is highlighted in pink and the
reverse primer location is highlighted in green. Note that the length of the 16S rRNA gene can vary substantially between different taxa, but
conserved regions generally remain similar, even among distantly related taxa. The primer sites are targeted by the “forward” primer 341F
(CCTACGGGAGGCAGCAG) and the “reverse” primer 806R (GGACTACNVGGGTWTCTAAT; where N¼ any base, V¼ A, C or G, and W
¼A or T). Note that only a single variant of the degenerate 806R primer matches the E. coli 16S rRNA gene and is shown here. (C) A visual of the
annealing of 341F (targeting the pink sequence on the “bottom” strand) and 806R (targeting the green sequence on the “top” strand) primers to
the E. coli 16S rRNA gene sequence. These primers can also anneal to most bacterial 16S rRNA genes and generate PCR amplicons containing
the V3 and V4 variable regions that are used for annotation purposes. (figure modified from Del Chierico et al., 2015.)
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Clearly, the ideal universal primers should match the rRNA

genes of all organisms and amplify one or more hypervariable

regions of the 16S rRNA gene to accurately categorize known

and unknown organisms. No such perfect primer set exists,

however, and the choice of primers may need to be adjusted

for each microbiome study based on the goals of the study and

the specific genera of interest (Kuczynski et al., 2011). After

amplification and sequencing, the sequences in the variable

regions of the 16S rRNA gene are used as genetic fingerprints

to identify bacteria by phylum to species and below (Reyes-

Lopez et al., 2003).

Because these NGS approaches to sequencing of the rRNA

genes generate so many sequences (usually in the range of

1,000–100,000 sequences per sample), investigators employ

data reduction strategies. One data reduction strategy is to

group highly similar sequences together for taxonomic identi-

fication. In many cases, sequences are grouped together at 97%
similarity (i.e., all sequences within any given group are at least

97% similar to every other sequence in the group). These

groups of similar sequences are called operational taxonomic

units (OTUs) and have been used as a proxy for microbial

“species.” This clustering approach is an informatics strategy

only, and the clustering does not depend on any external bio-

logical information. As a result, by using this method, it is

possible to group sequences from distinct taxa into a single

OTU as well as to split sequences from a single taxon into

multiple OTUs. Researchers have developed solutions to con-

trol for the ambiguity of using representative DNA sequences

as a proxy for a bacterial taxon (Callahan et al., 2016), but a full

discussion is beyond the scope of this work.

After clustering sequences into OTUs, the researcher

selects a representative sequence from each OTU for annota-

tion and then assigns this annotation to all the sequences in the

OTU. One common mechanism for annotation is to identify

the sequences that are most closely related to the representa-

tive sequence and use the taxonomic information from those

sequences to assign taxonomy to the unknown OTU. For this

technique, investigators use 16S rRNA gene sequence data-

bases such as SILVA (Pruesse et al., 2007) or Greengenes

(DeSantis et al., 2006). Two software packages for the anal-

ysis of large amplicon data sets are used extensively and

process data from raw sequences to annotated and tabulated

OTU data: QIIME (Caporaso et al., 2010) and mothur

(Schloss et al., 2009).

Overall, the 16S rRNA gene amplicon sequencing approach

has both beneficial and detrimental features. The beneficial

features include (a) highly robust PCR amplification, allowing

the use of low amounts of DNA input; (b) a universal gene

present in all organisms; (c) established bioinformatics pipe-

lines; and (d) data amenable to straightforward statistical anal-

ysis. Conversely, the detrimental features include (a) the use of

PCR, which is dependent on a priori knowledge for primer

design and can introduce substantial bias (Green, Venkatrama-

nan, & Naqib, 2015); (b) poor and inconsistent resolution at the

taxonomic level of genus and species (Zeigler, 2003); (c) lack

of information about the functional gene content of the

identified organisms (see a possible solution to this issue in

Langille et al., 2013); and (d) limited capacity for multidomain

detection (i.e., bacteria, archaea, eukarya) within a single assay.

These detrimental features have driven the development of

shotgun sequencing approaches.

Shotgun metagenomics sequencing is a more comprehen-

sive technique that potentially allows for sampling all genes

from all organisms present in a given sample. In addition to

taxonomic information, as derived from 16S rRNA gene ampli-

con sequencing, shotgun sequencing provides sequence data

from other genes, including the so-called functional genes

(i.e., not housekeeping genes) that not all organisms have.

Functional genes include, but are not limited to, genes involved

in nutrient metabolism, downstream signaling, antibiotic pro-

duction, antibiotic resistance, motility, metabolism (including

fermentation), respiration (aerobic/anaerobic), and secondary

metabolite production (Cresci & Bawden, 2015; Kuczynski

et al., 2011; Langdon et al., 2016). Furthermore, shotgun

sequencing can target bacteria, archaea, fungi, microeukar-

yotes, and some viruses simultaneously. Although a number

of approaches exist for preparing genomic DNA for shotgun

sequencing, many protocols start by fragmenting the DNA into

relatively small pieces (generally 250- to 600-bp fragments; Di

Bella, Bao, Gloor, Burton, & Reid, 2013; Morgan & Hutten-

hower, 2012). This fragmentation is necessary for Illumina

sequencing platforms, which do not tolerate very large DNA

fragments. Other sequencing platforms, such as those from

Oxford Nanopore and Pacific Biosciences, can use much larger

pieces of genomic DNA (>10,000 bp), but currently have a

relatively high error rate that has limited their use in sequence

analysis of complex microbial communities. Improved sequen-

cing strategies and sequencing analysis algorithms may

increase the use of these platforms in the future (Frank et al.,

2016; Huson et al., 2018). After fragmentation, genomic DNA

is prepared to be loaded onto a sequencer through a process

called “library preparation,” which involves a series of enzy-

matic steps, including repair of the ends of the DNA and liga-

tion of sequencing adapters. The ligation step is used to

incorporate known DNA sequences into the ends of unknown

genomic DNA in a sequence-independent manner. Subse-

quently, the known sequences (called sequencing adapters) are

used to manipulate the DNA by the way of PCR amplification

(to increase the total amount of DNA but without selecting for

any specific sequences) and to initiate the sequencing reaction,

again without selection for any specific sequence from the

source genomic DNA. In most cases, the sequencing adapters

also contain sample-specific information (so-called barcodes),

which allow the mixing of multiple samples on a single sequen-

cing run. Fragmenting and barcoding the DNA sequences is

performed to exploit fully the tremendous amount of data gen-

erated on a sequencing run by splitting the sequencing data

yield into output from multiple samples, thereby decreasing

the per-sample cost.

