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In this work, gas chromatography-ion mobility spectrometry (GC-IMS) was used to analyze the volatile organic compound
changes of rapeseed oil with different refined grades, the odor fingerprints of refined rapeseed oil were constructed, and a
nonlinear model was built to realize rapid and accurate discrimination of rapeseed oil with different refined grades. 124 rapeseed
oil samples with different refined grades were collected and analyzed by GC-IMS and chemometric tools, and 34 characteristic
peaks were selected by the colorized difference method as variables to characterize the internal quality in rapeseed oil of different
refined grades. +e principal component analysis algorithm was used to further reduce dimensionality and extract the most
relevant information. +e k-nearest neighbor algorithm was applied to build a discriminant model. All the samples were
recognized accurately without errors, and the results show the potential of this method to discriminate different refined grades of
vegetable oil.

1. Introduction

With pleasant flavor and taste, rapeseed oil has become a
popular edible vegetable oil and is often used as a flavor
enhancer in China and many other Asian countries [1].
Moreover, rapeseed oil contains various nutritional com-
pounds such as lignans, tocopherols, and unsaturated fatty
acids, which are beneficial to human health [2–4]. +e
volatile organic components (VOCs) in edible vegetable oil
are mainly alcohols, aldehydes, and ketones. Different va-
rieties of vegetable oil contain different kinds and contents of
odor components, and even oil of the same variety retain
different volatile components due to various processes of oil
refining. A critical phase of the edible oil production chain is
the final refining aimed at removing free fatty acids (in too
high concentrations), which leads to the rancidity of the oil
and other minor components such as phospholipids, pig-
ments, proteins, oxidation products, and possible residue of
the solvent used for extraction. Edible vegetable oil produced
by different processes (e.g., cold pressing and solvent ex-
traction) have different prices, especially for vegetable oil

with different refining process, which could produce a great
commercial problem because high-level refining oil has
several times higher price than low-level one [5]. +erefore,
the scientific distinction of vegetable oil with different re-
finement degrees is a new problem faced by quality in-
spection technicians and quality control personnel of
production enterprises [6].

Traditional analytical methods have been used to de-
termine the refinement grades of oil on the basis of its
physical or chemical properties [7]. +e traditional methods
commonly used in industry for assessing vegetable oil
quality grading is the human olfactory sense, especially for
the smell and taste index. However, the cost of employing
trained sensory experts is relatively high since they can only
work for a short period of time due to sensory fatigue. On the
contrary, sensory evaluation has limitation on re-
producibility and repeatability of results, which is not
normally used for quantitative analysis. +e physicochem-
ical properties of vegetable oil can also be determined by
using instrumental techniques, e.g., gas chromatography
(GC) [8], gas chromatography-mass spectrometry (GC-MS)
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[9], and high-performance liquid chromatography (HPLC)
[10]. +e requirement for tedious extraction, long analysis
time, and special environment significantly limited wide use
of these chromatographic methods. Furthermore, many
indexes of oil quality need detection, like refractive index,
iodine value, saponification value, and so on. For spec-
troscopy methods, Fourier transform infrared (FTIR), near-
infrared reflectance spectroscopy (NIRS), and Raman
spectrum have been shown to be useful for vegetable oil
quality analysis [11]. However, the analysis of the obtained
data requires complex algorithms and special software,
which make it difficult for ordinary inspectors to master.
Electronic nose is also regarded as a green technique in this
field [12]. Unfortunately, it should be noted however that, at
the current stage of development, electronic noses have
certain limitations on sensor drift, longevity, and sensitivity
in certain cases [13]. For these reasons, there is still a need to
develop a more effective technique which could supply the
human olfactory sense and to be used to obtain sensory data
within a short period of time and at a low cost.

