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This study analyzed the expression of membrane OX40 and OX40L (mOX40 and mOX40L) and levels of soluble OX40 and OX40L
(sOX40 and sOX40L) in T1D patients to determine their clinical significance. Peripheral blood (PB) was collected from patients
with T1D and healthy control participants. Expression of mOX40 and mOX40L on immune cells was detected by flow
cytometry. Levels of sOX40 and sOX40L in sera were measured by ELISA. We demonstrated for the first time enhanced sOX40
and sOX40L expression and reduced mOX40 and mOX40L levels in T1D patients which correlated with the clinical
characteristics and inflammatory factors. These results suggest that OX40/OX40L signal may be promising biomarkers and
associated with the pathogenesis of T1D.

1. Background

Type 1 diabetes (T1D) is a chronic and organ-specific auto-
immune disease, is influenced by inherited or environmental
factors, is increasing in all age groups, especially examined in
children, and leads to the loss of insulin production in beta
cells when immune cells invade the pancreatic islets [1–3].
The activation of T cells is mediated by antigen stimulation
through T cell receptors and some costimulatory molecules.
It has been suggested that CTLA-4 and PD-1 contribute to
the development of T1D [4–6]. Multiple clinical immune
intervention trials have been provided for the treatment of
T1D such as blocking the costimulation of T cells [7–9].
However, the contributions of OX40 and OX40L to the
development of T1D remain to be studied.

OX40/OX40L is a pair of important positive costimula-
tory signal molecules in the second signal system of T cells.

OX40 (CD134) and OX40L (CD252), members of the TNF
receptor superfamily (TNFRSF) and TNF superfamily
(TNFSF), play important roles in T cell expansion in tumors,
during infectious inflammation, and in autoimmune diseases
[10, 11]. OX40 is expressed in activated T cells [12], while
OX40L is mainly expressed in B lymphocytes, dendritic cells,
and macrophage cells [12]. OX40/OX40L signaling acts as a
key role in the development and differentiation of some
immunological cells, especially T cells [13, 14]. Numerous
studies have shown the important role of costimulatory mol-
ecules in T1D. Blocking costimulatory interactions such as
CD28/B7 or CD40/CD40L might be an effective therapy
way in NOD mice [15, 16]. Blocking OX40/OX40L interac-
tions at the late age of disease may also suppress diabetes pro-
gression [17].

The level of sOX40 and sOX40L is elevated in some
tumors and infectious diseases. This suggests that sOX40
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and sOX40L act as costimulators to induce immune
responses. However, to the best of our knowledge, the sig-
nificance of membrane and soluble forms of OX40 or
OX40L expression and their correlation with clinical
parameters in T1D have not been investigated. To charac-
terize OX40 and OX40L expression and determine the role
of OX40/OX40L signal in the development and pathogen-
esis of T1D, we evaluated the expression of sOX40 and
sOX40L in the PBMC and sera of patients with T1D
and healthy controls (HCs) and analyzed the correlation
with clinical and inflammatory indicators.

2. Materials and Methods

2.1. Patients and Controls. In our study, blood samples
were collected after overnight fasting from patients
(n = 119) at the Endocrinology Department in the Second
Affiliated Hospital of Soochow University, Suzhou, China,
between 2015 and 2017. The diagnostic criteria for T1D
were according to “The T1D Exchange Clinic Registry”
[18]. Samples from healthy blood donors (n = 108) were
matched to T1D patients with age, gender, and race. In
addition, HCs were tested for glucose levels, all T1D auto-
antibody negative. The study participants were excluded if
they had one of the following conditions: acute or chronic
inflammatory diseases, infectious diseases, and cancer. For
the detection of membrane forms of OX40 and OX40L on
immune cells, 46 patients and 44 HCs were enrolled. The
approval from the Ethics Review Board of the Second
Affiliated Hospital of Soochow University was granted to
the patients.

2.2. Antibodies and Flow Cytometry. To assess the expression
of mOX40 in CD3+, CD4+, or CD8+ T cells and mOX40L in
CD14+ monocyte and CD19+ B cells, peripheral blood
mononuclear cell (PBMC) was isolated from T1D patients
or healthy donors. Flow cytometry was performed on
PBMC incubated with fluorochrome-labeled monoclonal
antibodies (mAbs) for 30min. Anti-CD3-FITC (clone:
UCHT1), anti-CD4-FITC (clone: RPA-T4), anti-CD8-FITC
(clone: SFCI21), anti-CD14-FITC (clone: RMO52), and
anti-CD19-FITC (clone: J3-119) mAbs were from Beckman
Coulter. Anti-OX40-PE (clone: ACT35) and anti-OX40L-
PE (clone: RM134L) were from eBioscience. Cells were
washed and then immediately measured by flow cytometry
(Beckman Coulter, CA). Data were analyzed using FlowJo
software (Tree Star, OR).