The data yield from shotgun metagenome sequencing can be

daunting. Millions to hundreds of millions of short sequences

(generally 150 bases, in pairs) are generated using Illumina
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sequencing platforms. These data can be analyzed in a variety

of ways (Sharpton, 2014). Common strategies include (but are

not limited to) (a) searching for lineage-specific marker genes

to annotate sequences accurately (Segata et al., 2012), (b) high-

throughput basic logical alignment search tool analysis of indi-

vidual sequences against reference sequence databases such as

the National Center for Biotechnology Information nonredun-

dant database (Buchfink, Xie, & Huson, 2015; Huson et al.,

2016; Meyer et al., 2008) to annotate data and assign sequences

to taxonomic and functional gene groups, and (c) assembly of

larger DNA sequences (“contigs”) from the short-read data

(called de novo assembly) and subsequent mapping of

sequence data back to the assembled contigs (Brown et al.,

2011). Ultimately, the annotated data are used to characterize

the gene content of microbial communities, measure diversity,

and identify differences in the relative abundance of microbial

features (i.e., taxa, genes, and pathways) between different

groups of samples.

Although shotgun metagenome sequencing has many

advantages, there are also challenges. In particular, analysis

of the large data output is computationally demanding, the

short sequences generated from Illumina sequencers can be

difficult to annotate, and the relative abundance of sequences

from each organism is affected by both the abundance of the

organism and the size of its genome. In samples with a high

amount of host DNA, shotgun sequencing can yield very little

microbial DNA because there is no PCR selection of microbial

genes. Shotgun metagenome data are richer in total numbers of

sequences, in number of organisms targeted, and in regions of

the genome targeted. Conversely, as the complexity is much

greater, low-abundance features can be difficult to detect.

Unlike 16S rRNA gene amplicon sequencing, the field has not

settled on standard approaches for data analysis.

Pros and cons of 16S and SMS technology. Despite notable differ-

ences between 16S rRNA and shotgun sequencing approaches,

there are several common factors for researchers to consider

when they are starting microbiome research studies. Both

approaches depend on workflows upstream of the library pre-

paration and sequencing, including sampling, sample storage,

and genomic DNA extraction (Brooks et al., 2015; Choo,

Leong, & Rogers, 2015). Investigators should thus take great

care to establish proper experimental design and sampling,

storage, and library preparation procedures to reduce bias

(Goodrich et al., 2014; Ionescu et al., 2016). Recently, cell-

and DNA-based standards have been developed for micro-

biome studies that allow for the assessment of DNA extraction

efficiency and bias associated with library preparation (Tighe

et al., 2017). In addition to upstream sources of bias, library

preparation protocols can differ greatly. For 16S rRNA gene

amplicon sequencing, a large number of primer sets can be

used as well as a wide range of PCR mastermixes and PCR

conditions that can greatly influence the observed microbial

community (Green et al., 2015). Similarly, for shotgun sequen-

cing approaches, there are a number of different techniques for

fragmenting genomic DNA as well as a wide range of kits for

library preparation. These preparation protocols can also influ-

ence the observed microbial community. Finally, analysis can

be influenced by the software used for data analysis, databases

used for output classification, clustering strategies, and taxo-

nomic level of analysis. Microbiome analysis by 16S rRNA

amplification is still the most commonly used approach

because it is relatively inexpensive (generally in the range of

15–40 USD per sample, depending on amplicon length and

depth of sequencing), the data analysis can be performed using

established pipelines, and there is a large body of archived data

(Ranjan, Rani, Metwally, McGee, & Perkins, 2016). Addition-

ally, as the technology has been around longer, many online

tutorials are available on the bioinformatics and statistical anal-

ysis of this technology.

Shotgun metagenome sequencing, as described above, has

many advantages over 16S rRNA gene amplicon sequencing

but remains substantially more expensive (generally in the

range of 100–400 USD per sample, depending on library pre-

paration protocol, sequencing read length, and depth of sequen-

cing) and is, itself, not immune from improper annotation of

sequences. Although some software packages have included

attempts to use 16S rRNA gene amplicon sequence data to infer

the presence of specific functional genes (Langille et al., 2013),

shotgun data provide a more rigorous option to generate taxo-

nomic data, functional gene data, and coupled taxonomic infor-

mation for functional genes (i.e., allow for the identification of

the source organism for a gene of interest that is not a rRNA

gene). Shotgun sequence data can be used for assembly of large

genomic fragments and, in some cases, near complete genomes

(Albertsen et al., 2013; Luo, Tsementzi, Kyrpides, & Konstan-

tinidis, 2012; Sieber et al., 2018). In addition, shotgun data can

be used to generate gene catalogs for specific environments,

including host-associated environments such as skin or feces

(Karlsson, Nookaew, & Nielsen, 2014; Qin et al., 2010).

Finally, it should be noted that 16S rRNA gene amplicon

sequencing and shotgun metagenome sequencing can be used

in tandem. 16S sequencing can be performed on very large

sample sets, and the data generated from that initial sequencing

can be used to guide the selection of samples for more in-depth

interrogation using shotgun sequencing. In addition, comparing

results from 16S and shotgun sequencing of human-associated

microbial communities from many different body sites has

revealed a wide range of different microbial communities in

the same niche from different healthy individuals but much

lower variation in the relative abundance of metabolic path-

ways at a high level (Huttenhower et al., 2012). Ultimately, the

scientific questions being asked in each study should dictate the

choice of method used.