Ion mobility spectrometry (IMS) is an analytical tech-
nique for the detection of trace gases [14–17]. A gas-phase
sample is ionized by chemical ionization in the drift gas
(such as nitrogen, clean air, and helium) in the positive or
negative mode. +e analyte ions are accelerated towards the
detector (a Faraday plate) in a constant electric field. During
their drift towards the detector, the ions move with a
constant velocity due to an equilibrium between acceleration
by the electric field and deceleration by collisions with the
drift gas molecules. +e drift time of ions from the shutter
grid to the detector depends on their mass and structure and
is hence characteristics of analytes. However, for complex
samples, the separation performance is limited and the
application of IMS with direct sample introduction will not
be sufficient, as gathering analytes might take place in the
ionization chamber and drift region. +us, some authors
[18–21] have used chromatographic columns prior to ion
mobility analysis and have proved that the coupling of a GC
column as previous separation step to IMS can significantly
improve the results. In recent years, GC-IMS has proved
suitable for metabolic profiling of human breath [22],
process and quality control analysis [23–26], as well as food
quality and safety control [26–30]. IMS instrument com-
bined with a GC column allows original mobility spectra to
be automatically acquired upon chromatographic elution of
each target compound, and several spectra at a given re-
tention time can be processed in order to obtain twice the
information (retention time and drift time), which provide
larger amounts of analytical information from each sample.

In this study, GC-IMS-based volatile organic com-
pounds were utilized to evaluate the vegetable oil refining
process. Four different grades of rapeseed oil samples were
collected. +e colorized difference method was applied to
discover characteristic VOC markers of different refined
grades of oil. And principal component analysis (PCA) and
k-nearest neighbor (kNN) were used to build the qualitative
discrimination model. Compared to classical techniques,
this approach has the potential to be a faster, more accurate,
and cheaper recognition tool for discriminating different

refined grades of each type of edible oil samples and might
provide a reference for grade identification of vegetable oil
refinery.

2. Materials and Methods

2.1. Oil Samples. Four different refined grades of commer-
cially available rapeseed oil samples were collected from the
Wilmar Global Research and Development Center
(Shanghai). +e raw materials were obtained from local
producing areas in Jiangsu Province. All the oil samples were
extracted from rapeseed seeds by traditional solvent ex-
traction, and the refining processes mainly contained
degumming, deacidification, bleaching, dewaxing, and de-
odorization technology in order to realize long-term storage
or act as edible oil products. +e refined grades were dis-
criminated by the Chinese National Standard GB/T 1536-
2004. +e sample acquisition cycle lasted about six months,
and finally, a total of 124 samples were obtained, among
which 31 samples were labeled grade 1, 34 samples were
marked grade 2, 26 samples were signed grade 3, and 33
samples were of grade 4. Initially, the collected samples in
batches were stored at − 5°C in the refrigerator in order to get
sufficient samples. All the samples were brought to room
temperature for 10min and were homogenized with vortex
for 60 s before detection.

2.2. Experiment Device. All prepared oil samples were an-
alyzed with the commercial GC-IMS device (FlavourSpec®)from G.A.S. (Gesellschaft für Analytische Sensorysteme
GmbH, Dortmund, Germany). +e device was equipped
with an automatic sampler unit (CTC-PAL, CTC Analytics
AG, Zwingen, Switzerland) for 32 vials and furnished with a
1mL Hamilton syringe, a heated splitless injector with 2mm
ID, 6.5mm OD× 78.5mm fused quartz glass, and a ra-
dioactive ionization source (tritium) of 6.5 KeV.

Each rapeseed oil sample (2mL) was placed in a 20mL
vial and closed with magnetic screw caps. After 10min of
incubation at 90°C, 200 μL of headspace was automatically
injected by the heated syringe (90°C) into the heated injector
(95°C) of the GC-IMS instrument. +e separation was
performed using a nonpolar column constituted by 94%
methyl-5% phenyl-1% vinyl silicone with a 30m of length.
After that, the VOCs were pushed into the GC column
(40°C) through a carrier gas (N2, purity ≥99.999%). +e
carrier gas flow was initially set at 2mL·min− 1 during 2min,
and then the flow was linearly increased to 15mL·min− 1

within 8min; next, it was raised to 100mL·min− 1 within
10min, and finally, the flow reached 150mL·min− 1 in the
next 10min. +e total run time was 30min in order to get a
better separation effect. After the separation in the capillary
column at 40°C, the headspace was pushed into the ioni-
zation chamber for ionization prior, then driven into the
drift region via a shutter grid, and finally passed into the IMS
detector. +e drift tube was 10 cm long. It was operated at a
constant voltage of 400V·cm− 1 and a temperature of 45°C.
+e drift gas (N2, purity ≥99.999%) flow was set at
150mL·min− 1. +e ion mode was made with the positive

2 Journal of Analytical Methods in Chemistry



mode. Each spectrum was obtained by the average of 32
scans, the grid pulse width of 100 μs, the sampling frequency
of 150 kHz, and the repetition rate of 21ms.