2.3. Soluble OX40 and OX40L Measurement. The samples
were centrifuged at 800xg for 8min, and the sera was stored
at -80°C for ELISA. To determine the relationship of sOX40
or sOX40L with the disease activity, serum levels of sOX40
and sOX40L were determined by ELISA using kits obtained
from Kalang (Shanghai) and Cusabio (Wuhan), respectively.
Sera samples were plated into the 96-well microplates, and
ELISA was conducted following the manufacturer’s instruc-
tions. Plates were read in a microplate reader (Bio-Rad,
CA) for the absorbance at 450 nm.

2.4. Cytokine Production. Cytokines interleukin IL-2, IL-4,
IL-6, and IL-10, interferon gamma (IFN-γ), tumor necrosis
factor-alpha (TNF-α), and IL-17a were quantified in patients
using a cytometric bead array system (CBA) (BD Pharmin-
gen, CA) according to the instructions of the manufacturer.
For each reaction, 50 μl sera were mixed with 50 μl beads
to each assay tube. 50 μl PE detection reagent was then
added, and the samples were incubated for 3 hours at room
temperature. Samples were washed with wash buffer, centri-
fuged, and then run on flow cytometer; data were analyzed
using BD™ CBA Software.

2.5. Statistical Analysis. Statistical analysis was performed
using the IBM SPSS statistic 22 (Chicago, IL, USA). All
the quantitative data was presented as the mean ±
standard deviation (SD). For statistical analysis, differences
in continuous variables between two independent samples
were evaluated by the Mann-Whitney U test. Dichoto-
mous variables were compared by the χ2 test. Association
between continuous variables was assessed by means of
Spearman and partial correlation. Pearson’s rank correla-
tion analysis was used to evaluate the associations between
dichotomous variables and protein levels. Covariance anal-
ysis was used. The statistical software GraphPad Prism 6.0
(GraphPad Software, La Jolla, CA) and IBM SPSS statistic
22 (Chicago, IL, USA) were used for graph creation.

3. Results

3.1. Reduced mOX40 and mOX40L Expression in T1D
Patients. The clinical characteristics of the study population
are summarized in Table 1. To investigate the expression of
mOX40 and mOX40L in T1D patients, blood specimens
were collected from 46 T1D patients and 44 HCs. Flow
cytometry analyses demonstrated that OX40 expression on
CD3+, CD4+, and CD8+ T cells in PBMC samples was less
frequent in patients with T1D than HCs (14 34 ± 1 02%
vs. 22 47 ± 1 87%, p = 0 003; 18 78 ± 1 31% vs. 24 85 ±
1 87%, p = 0 093; and 7 94 ± 0 66% vs. 15 9 ± 1 87%, p <
0 001; respectively) (Figures 1(a) and 1(b)). Furthermore,
the expression of OX40L on CD14+ monocytes was also
decreased significantly in PBMC samples of patients with
T1D compared to HCs (28 73 ± 3 69% vs. 38 87 ± 5 46%,
p = 0 048). However, there was no significant difference
in mOX40L on CD19+ B cells between T1D patients and HC
(10 76 ± 0 93% vs. 12 02 ± 1 62%, p = 0 782) (Figures 1(c)
and 1(d)).

3.2. Correlation between mOX40 and mOX40L Positive
Cells and Clinical Parameters of T1D. To determine
whether the negative association of mOX40 and mOX40L
expression is related to T1D disease activity, we examined
the relationship between the presence of mOX40 and
mOX40L and the disease state. The statistical analyses of
the correlation between clinical features and the expression
of mOX40 and mOX40L are presented in Table 2. We
found that the expression of glutamic acid decarboxylase
(GAD) was negatively correlated with CD8+OX40+ T cells
(r = −0 3996, p = 0 0431) and CD19+OX40L+ B cells
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(r = −0 3789, p = 0 0463). A significant negative correlation
between CD3+OX40+ T cells (r = −0 3911, p = 0 0244),
CD4+OX40+ T cells (r = −0 4072, p = 0 0187), and creati-
nine (Cr) was observed; we also found a significant nega-
tive correlation between CD3+OX40+ T cells (r = −0 4357,
p = 0 0113) and CD4+OX40+ T cells (r = −0 4231, p =
0 0142) with uric acid (UA). However, we did not found
any correlation between CD8+OX40+ T cells and Cr or
UA (Supplement Figure 1).