Classifying Gene Activity: Metatranscriptomics

Shotgun sequencing techniques, in which nucleic acids are

sheared and adapters are ligated in a sequence-independent

manner, are also employed to target mRNAs in a method

broadly termed RNAseq (Di Bella et al., 2013). When applied

to a complex community of microorganisms, this technique is
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called metatranscriptomics. Conceptually, the approach is

straightforward. Total RNA extracts are converted to double-

stranded complementary DNA and subsequently prepared for

high-throughput NGS. Unlike shotgun metagenome sequen-

cing, however, the total RNA extract must be manipulated

before sequencing because, in most cases, most (>80%) of the

RNA is composed of ribosomes. While analysis of ribosomal

RNA directly can be extremely useful, metatranscriptomics

focuses on the analysis of mRNA. Thus, the mRNA must be

enriched, either by removal of rRNAs (i.e., ribosomes) or by

specific capture of mRNA. Microorganisms do not, however,

polyadenylate their mRNAs; thus, poly(A) capture techniques

that are standard in eukaryotic transcriptome sequencing can-

not be used in the field of microbiology (Bashiardes,

Zilberman-Schapira, & Elinav, 2016). rRNAs can be removed

through a number of strategies (Stewart, Ottesen, & DeLong,

2010), but the most straightforward is to hybridize total RNA

with anti-sense biotinylated DNA oligonucleotide probes tar-

geting the rRNAs of a range of different microbial taxa (Xiong

et al., 2012). These probes (and the RNA bound to them) are

removed from the solution using streptavidin-coated magnetic

beads (streptavidin has an extremely high affinity for biotin;

Weber, Ohlendorf, Wendoloski, & Salemme, 1989). The RNA

remaining in the solution is prepared for sequencing using

standard RNA sequencing library preparation protocols

(reviewed in Sarode, Parris, Ganesh, Seston, & Stewart,

2016). These libraries are then sequenced deeply, as with shot-

gun metagenome sequencing. In host–microbial ecosystems,

host RNA (both rRNA and mRNA) can dominate microbial

transcripts; thus, further RNA selection may be required.

Despite these difficulties, microbial metatranscriptome

sequence data can be highly valuable. RNA-based sequencing

approaches provide information regarding microorganisms

active at the time of sampling and (because microorganisms

alter transcript abundances rapidly) thus a snapshot of micro-

bial gene expression patterns (Sarode et al., 2016). In addition,

metatranscriptome sequencing provides quantitative data that

can be used to characterize essential and condition-specific

gene expression patterns. Thus, metatranscriptomics provides

the added information of gene transcription and activity (com-

pared to simply identifying presence or absence of a gene) and

has the potential to address research questions related to exter-

nal factors and their influence on microbiome activity in

healthy and disease states (Helbling, Ackermann, Fenner, Koh-

ler, & Johnson, 2012).

Quantifying Metabolic Output of the Microbiome:
Metabolomics

Although shotgun metagenomic and metatranscriptome

sequencing are critical tools for characterizing community

structure and activity in microbial environments, these methods

still serve as proxies for metabolic activity. Direct measure-

ment of metabolites can be used in concert with molecular data

to demonstrate that a shift in microbial community structure

and in microbial gene expression patterns lead to a change in

physiochemical conditions (Hale et al., 2018; Tankou et al.,

2018; Yan et al., 2018). Metabolomics is the study of the meta-

bolite composition within a cell type, tissue, or other sample

and allows for an analysis of functional processes that are

occurring as a result of cellular metabolism (Patti, Yanes, &

Siuzdak, 2012). Such analyses can be more sensitive to chang-

ing conditions than shotgun metagenomics (Gowda & Djuko-

vic, 2014), and recent research has shown that the microbial

phenotype, or the functional result of metabolic pathways, is

more suggestive of disease or health than is the presence or

absence of bacteria alone (Gowda & Djukovic, 2014).

The two main techniques used for metabolomics analysis

are nuclear magnetic resonance (NMR)- and mass spectrome-

try (MS)-based metabolomics, and both platforms are used to

characterize the metabolic profiles of biological fluids such as

urine, feces, serum, and saliva (Dettmer, Aronov, & Hammock,

2007; Lindon, Nicholson, Holmes, & Everett, 2000; Patti et al.,

2012). MS-based metabolomics is usually coupled with gas

chromatography, ion chromatography, or liquid chromatogra-

phy to analyze specific metabolite components in the sample.

Comparison of the NMR- and MS-based metabolomics is

beyond the scope of this article, but each system has unique

benefits and limitations that researchers should consider in

light of the design of the microbiome study. An increase or

decrease in relevant metabolites, such as short-chain fatty

acids, can lead to hypothesis generation and pathway analysis

of processes associated with microbiota pathology that may

lead to disease (Romick-Rosendale et al., 2009). If shotgun

sequencing is not performed, metabolite data can be paired

with the 16S rRNA sequencing to identify associations

between specific taxa and metabolites. The lack of associated

metabolic data is a common criticism of 16S rRNA gene ampli-

con sequencing; thus, metabolomics can be an important tool in

studying the processes involved in regulation of the gut micro-

biota (Ranjan et al., 2016). Likewise, even with the

information-rich data from shotgun metagenomic and meta-

transcriptome sequencing, metabolite analysis provides a defi-

nitive link of microbial community structure and activity with

microbiome function. The analysis of host metabolic profiles in

the context of the host-specific microbiome has important

potential in the study of personalized medicine and may allow

greater understanding of how the microbiota is involved in

human health and disease.

State and of the Science and Future
Directions

To date, several nurse scientists have incorporated microbiome

research into their research questions. Some areas studied by

nurse scientists using microbiomics are feeding method (i.e.

breastfed vs. formula fed) in preterm infants (Cong et al.,

2017; Cong et al., 2016), irritable bowel syndrome (Fourie

et al., 2017; Fourie et al., 2016), and the vaginal microbial

community (Brooks et al., 2017). Although this list is not a

comprehensive one of all the work done by nurse scientists,

it provides exemplars of advancement in the field. Table 3

Maki et al. 133



T
a
b

le
3
.

M
ic

ro
b
io

m
e

R
es

ea
rc

h
P
er

fo
rm

ed
b
y

N
u
rs

e
Sc

ie
n
ti
st

s.

C
it
at

io
n

P
u
rp

o
se

/O
b
je

ct
iv

es
Sa

m
p
le

Si
te

R
es

ea
rc

h
D

es
ig

n
M

ic
ro

b
io

m
e

M
et

h
o
d
s

M
ai

n
Fi

n
d
in

gs
Im

p
lic

at
io

n
s/

Fu
tu

re
D

ir
ec

ti
o
n
s

A
n
al

ys
is

P
ip

el
in

e

B
ro

o
ks

et
al

.
(2

0
1
7
)

In
ve

st
ig

at
e

th
e

st
ab

ili
ty

o
f

m
ic

ro
b
io

m
e

p
ro

fil
es

,
cl

u
st

er
ed

in
to

C
ST

s,
ac

ro
ss

d
iff

er
en

t
d
at

a
se

ts
.