2.3. Colorized Difference. A popular method for comparing
two matrices is to form a difference image by subtracting the
individual intensity values of one matrix from the corre-
sponding intensity values of the other matrix [31]. In this
condition, a positive difference indicates that the analyzed
matrix has a larger element value and a negative difference
indicates that the referencematrix has a larger element value.
+e difference image can be displayed with a grayscale so
that medium gray represents zero difference, brighter values
represent positive differences, and darker values represent
negative differences. In order to make the differences more
apparent and to retain some context for those differences,
the original grayscale difference method is modified to color
code the differences and incorporate the comparison image
pixel intensities [32].

2.4. Data Analysis. Data of samples were obtained by IMS
Control TFTP Server Software. +e identification of specific
volatile compounds was realized by the software GC×IMS
Library Search version 1.0.3. +ey were obtained from G.A.S
(Dortmund, Germany). In addition, data display, feature
extraction, and assessment of the ion mobility profiling were
carried out using MATLAB R2009a software (+e Math-
works Inc., Natick, USA) and PRTools 5.0 toolkit (Delft
University of Technology, Netherlands).

+e multidimensional signals of raw data required pre-
treatment before statistical analysis with a view to avoid
possible variations among samples and a resulting mis-
identification. Firstly, the data were normalized with respect
to the RIP (peak corresponding to the reactant ions or hy-
drated protons required to ionize the analytes) intensity (as
an internal standard). Secondly, the region of each topo-
graphic plot was selected by limiting the retention time from
99.06 to 604.5 s and drift time from 0.885 to 1.6739ms on the
basis of containing the majority of the data of each topo-
graphic plot. After that, the colorized difference method was
used to observe the differences of the VOCs from different
refined grades. +en, since GC-IMS analysis resulted in a 3D
graph in which each analyte is represented by a peak (spot)
that is characterized by the retention time (y axis), drift time
(x axis), and the intensity of the signal, a series of charac-
teristic spot was selected as profiling markers based on the
changes of VOCs. Once the pretreatment was performed on
both samples, the selected characteristic spots were arranged
as variables to obtain the dataset used in the chemometric
treatment. Next, PCA was employed for dimensionality re-
duction and extraction of the most relevant information.
Finally, a kNN classifier was applied for qualitative dis-
crimination between different refined grades of oil.

3. Results and Discussion

3.1. Analysis of VOCDifferences. As mentioned above, since
the original raw data of each sample was large (4615× 4500),

the obtained matrix of each sample was cut apart into the
subset (1297× 952) by limiting the retention time from 99.06
to 604.5 s and drift time from 0.885 to 1.6739ms on the basis
of retaining the major information. +en, one sample was
randomly chosen from each refined level of rapeseed oil
samples, and the three-dimensional plot of GC-IMS is
shown in Figure 1(a). +e title of each subgraph in Figure 1
formed with four refining levels (grade 1, grade 2, grade 3,
and grade 4) of rapeseed oil, respectively. As shown in
Figure 1(a), grade 4 rapeseed oil apparently had more VOCs
and the corresponding concentrations were higher, where
grade 1 rapeseed oil had few compounds and relatively weak
peak intensity. With the increase of refined degree of
rapeseed oil, it can be inferred that the number of VOCs in
the vegetable oil shows decreasing trend and the concen-
tration was also weakened. On the contrary, new VOCs are
also produced in the oil samples of different refined grades,
accompanied by the disappearance of the original substance
(e.g., region marked by a red dotted ellipse).