3.3. Higher Serum Levels of sOX40 and sOX40L in T1D
Patients. Our previous work demonstrated that in addition
to mOX40 and mOX40L, sOX40 and sOX40L are also pres-
ent in human sera. Serum levels of sOX40 and sOX40L were
determined by ELISA. As shown in Figure 2(a), the concen-
tration of sOX40 in the sera of T1D patients was significantly
higher than that of HCs (1 08 ± 0 06 ng/ml vs. 0 83 ± 0 08
ng/ml, p = 0 042). Meanwhile, we found that the concentra-
tion of sOX40L was also significantly higher than that in
HCs (1 42 ± 0 10 ng/ml vs. 0 83 ± 0 08 ng/ml, p < 0 0001)
(Figure 2(b)). To explore whether sOX40 and sOX40L are

involved in the development of T1D, we further analyzed
the relationship between sOX40, sOX40L, and disease activ-
ity. We conducted a correlation analysis and found a positive
correlation between sOX40 expression and UA (r = 0 3376,
p = 0 0189) and hemoglobin A1c (HbA1c) (r = 0 3045,
p = 0 0616), that is, T1D patients with higher sOX40 expres-
sion levels had higher UA and HbA1c (Figures 2(c) and 2(e)).
The correlation between sOX40L and hemoglobin A1c
(r = 0 3131, p < 0 0001) was also positive but was not signifi-
cant with UA (r = 0 3323, p = 0 1127) (Figures 2(d) and 2(f)).
These data suggest that the expression of sOX40 and sOX40L
correlates with several parameters of disease activity. To eval-
uate whether OX40 and OX40L play a role in the process of T
cell differentiation, we measured the serum levels of some
cytokines such as IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α,
and IL-17a in T1D patients, finding no significant correla-
tion between sOX40 expressions and cytokines (Table 3).
However, sOX40L expression in T1D patients was positively
correlated with serum levels of IL-2 (r = 0 3676, p = 0 0147),
IL-6 (r = 0 3139, p = 0 0485), IL-10 (r = 0 3455, p = 0 0362),
and IFN-γ (r = 0 5201, p = 0 0056) (Figure 3).

Table 1: Clinical features of the study population.

Type 1 diabetes (n = 119) Healthy controls (n = 108) p valuea

Age (years) 28.5 (10-53) 29.4 (24-40) 0.75

Gender, female (n%) 57 (47.9%) 51 (46.8%) 0.97

Duration (years) 7 (0-39) — —

Fasting venous blood glucose (mmol/l) 11.9 (3.99-22.3) 5.2 (3.8-6.4) 0.01

Cr (μmol/l) 54.2 (26-98) 82.3 (44-112) 0.04

BUN (mmol/l) 4.4 (1.4-8.4) — —

UA (μmol/l) 275.7 (81-540) — —

ALT (IU/l) 18.9 (2-92) — —

AST (IU/l) 20.0 (8-62) — —

TC (mmol/l) 4.4 (0.8-7.6) — —

TG (mmol/l) 1.1 (0.4-5.7) — —

LDL (mmol/l) 2.1 (1.1-5.4) — —

HDL (mmol/l) 1.4 (0.7-2.4) — —

Fasting C-peptide (ng/ml) 1.6 (<0.01-35) — —

Anti-ICA positive (%)b 11 (27%) — —

Anti-GAD positive (%)b 17 (41%) — —

Anti-IAA positive (%)b 3 (7%) — —

HbA1c (%) 9.12% (5.3-17.1%) — —

Ketosis 17 (41%) — —

IFN-γ (pg/ml) 1.5 (0-17.2) — —

IL-2 (pg/ml) 2.7 (0.4-11.9) — —

IL-4 (pg/ml) 2.1 (0-14.1) — —

IL-6 (pg/ml) 4.2 (0-15.6) — —

IL-10 (pg/ml) 4.7 (0.7-20.4) — —

TNF-α (pg/ml) 3.1 (0-17.2) — —

IFN-γ (pg/ml) 3.1 (0.4-19.3) — —

IL-17a (pg/ml) 26.0 (0-159.9) — —
ap value is based on the statistical analysis by the Mann-Whitney U test or the chi-square test assessing overall group differences. bNot all the patients have
the antibody results, only 52/119 patients received an autoantibody screening. cAbbreviations: Cr: creatinine; BUN: urea; UA: uric acid; ALT: alanine
aminotransferase; AST: aspartate transferase; TC: cholesterol; TG: triglycerides; LDL: low-density lipoprotein; HDL: high-density lipoprotein; IAA:
insulin autoantibody.
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3.4. Negative Correlation between Serum Levels of sOX40 and
mOX40 in T1D Patients. Correlation analyses demonstrated
that there was a significant negative association between