T
h
e

in
ve

st
ig

at
o
rs

al
so

so
u
gh

t
to

an
al

yz
e

w
h
et

h
er

C
ST

s
ca

n
b
e

u
se

d
to

as
se

ss
d
yn

am
ic

s
in

th
e

m
ic

ro
b
io

m
e.

V
ag

in
al

m
ic

ro
b
io

m
e

sa
m

p
le

s

A
se

co
n
d
ar

y
an

al
ys

is
o
f
fiv

e
d
at

a
se

ts
th

at
h
ad

tw
o

o
r

m
o
re

lo
n
gi

tu
d
in

al
va

gi
n
al

sa
m

p
le

s
p
er

su
b
je

ct

Fo
u
r

o
f
th

e
d
at

a
se

ts
w

er
e

d
er

iv
ed

fr
o
m

1
6
S

rR
N

A
am

p
lic

o
n
-b

as
ed

su
rv

ey
s,

an
d

o
n
e

w
as

b
as

ed
o
n

w
h
o
le

-m
et

ag
en

o
m

e
sh

o
tg

u
n

se
q
u
en

ci
n
g.

T
h
e

am
p
lic

o
n
-b

as
ed

d
at

a
se

ts
w

er
e

ge
n
er

at
ed

b
y

4
5
4

p
yr

o
se

q
u
en

ci
n
g

w
h
ile

th
e

m
et

ag
en

o
m

ic
se

q
u
en

ce
d
at

a
w

er
e

ge
n
er

at
ed

b
y

Ill
u
m

in
a

se
q
u
en

ci
n
g.

H
ea

lt
h
y

su
b
je

ct
s

te
n
d
ed

to
p
er

si
st

in
a

C
ST

p
ro

fil
e

fo
r

an
av

er
ag

e
o
f
2
–
3

w
ee

ks
o
r

m
o
re

,
w

h
ile

su
b
je

ct
s

w
it
h

d
ys

b
io

si
s

h
ad

C
ST

p
ro

fil
es

th
at

ch
an

ge
d

m
o
re

o
ft

en
(o

ft
en

in
re

sp
o
n
se

to
m

ed
ic

at
io

n
).

C
h
an

ge
s

in
C

ST
p
ro

fil
es

o
cc

u
rr

ed
gr

ad
u
al

ly
in

so
m

e
su

b
je

ct
s

an
d

as
q
u
ic

kl
y

as
1

d
ay

in
o
th

er
s.

T
h
e

p
re

se
n
ce

o
f

G
ar

dn
er

el
la

va
gi

na
lis

w
as

a
st

ro
n
g

p
re

d
ic

to
r

o
f
an

u
p
co

m
in

g
C

ST
ch

an
ge

.

T
h
er

e
is

a
la

ck
o
f
d
en

se
lo

n
gi

tu
d
in

al
m

ea
su

re
m

en
ts

o
f
th

e
va

gi
n
al

m
ic

ro
b
io

m
e,

an
d

fu
rt

h
er

w
o
rk

ca
n

b
e

ai
m

ed
at

re
p
ea

te
d

m
ea

su
re

s
o
f

th
e

va
gi

n
al

m
ic

ro
b
io

m
e

w
it
h

d
et

ai
le

d
ac

co
m

p
an

yi
n
g

cl
in

ic
al

in
fo

rm
at

io
n
.
T

h
is

w
o
u
ld

al
lo

w
ex

p
er

im
en

ts
to

co
n
tr

o
l
fo

r
fa

ct
o
rs

th
at

ca
n

af
fe

ct
b
ac

te
ri

al
gr

o
w

th
an

d
/o

r
p
H

,
su

ch
as

h
o
rm

o
n
e

le
ve

ls
,
cl

o
th

in
g,

an
ti
b
io

ti
c/

an
ti
fu

n
ga

l
u
se

,
d
ie

t,
d
o
u
ch

in
g

p
ra

ct
ic

es
,

an
d

p
re

se
n
ce

o
f
se

m
en

.

St
at

is
ti
ca

lm
o
d
el

in
g

o
ft

h
e

fiv
e

d
at

a
se

ts
w

as
p
er

fo
rm

ed
in

R
to

ca
lc

u
la

te
as

so
ci

at
io

n
al

an
d

p
re

d
ic

ti
ve

va
lu

es
o
f

th
e

C
ST

s
in

ea
ch

d
at

a
se

t.

C
o
n
g

et
al

.
(2

0
1
7
)

E
x
p
lo

re
th

e
ef

fe
ct

o
f
fe

ed
in

g
ty

p
es

o
n

gu
t

m
ic

ro
b
ia

l
co

lo
n
iz

at
io

n
o
f
p
re

te
rm

in
fa

n
ts

in
th

e
n
eo

n
at

al
in

te
n
si

ve
ca

re
u
n
it

(N
IC

U
)

an
d

in
ve

st
ig

at
e

th
e

co
n
tr

ib
u
ti
o
n

o
f
d
iff

er
en

t
fe

ed
in

g
ty

p
es

o
n

th
e

d
ev

el
o
p
m

en
t

o
f
gu

t
m

ic
ro

b
ia

l
d
iv

er
si

ti
es

o
ve

r
th

e
fir

st
3
0

d
ay

s
o
f
lif

e

St
o
o
l
sa

m
p
le

co
lle

ct
ed

d
ir

ec
tl
y

fr
o
m

d
ia

p
er

Se
co

n
d
ar

y
an

al
ys

is
o
f
C

o
n
g

et
al

.
(2

0
1
6
),

w
it
h

ad
d
it
io

n
al

su
b
je

ct
s

ad
d
ed

.
T

h
ir

ty
-t

h
re

e
st

ab
le

p
re

te
rm

in
fa

n
ts

w
er

e
fo

llo
w

ed
fo

r
3
0

d
ay

s.
In

fa
n
ts

w
er

e
cl

as
si

fie
d

in
to

si
x

gr
o
u
p
s

b
as

ed
o
n

fe
ed

in
g:

m
o
th

er
’s

o
w

n
m

ilk
[M

O
M

],
h
u
m

an
d
o
n
at

ed
m

ilk
[H

D
M

],
fo

rm
u
la

,
M

O
M
þ

H
D

M
,

M
O

M
þ

fo
rm

u
la

,
an

d
H

D
M
þ

fo
rm

u
la

d
u
ri

n
g

d
ay

s
0
–
1
0
,
1
1
–
2
0
,
an

d
2
1
–
3
0

af
te

r
b
ir

th
.

D
N

A
w

as
ex

tr
ac

te
d

u
si

n
g

th
e

M
o
B
io

P
o
w

er
So

il
ki

t
(M

o
B
io

La
b
o
ra

to
ri

es
,I

n
c.

).
T

h
e

V
4

va
ri

ab
le

re
gi

o
n

o
f

th
e

1
6
S

rR
N

A
ge

n
e

w
as

se
q
u
en

ce
d

T
h
e

M
O

M
gr

o
u
p

h
ad

th
e

h
ig

h
es

t
ab

u
n
d
an

ce
o
f

C
lo

st
ri
di

al
es

,
La

ct
ob

ac
ill
al

es
,

an
d

B
ac

ill
al

es
,
an

d
th

e
lo

w
es

t
ab

u
n
d
an

ce
o
f

E
nt

er
ob

ac
te

ri
al

es
.
St

o
o
l

sa
m

p
le

s
o
f
th

e
in

fa
n
ts

in
th

e
H

D
M

,
fo

rm
u
la

,
an

d
H

D
M
þ

fo
rm

u
la

gr
o
u
p
s

h
ad

a
h
ig

h
ab

u
n
d
an

ce
o
f

E
nt

er
ob

ac
te

ri
al

es
at

al
l
ti
m

e
p
o
in

ts
.
A

lp
h
a

d
iv

er
si

ty
(a

-
d
iv

er
si

ty
)
w

as
h
ig

h
er

in
th

e
M

O
M

gr
o
u
p

co
m

p
ar

ed
to

o
th

er
gr

o
u
p
s

o
ve

r
th

e
th

re
e

1
0
-d

ay
in

te
rv

al
s.

H
ig

h
er

a-
d
iv

er
si

ty
o
f
th

e
m

ic
ro

b
ia

l
co

m
m

u
n
it
y

w
as

as
so

ci
at

ed
w

it
h

o
ld

er
d
ay

o
fl

ife
(p

<
.0

0
1
),

fe
d

M
O

M
(p

<
.0

1
),

an
d

fe
m

al
e

ge
n
d
er

(p
<

.0
5
).

B
et

a
d
iv

er
si

ty
(b

-d
iv

er
si

ty
)

w
as

ev
al

u
at

ed
u
si

n
g

P
E
R

M
N

O
V

A
,
an

d
fe

ed
in

g
ty

p
e

ex
p
la

in
ed

th
e

gr
ea

te
st

va
ri

an
ce

in
th

e
co

m
m

u
n
it
y

st
ru

ct
u
re

o
f

th
e

fa
ct

o
rs

te
st

ed
(1

1
%

;
p

<
.0

0
1
).

Fu
tu

re
w

o
rk

m
ay

ex
p
lo

re
th

e
d
iff

er
en

t
m

ec
h
an

is
m

s
b
y

w
h
ic

h
M

O
M

af
fe

ct
s

th
e

d
iv

er
si

ty
an

d
co

m
p
o
si

ti
o
n

o
f
th

e
p
re

te
rm

in
fa

n
t’
s

gu
t

m
ic

ro
b
io

ta
.
Fu

rt
h
er

ex
p
lo

ra
ti
o
n

o
f
th

e
in

flu
en

ce
s

o
f
ge

n
d
er

an
d

fe
ed

in
g

ty
p
e

o
n

m
ic

ro
b
ia

l
co

m
m

u
n
it
y

is
su

gg
es

te
d
.

Fu
rt

h
er

w
o
rk

is
al

so
n
ec

es
sa

ry
o
n

te
st

in
g

w
ay

s
H

D
M

ca
n

b
e

p
re

se
rv

ed
to

m
ai

n
ta

in
co

m
p
o
si

ti
o
n
al

in
te

gr
it
y

to
p
ro

m
o
te

a
m

o
re

d
iv

er
se

gu
t

m
ic

ro
b
io

ta
.

U
si

n
g

Q
II
M

E
so

ft
w

ar
e,

O
T

U
s

w
er

e
d
et

er
m

in
ed

b
y

cl
u
st

er
in

g
re

ad
s

to
th

e
G

re
en

ge
n
es

1
6
S

re
fe

re
n
ce

d
at

a
se

t
(2

0
1
3
–
0
8

re
le

as
e)

w
it
h

a
9
7
%

id
en

ti
ty

cu
to

ff
.

V
al

id
it
y

o
f
th

e
p
ip

el
in

e
w

as
te

st
ed

u
si

n
g

a
m

o
ck

b
ac

te
ri

al
co

m
m

u
n
it
y.

(c
on

tin
ue

d)

134



T
a
b

le
3
.

(c
o
n
ti
n
u
ed

)

C
it
at

io
n

P
u
rp

o
se

/O
b
je

ct
iv

es
Sa

m
p
le

Si
te

R
es

ea
rc

h
D

es
ig

n
M

ic
ro

b
io

m
e

M
et

h
o
d
s

M
ai

n
Fi

n
d
in

gs
Im

p
lic

at
io

n
s/

Fu
tu

re
D

ir
ec

ti
o
n
s

A
n
al

ys
is

P
ip

el
in

e

C
o
n
g

et
al

.
(2

0
1
6
)

E
x
p
lo

re
d
ay

-t
o
-d

ay
gu

t
m

ic
ro

b
io

m
e

p
at

te
rn

s
in

p
re

te
rm

in
fa

n
ts

d
u
ri

n
g

th
ei

r
ea

rl
y

lif
e

in
th

e
N

IC
U

an
d

in
ve

st
ig

at
e

th
e

re
la

ti
o
n
sh

ip
b
et

w
ee

n
cl

in
ic

al
fa

ct
o
rs

(e
.g

.,
in

fa
n
t

d
em

o
gr

ap
h
ic

s,
m

o
d
e

o
f

d
el

iv
er

y,
fe

ed
in

g
ty

p
e,

an
ti
b
io

ti
c

u
se

,
an

d
h
ea

lt
h

co
n
d
it
io

n
s)

an
d

p
at

te
rn

s
o
f
in

fa
n
t

gu
t

m
ic

ro
b
ia

l
co

lo
n
iz

at
io

n

St
o
o
l
sa

m
p
le

co
lle

ct
ed

d
ir

ec
tl
y

fr
o
m

d
ia

p
er

P
ro

sp
ec

ti
ve

lo
n
gi

tu
d
in

al
st

u
d
y.