serum OX40 levels and mOX40 expression on CD3+ T cells
(r = −0 3629, p = 0 0182) and CD4+ T cells (r = −0 3373,
p = 0 0289) in T1D patients (Figure 4). Although not

O
X4

0 CD3 gate CD4 gate CD8 gate

O
X4

0

O
X4

0

TID
13.9% 18.6% 8.36%

HC
21.0% 24.6% 19.2%

CD3 CD4 CD8

(a)

p < 0.001

40

50

T1D

HC

p = 0.003
p = 0.093

20

30

0

CD
3+ O

X4
0+

CD
4+ O

X4
0+

CD
8+ O

X4
0+

10Pe
rc

en
ta

ge
 o

f c
el

ls 
(%

)
(b)

CD14 gate CD19 gate

26.3% 10.8%

Co
un

ts

TID

Co
un

ts

35.9% 12.8%

OX40LOX40L

HC

(c)

T1D

HC

CD
14

+ O
X4

0L
+

CD
19

+ O
X4

0L
+

p = 0.048

40

50

p = 0.782

Pe
rc

en
ta

ge
 o

f c
el

ls 
(%

)

10

20

30

0

(d)

Figure 1: Expression of mOX40 and its ligand mOX40L in the PBMC of T1D patients. (a) The expression level of mOX40 was detected by
flow cytometry of CD3+, CD4+, and CD8+ T cells from T1D patients and HCs. (b) Percentages of CD3+OX40+, CD4+OX40+, and
CD8+OX40+ cells in the PBMC samples of patients with T1D and HCs. (c) The expression level of mOX40L was detected by flow
cytometry of monocyte cells from T1D patients and HCs. CD14 and CD19 were used as markers of monocytes and B cells. (d) A
histogram representative of a set of CD14+OX40L+ and CD19+OX40L+ is shown in the right figure.
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significant, there was a negative association between
sOX40 levels and mOX40 expression on CD8+ T cells
(r = −0 0571, p = 0 7186) (Table 3).

4. Discussion

Costimulatory molecules play important roles in regulation
of the immune response in autoimmune diseases. There-
fore, they may be useful as treatment indicators for the
disease [19].

The TNF/TNFR family members of costimulatory mol-
ecules are critical in regulating T cell responses [20]. Here,
we detected the expression of membrane and soluble forms
of OX40 and OX40L on immune cells in T1D patients and
determined their clinical significance. For the first time, we
detected the membrane and soluble forms of OX40 and
OX40L expression in the PBMC of T1D patients and
analyzed the correlation with disease activity. We found
that sOX40 and sOX40L expression in T1D patients was
significantly higher compared with the HCs. However, the
expression of mOX40 and mOX40L in T1D patients was
significantly lower compared with that in HCs. There
was no significant correlation of mOX40L of CD19+ B
cells in T1D patients and HCs. In addition, sOX40 levels
in patients were positively correlated with the disease
activity, as indicated by T1D disease activity, and sOX40L
levels in the patients were positively correlated with
inflammatory cytokines. Our findings suggest that sOX40
and sOX40L might counteract the aberrant immune
response and potentially serve as monitoring indicators

of disease progression and therapeutic targets in T1D
treatment.

Costimulatory molecules can induce the activation of T
cells, promote cell survival, support the formation of poten-
tial memory T cells, and produce the release of the cyto-
kines [21, 22]. Therefore, the costimulatory molecules
may be useful for the diagnosis and treatment of some dis-
eases. Both membrane and soluble forms of costimulatory
molecules play important roles in the regulation of immune
networks [23]. Costimulatory molecules with soluble forms
could be generated from proteolytic cleavage, such as PD-
L1, B7H3 [24], ICOS, and ICOSL [25], or could be gener-
ated from mRNA splicing like CTLA-4 [26] and PD-1
[27]. It has been found that sOX40 is expressed in patients
with amyotrophic lateral sclerosis [28] and chronic lym-
phocytic leukemia [29], while sOX40L is expressed in the
sera of patients with acute coronary syndrome, bronchial
asthma (adult), Henoch-Schonlein purpura (children), and
rheumatoid arthritis [30–33]. In our study, we observed rel-
atively higher sOX40 and sOX40L levels but lower mOX40
and mOX40L in T1D patients, suggesting that sOX40 and
sOX40L might have regulatory functions opposite to
mOX40 and mOX40L. High levels of soluble molecule
may be the consequence of two different processes, such
as high production or decreased depletion. In T1D patients,
we speculate that soluble levels increase because mOX40
and mOX40L are cleavaged into the soluble forms, leading
to higher sOX40 and sOX40L expression in PBMC com-
pared with the HCs.