T
h
re

e
h
u
n
d
re

d
an

d
se

ve
n
ty

-e
ig

h
t
fe

ca
ls

am
p
le

s
w

er
e

an
al

yz
ed

fr
o
m

2
9

p
re

te
rm

in
fa

n
ts

.
Fa

ct
o
rs

h
yp

o
th

es
iz

ed
to

co
n
tr

ib
u
te

to
O

T
U

d
iv

er
si

ty
in

m
ic

ro
b
io

m
e

sa
m

p
le

s
w

er
e

te
st

ed
u
si

n
g

ge
n
er

al
iz

ed
lin

ea
r

m
ix

ed
m

o
d
el

in
g.

G
en

d
er

d
iff

er
en

ce
in

m
ic

ro
b
ia

l
co

m
m

u
n
it
y

w
as

te
st

ed
.

D
N

A
w

as
ex

tr
ac

te
d

u
si

n
g

th
e

M
o
B
io

P
o
w

er
So

il
ki

t
(M

o
B
io

La
b
o
ra

to
ri

es
,I

n
c.

).
T

h
e

V
4

re
gi

o
n

if
th

e
1
6
S

rR
N

A
ge

n
e

w
as

se
q
u
en

ce
d
.

a-
D

iv
er

si
ty

in
cr

ea
se

d
fr

o
m

.3
1
+

.3
2

at
p
o
st

n
at

al
D

ay
5

o
f
lif

e
to

.4
9
+

.1
9

at
D

ay
3
0
,
w

it
h

an
av

er
ag

e
in

cr
ea

se
o
f
.0

0
8

p
er

d
ay

(p
<

.0
0
1
).

Fa
ct

o
rs

as
so

ci
at

ed
w

it
h

m
ic

ro
b
ia

l
a-

d
iv

er
si

ty
w

er
e

ti
m

e
(p

o
st

n
at

al
d
ay

s)
,
p

<
.0

1
;

fe
ed

in
g

ty
p
e

(u
si

n
g

M
O

M
o
r

n
o
t)

,
p

<
.0

1
;
an

d
ge

n
d
er

,
p

<
.0

5
.
M

al
e

in
fa

n
ts

b
eg

an
lif

e
w

it
h

lo
w

a-
d
iv

er
si

ty
b
u
t

n
o
rm

al
iz

ed
to

fe
m

al
e

va
lu

es
b
y

D
ay

2
0
–
3
0
.
O

ve
ra

ll
m

ea
n

o
f
a-

d
iv

er
si

ty
w

as
h
ig

h
er

in
fe

m
al

es
(.
5
8
+

.2
2
)

th
an

m
al

es
(.
4
8
+

.2
6
)

d
u
ri

n
g

fir
st

3
0

d
ay

s
o
f
lif

e
(p

<
.0

5
).

Fe
ed

in
g

ty
p
e

w
as

al
so

fo
u
n
d

to
b
e

a
si

gn
ifi

ca
n
t

in
flu

en
ci

n
g

fa
ct

o
r

in
m

ic
ro

b
ia

l
d
iv

er
si

ty
in

th
e

gu
t

m
ic

ro
b
io

m
e.

Fe
ed

in
g

ty
p
e

in
p
re

te
rm

in
fa

n
ts

m
ay

b
e

an
im

p
o
rt

an
t

d
ri

ve
r

in
d
iv

er
si

ty
o
f
th

e
gu

t
m

ic
ro

b
io

m
e.

T
h
e

au
th

o
rs

st
at

e
th

at
fu

tu
re

st
u
d
ie

s
w

it
h

la
rg

er
sa

m
p
le

si
ze

s
an

d
a

m
o
re

ge
o
gr

ap
h
ic

al
ly

d
iv

er
se

p
o
p
u
la

ti
o
n

w
o
u
ld

b
e

in
fo

rm
at

iv
e.

U
si

n
g

Q
II
M

E
so

ft
w

ar
e,

O
T

U
s

w
er

e
d
et

er
m

in
ed

b
y

cl
u
st

er
in

g
re

ad
s

to
th

e
G

re
en

ge
n
es

1
6
S

re
fe

re
n
ce

d
at

a
se

t
(2

0
1
3
–
0
8

re
le

as
e)

w
it
h

a
9
7
%

id
en

ti
ty

cu
to

ff
.

Fo
u
ri

e
et

al
.

(2
0
1
6
)

A
ss

es
s

w
h
et

h
er

th
e

o
ra

l
m

ic
ro

b
io

m
e

d
iff

er
s

b
et

w
ee

n
p
ar

ti
ci

p
an

ts
w

it
h

IB
S

an
d

h
ea

lt
h
y

co
n
tr

o
ls

,
an

d
ex

p
lo

re
w

h
et

h
er

th
e

o
ra

l
m

ic
ro

b
io

m
e

co
rr

el
at

es
w

it
h

va
ri

at
io

n
in

sy
m

p
to

m
se

ve
ri

ty
o
f

vi
sc

er
al

se
n
si

ti
vi

ty
an

d
p
ai

n

O
ra

l
b
u
cc

al
m

u
co

sa
l

m
em

b
ra

n
e

ce
lls

w
er

e
co

lle
ct

ed
u
si

n
g

a
P
yt

o
b
ru

sh
®

(C
o
o
p
er

Su
rg

ic
al

,
B
er

lin
,

G
er

m
an

y)

P
at

ie
n
ts

w
it
h

IB
S

(n
¼

2
0
)
an

d
h
ea

lt
h
y

co
n
tr

o
ls

(n
¼

2
0
)

w
er

e
m

at
ch

ed
o
n

ag
e,

ge
n
d
er

,
ra

ce
,
an

d
w

ei
gh

t.
V

is
ce

ra
l
p
ai

n
w

as
as

se
ss

ed
b
ef

o
re

an
d

af
te

r
in

ge
st

io
n

o
f
an

in
te

st
in

al
p
er

m
ea

b
ili

ty
te

st
su

ga
r

so
lu

ti
o
n

b
y

th
e

G
as

tr
o
in

te
st

in
al

P
ai

n
P
o
in

te
r

(G
IP

P
),

an
el

ec
tr

o
n
ic

se
lf-

re
p
o
rt

in
te

rf
ac

e.

A
m

p
lif

ic
at

io
n
,
p
u
ri

fic
at

io
n
,

h
yb

ri
d
iz

at
io

n
,
an

d
m

ic
ro

ar
ra

y
an

al
ys

is
w

er
e

co
m

p
le

te
d

b
y

se
co

n
d

ge
n
o
m

e.
T

h
e

1
6
S

rR
N

A
ge

n
e

w
as

se
q
u
en

ce
d

u
si

n
g

th
e

2
7
F/

1
4
9
2

R
p
ri

m
er

se
t.

B
ac

te
ri

al
1
6
S

rR
N

A
ge

n
e

am
p
lic

o
n
s

w
er

e
fr

ag
m

en
te

d
,b

io
ti
n
-l
ab

el
ed

,
an

d
h
yb

ri
d
iz

ed
to

th
e

P
h
yl

o
C

h
ip

™
A

rr
ay

(v
er

si
o
n

G
3
).

P
ai

n
se

ve
ri

ty
w

as
h
ig

h
es

t
in

o
ve

rw
ei

gh
t

p
ar

ti
ci

p
an

ts
w

it
h

IB
S

an
d

co
rr

el
at

ed
to

th
e

ab
u
n
d
an

ce
o
f
6
0

O
T

U
s,

4
ge

n
er

a,
5

fa
m

ili
es

,
an

d
4

o
rd

er
s

o
fb

ac
te

ri
a

(r
2

>
.4

,
p

<
.0

0
1
).

A
n
al

ys
is

o
f

b-
d
iv

er
si

ty
sh

o
w

ed
si

gn
ifi

ca
n
t
O

T
U

se
p
ar

at
io

n
o
f
th

e
o
ve

rw
ei

gh
t

IB
S

p
at

ie
n
ts

fr
o
m

o
th

er
gr

o
u
p
s.

H
av

in
g

IB
S

an
d

b
ei

n
g

o
ve

rw
ei

gh
t

w
as

th
e

m
o
st

si
gn

ifi
ca

n
t

p
re

d
ic

to
r

fo
r

th
e

se
ve

ri
ty

o
f
vi

sc
er

al
p
ai

n
an

d
va

ri
at

io
n

in
th

e
m

ic
ro

b
io

m
e.

T
h
is

st
u
d
y

w
as

p
er

fo
rm

ed
as

a
p
ilo

t
fo

r
fu

tu
re

re
se

ar
ch

th
at

w
ill

b
e

ai
m

ed
at

ex
p
an

d
in

g
th

e
lit

er
at

u
re

o
n

th
e

o
ra

l
m

ic
ro

b
io

m
e

in
fu

n
ct

io
n
al

G
I
d
is

o
rd

er
s

an
d

sy
m

p
to

m
s.

T
h
e

in
ve

st
ig

at
o
rs

p
la

n
fu

tu
re

re
se

ar
ch

an
al

yz
in

g
b
o
th

fe
ca

l
an

d
o
ra

l
sa

m
p
le

s
fo

r
fu

rt
h
er

co
m

p
ar

is
o
n
s

o
n

if
an

d
h
o
w

th
e

m
ic

ro
b
io

m
es

va
ry

in
IB

S.

D
at

a
w

er
e

ca
p
tu

re
d

u
si

n
g

A
ff
ym

et
ri

x
so

ft
w

ar
e

(G
en

eC
h
ip

®
M

ic
ro

ar
ra

y
A

n
al

ys
is

Su
it
e)

.
Fl

u
o
re

sc
en

t
in

te
n
si

ty
w

as
ca

lc
u
la

te
d

an
d

h
yb

ri
d
iz

at
io

n
sc

o
re

s
(H

yb
Sc

o
re

)
w

er
e

d
er

iv
ed

.

(c
on

tin
ue

d)

135



T
a
b

le
3
.

(c
o
n
ti
n
u
ed

)

C
it
at

io
n

P
u
rp

o
se

/O
b
je

ct
iv

es
Sa

m
p
le

Si
te

R
es

ea
rc

h
D

es
ig

n
M

ic
ro

b
io

m
e

M
et

h
o
d
s

M
ai

n
Fi

n
d
in

gs
Im

p
lic

at
io

n
s/

Fu
tu

re
D

ir
ec

ti
o
n
s

A
n
al

ys
is

P
ip

el
in

e

Fo
u
ri

e
et

al
.

(2
0
1
7
)

E
va

lu
at

e
st

ru
ct

u
ra

l
an

d
fu

n
ct

io
n
al

ch
an

ge
s

in
th

e
co

lo
n
ic

m
ic

ro
b
io

m
e

w
h
en

p
er

si
st

en
t

IB
S-

lik
e

sy
m

p
to

m
s

w
er

e
in

d
u
ce

d
in

ra
ts

b
y

a
re

p
ea

te
d

st
re

ss
o
r

(v
is

ce
ra

l
h
yp

er
se

n
si

ti
vi

ty
,

in
cr

ea
se

d
co

lo
n
ic

p
er

m
ea

b
ili

ty
,
an

d
in

cr
ea

se
d

fe
ca

l
p
el

le
t

o
u
tp

u
t)

D
is

ta
l
co

lo
n
ic

m
u
co

sa
ep

it
h
el

ia
l
ce

lls

1
3

ad
u
lt

Sp
ra

gu
e

D
aw

le
y

ra
ts

(2
0
0
–
2
2
0

g)
w

er
e

ex
p
o
se

d
to

W
A

st
re

ss
fo

r
1

h
r

ea
ch

d
ay

fo
r

1
0

co
n
se

cu
ti
ve

d
ay

s.
T

h
es

e
w

er
e

co
m

p
ar

ed
to

a
co

n
tr

o
l,

sh
am

-s
tr

es
s

ar
m

(n
¼

1
3
).