Autoantibodies in T1D are risk indicators for the diagno-
sis and prediction of the disease and surrogate markers for

Table 2: Correlation between clinical features and membrane levels of OX40 and OX40L.

CD4+OX40+ CD8+OX40+ CD3+OX40+ CD19+OX40L+ CD14+OX40L+

r p r p r p r p r p

Ketosis 0.2692 0.2257 0.1746 0.4301 0.2770 0.2121 -0.3000 0.1750 0.1307 0.5619

GAD -0.0570 0.7818 -0.3996 0.0431 -0.0571 0.7816 -0.3789 0.0463 -0.1401 0.4948

ICA -0.0121 0.9529 -0.1582 0.4401 -0.0365 0.8593 -0.0608 0.7677 0.1245 1.0042

IAA 0.1467 0.4746 -0.1467 0.4746 0.1735 0.3968 -0.0133 0.9485 -0.0933 0.6502

DKA 0.4468 0.0371 0.1043 0.6443 0.3725 0.0878 -0.0744 0.7419 -0.0148 0.9475

HDL -0.3474 0.0555 -0.2594 0.1588 -0.3528 0.0516 -0.1488 0.4245 -0.1671 0.3689

LDL -0.1773 0.3401 -0.1264 0.4979 -0.2231 0.2276 -0.1470 0.4300 -0.1408 0.4501

TC -0.2280 0.2019 -0.2848 0.1081 -0.2739 0.1230 -0.1321 0.4638 -0.1053 0.5597

TG 0.3627 0.0380 0.0844 0.6404 0.2936 0.0973 0.2199 0.2189 0.1634 0.3637

ALT -0.0560 0.7605 0.1015 0.5804 0.0540 0.7688 0.0421 0.8190 0.1166 0.5252

AST 0.0852 0.6426 0.2025 0.2663 0.2056 0.2591 0.0343 0.8519 0.0479 0.7943

LDH 0.0260 0.9107 0.0655 0.9978 0.1383 0.5500 0.0416 0.8576 0.1498 0.5168

GGT -0.0510 0.8085 0.1969 0.3455 -0.1076 0.6086 0.0947 0.6522 -0.3137 0.1267

Cr -0.4072 0.0187 -0.1674 0.9926 -0.3911 0.0244 0.0363 0.8410 -0.2899 0.1017

BUN -0.2858 0.1069 -0.1345 0.4557 -0.2436 0.1719 0.1462 0.4170 -0.1055 0.5589

UA -0.4231 0.0142 -0.6887 0.7033 -0.4357 0.0113 0.0885 0.6239 -0.3246 0.0653

GLU 0.1162 0.5802 -0.4501 0.8308 0.1328 0.5268 0.0076 0.9971 -0.0561 0.7897

C0 -0.1418 0.4238 -0.1189 0.5031 -0.2069 0.2404 -0.0207 0.9072 0.1722 0.3300

C120 -0.2638 0.2901 -0.1209 0.6328 -0.3487 0.1562 0.0830 0.7432 0.3595 0.1429

HbA1c 0.4666 0.0047 0.0926 0.5966 0.3930 0.0195 0.3994 0.0175 0.3332 0.0504

5Journal of Immunology Research



autoimmune diabetes [34–37]. The presence of several
autoantibodies such as islet cell autoantibody (ICA) and
GAD indicates an autoimmune pathogenic response to
beta cells [38]. We measured the membrane variants of
OX40 and OX40L in T1D individuals, which were reduced