A
n
im

al
s

w
er

e
sa

cr
ifi

ce
d

at
th

e
en

d
o
f
th

e
p
ro

to
co

l
an

d
1
0

m
m

o
f
d
is

ta
l
co

lo
n

w
as

re
m

o
ve

d
.

D
N

A
w

as
ex

tr
ac

te
d

u
si

n
g

th
e

A
llP

re
p

D
N

A
/R

N
A

/
m

iR
N

A
U

n
iv

er
sa

l
K

it
(Q

ia
ge

n
)

an
d

th
e

V
4

re
gi

o
n

o
f
th

e
1
6
S

rR
N

A
ge

n
e

w
as

se
q
u
en

ce
d

u
si

n
g

p
ri

m
er

s
F5

1
5
/R

8
0
6
.

W
A

-s
tr

es
s

an
im

al
s

ex
h
ib

it
ed

h
ig

h
er

a-
d
iv

er
si

ty
an

d
m

o
d
er

at
el

y
d
iff

er
ed

in
co

m
m

u
n
it
y

st
ru

ct
u
re

(b
-

d
iv

er
si

ty
)

co
m

p
ar

ed
w

it
h

co
n
tr

o
ls

.
T

h
e

W
A

m
ic

ro
b
io

m
e

w
as

en
ri

ch
ed

in
p
ro

te
o
b
ac

te
ri

a
an

d
d
ep

le
te

d
in

se
ve

ra
l

b
en

ef
ic

ia
l
ta

x
a.

D
ec

re
as

ed
en

er
gy

an
d

lip
id

m
et

ab
o
lis

m
an

d
an

in
cr

ea
se

d
ca

p
ac

it
y

fo
r

fa
tt

y
ac

id
an

d
su

lfu
r

m
et

ab
o
lis

m
w

er
e

in
fe

rr
ed

fo
r

th
e

W
A

m
ic

ro
b
io

m
e.

Fu
tu

re
ex

p
er

im
en

ts
m

ay
ta

rg
et

su
lfu

r
m

et
ab

o
lit

es
an

d
su

lfu
r-

m
et

ab
o
liz

in
g

b
ac

te
ri

a
b
ec

au
se

in
cr

ea
se

d
ca

p
ac

it
y

fo
r

su
lfu

r
m

et
ab

o
lis

m
w

as
in

fe
rr

ed
.

T
h
es

e
ta

rg
et

s
m

ay
su

cc
es

sf
u
lly

m
o
d
u
la

te
su

lfu
r

p
ro

d
u
ct

io
n

to
p
re

ve
n
t

o
r

al
le

vi
at

e
sy

m
p
to

m
s

an
d

m
ay

b
e

st
u
d
ie

d
as

fu
tu

re
ta

rg
et

s
o
f

in
te

rv
en

ti
o
n

in
p
at

ie
n
ts

w
it
h

IB
S.

A
d
d
it
io

n
al

ly
,

re
st

o
ra

ti
o
n

o
f
b
en

ef
ic

ia
l

m
ic

ro
b
es

o
r

fu
n
ct

io
n
al

d
o
m

ai
n
s

(s
u
ch

as
fa

tt
y

ac
id

m
et

ab
o
lis

m
d
yn

am
ic

s)
co

u
ld

b
e

st
u
d
ie

d
to

tr
an

sl
at

e
th

es
e

fin
d
in

gs
b
ac

k
to

h
u
m

an
p
at

ie
n
ts

w
it
h

IB
S.

Se
co

n
d
G

en
o
m

e
w

as
co

n
tr

ac
te

d
to

p
er

fo
rm

d
at

a
p
ro

ce
ss

in
g.

U
si

n
g

m
o
th

u
r’

s
B
ay

es
ia

n
cl

as
si

fie
r,

O
T

U
s

w
er

e
d
et

er
m

in
ed

b
y

cl
u
st

er
in

g
re

ad
s

to
th

e
G

re
en

ge
n
es

1
6
S

re
fe

re
n
ce

d
at

a
se

t
w

it
h

a
9
9
%

id
en

ti
ty

cu
to

ff
.

N
ot

e.
C

ST
s
¼

co
m

m
u
n
it
y

st
at

e
ty

p
es

;
G

I
¼

ga
st

ro
in

te
st

in
al

;
IB

S
¼

ir
ri

ta
b
le

b
o
w

el
sy

n
d
ro

m
e;

m
iR

N
A
¼

m
ic

ro
R

N
A

;
N

IC
U
¼

n
eo

n
at

al
in

te
n
si

ve
ca

re
u
n
it
;
O

T
U

s
¼

o
p
er

at
io

n
al

ta
x
o
n
o
m

ic
u
n
it
s;

Q
II
M

E
¼

Q
u
an

ti
ta

ti
ve

In
si

gh
ts

In
to

M
ic

ro
b
ia

l
E
co

lo
gy

so
ft

w
ar

e;
rR

N
A
¼

ri
b
o
so

m
al

R
N

A
;
W

A
¼

w
at

er
av

o
id

an
ce

.

136



describes in detail various research designs and methodological

techniques in which microbiome analysis can be incorporated

to answer research questions relevant to nursing. Although

there has been a large amount of progress in the field of micro-

biome research in the past several years, most work is associa-

tional. Associational studies narrow future research questions

and are important starting points; however, more mechanistic

studies are needed to understand the effect of microorganisms

on health and disease. Nurse scientists’ training to view the

patient as an interconnected unit can be harnessed to incorpo-

rate the microbiota into research questions aimed at improving

patient outcomes, reducing symptom burden from chronic dis-

ease, and promoting long-term health.

Conclusion

Nurse scientists have a unique lens based on their patient-

focused training and are well equipped to study the complex

relationships among the human genome, the genomes of the

microbiota, the multitude of environmental forces that influ-

ence health, and disease. Ensuring that they have the tools and

resources they need when incorporating microbiome methods

into a study is vital to moving microbiomics research forward.

Identifying important covariates, meticulously designing the

study from research team to sample storage, and selecting the

microbiome sequencing method that is most appropriate for

the research question will support a scientifically sound micro-

biome study.
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