compared to HC. Meanwhile, GAD expression is also
associated with mOX40 and mOX40L expression. How-
ever, some other indicators such as higher levels of UA
are also associated with enlarged risk of the clinical man-
ifestations of diabetic nephropathy in persons with T1D
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Figure 2: Correspondence correlation between sOX40 and sOX40L levels in HC blood and T1D disease. (a) Increased sOX40 was observed in
the sera from T1D patients as compared to HCs. (b) Increased sOX40L levels were observed in the sera from patients with T1D compared
with the HC group. (c) Positive correlation between sOX40 and the expression of UA. (d) No significant correlation between sOX40L and
the expression of UA. (e) No significant correlation between sOX40 and the expression of HbA1c. (f) Positive correlation between
sOX40L and the expression of HbA1c.
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[39, 40]. Moreover, HbA1c is the most common and
widely accepted indicator of T1D [41–43]. In our study,
we found that T1D patients with higher sOX40 expression
levels had higher UA, and higher sOX40L expression levels
had higher HbA1c, which means OX40 and OX40L are
promising markers for T1D.

The detailed functions of some costimulatory molecules
are still controversial. Until now, one of the most attractive
approaches to prevent T1D is using islet antigen-specific
regulatory T cells (Tregs). Luczynski et al. discovered that
the mRNA level of OX40 was lower in Treg cells of chil-
dren with T1D when compared to the reference patients
[2]. However, Szypowska et al. observed that T1D chil-
dren had higher frequency of CD4+CD25highOX40+ cells
than healthy subjects [44]. In our study, we found a
reduction of the membrane form of OX40 on CD3+,

CD4+, and CD8+ T cells and a reduction of OX40L on
CD14+ monocytes in T1D patients correlated with clinical
parameters. Bresson et al. have found that OX40 agonist
therapy can slow down T1D progression [45]. We specu-
late that increasing the level of OX40 may be a new ther-
apeutic strategy.

5. Conclusions

Taken together, our study revealed the dissociation
between mOX40 and mOX40L expression and sOX40
and sOX40L levels in T1D patients for the first time. We
provided evidence for the diagnostic value of OX40 and
OX40L in T1D patients. The abnormal expression of
OX40 and OX40L molecules appears to be connected with
the severity of the disease. Thus, OX40 and OX40L may

Table 3: Correlation between clinical features and soluble levels of OX40 and OX40L.

sOX40 sOX40L
r p r p

Ketosis 0.2191 0.7217 -0.0344 0.8395

GAD 0.0289 0.3379 0.0840 0.4954

ICA 0.0070 0.7302 0.1846 0.1318

IAA 0.0607 0.7442 0.1463 0.2337

DKA 0.0962 0.6942 -0.0107 0.9448

HDL 0.1826 0.1159 -0.0511 0.6630

LDL 0.0733 0.7493 0.1849 0.1123

TC 0.0229 0.9884 0.1528 0.1846

TG -0.0635 0.1745 0.0131 0.9094

ALT -0.2506 0.7772 -0.1072 0.3632

AST -0.1859 0.6487 -0.1434 0.2228

LDH -0.2732 0.6829 -0.0224 0.8851

GGT -0.0967 0.7239 -0.142 0.3253

Cr -0.0148 0.5676 -0.1343 0.2443

BUN -0.1330 0.1402 -0.0909 0.4317

UA 0.3376 0.0189 -0.1127 0.3323

GLU 0.1428 0.3729 0.0974 0.4627

C0 0.0398 0.4693 0.1008 0.3736

C120 0.2641 0.4974 0.1211 0.4952

HbA1c 0.3045 0.0616 0.3131 0.0001

CD4+OX40+ T -0.3373 0.0225 — —

CD8+OX40+ T -0.4733 0.7018 — —

CD3+OX40+ T -0.3629 0.0162 — —

CD19+OX40L+ B — — 0.2351 0.0683

CD14+OX40L+ monocyte — — 0.2499 0.0521

IL-2 0.2461 0.1137 0.3676 0.0252

IL-4 0.1455 0.1232 0.2422 0.1487

IL-6 0.0214 0.0196 0.3139 0.0485

IL-10 -0.1077 0.1482 0.3455 0.0362

TNF-α 0.4713 0.0569 0.1964 0.2448

IFN-γ 0.4238 0.0922 0.5201 0.0056

IL-17a 0.4947 0.0535 0.2291 0.1726
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Figure 4: Correlation between serum levels of sOX40 and mOX40 in T1D patients. (a) Significant negative correlation between sOX40 and
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be promising biomarkers for diagnosis and prognosis of
T1D. The in-depth mechanisms of membrane and soluble
OX40 and OX40L in T1D remain to be elucidated, and
the role of OX40 and OX40L in immune pathogenesis of
T1D requires further research.
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