3.2. Characteristic VOCMarkers for Different RefinedGrades.
In order to observe the changes of VOCs in rapeseed oil with
different refined grades intuitively, the colorized difference
method was applied to select a number of characteristic peaks.
Firstly, each grade of rapeseed oil samples was calculated by a
cumulative sum and further its average value was also
computed based on the individual intensity values. +en, four
average GC-IMS spectra (four matrices) were obtained, which
characterized specific VOC information of each refined grade
oil. Next, one of the matrices was selected as a reference, and
difference matrices (the rest three matrices) were obtained by
subtracting the individual value of the reference matrix and
the colorized difference method accomplished by the
MATLAB code used to display the visual results. Finally, an
area set was created by integrating all the characteristic peaks
based on color changes. Figure 1(b) shows the difference
matrix plot of average GC-IMS spectra. As shown in
Figure 1(b), the grade 2 average matrix was selected as a
reference and the others were displayed by a colorized dif-
ference. +e red region indicated that the sample had more
volatile compounds compared with the reference sample. +e
deeper the color, the more the concentration it had, and the
blue region was the opposite. Based on this principle, 34
characteristic peaks were selected as variables to present the oil
quality and positions of the selected peaks are shown in
Figure 2(a). An area set able to integrate all the markers peaks
was created for view intuitively (shown in Figure 2(b)), which
was applied for the analysis of all the samples considered
within this study and for model set up.

As shown in Figure 2(b), x axis was marked the char-
acteristic spots and y axis was the sample type. For grade 1
rapeseed oil samples, there were only three characteristic
components (markers 11, 14, and 25). Combined with the
previous analysis, it can be inferred that the higher the level
of vegetable oil refining, the fewer the VOCs it had. Fur-
thermore, some new compounds were produced and dis-
appeared later (e.g., markers 11, 14, 15, 16, 17, 29, and 30) in
the process of improving oil refining. It was easy to find that
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different refined grades of rapeseed oil samples had their
specific compounds, which implied the possibility of dis-
crimination based on the volatile organic compounds. +e

chemical compound information of partial characteristic
peaks was retrieved by using GC-IMS Library Search soft-
ware, which is shown in Table 1.
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Figure 1: GC-IMS original spectrum (a) and colorized difference plot (b) of refined grades of rapeseed oil.
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3.3.MultivariateAnalysis. It was very easy to view that there
were obvious differences between refined grades of rapeseed
oil samples. However, it was difficult to realize digital ex-
pression. +erefore, chemometric tools were needed to
conduct further analysis, which had been proved to be useful
and powerful for data analysis.

+irty-four selected characteristic peaks were used as
variables (height of peak) to form a matrix, and the PCA

algorithm was applied to process and analyze the formed
matrix. Principal component scores obtained were sorted
from high to low according to the cumulative contribution
rate, and the first 2 principal component score matrices were
used to show the cluster of oil samples with different refined
grades. As shown in Figure 3, the data were mapped on two
most important principal components PC1 and PC2. +e
axis heading in each figure was labeled with the respective
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Figure 2: 34 characteristic peaks’ (spot) selection locations (a) and overview report (b) of the peaks.

Table 1: Compounds’ information corresponding to the characteristic peaks.

Marker number Compound Retention time (s) Drift time (ms)
1 Butyl hexanoate 521.292 1.466
2 Diethyl butanedioate 445.647 1.2954
3 (E,Z)-2,6-nonadienal 429.143 1.3641
6 Pentanoic acid 156.137 1.2357
7 Ethyl pentanoate 144.446 1.2728
8 2-Ethyl-1-hexanol 246.91 1.4193
11 Alpha-phenylethanol alcohol 277.167 1.5522
12 2,6-Dichlorophenol 572.867 1.1647
14 Acetophenone 337.683 1.176
19 2,3-Diethyl-5-methylpyrazine 436.708 1.265
20 Dibutyl sulfide 349.373 1.2965
21 Alpha-pinene 187.082 1.2278
22 Benzaldehyde 187.77 1.1523
24 5-Methyl-2-furancarboxaldehyde 181.919 1.3919
25 Limonene 278.035 1.3017
28 Acetophenone 350.951 1.5608
33 Cyclohexanone 136.347 1.1476
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contribution rates of PC1 and PC2 after the PCA process. As
can be seen, PC1 and PC2 explained 98.83% of the original
information, which meant that the first 2 PCs could give the
most information of the dataset. As shown, each refined
grade of oil samples had its own cluster group and four
grades of oil samples were well distinguished. At the same
time, the loading matrix (the black line and corresponding
peak markers in Figure 3) was also visualized. +e loading
matrix is the projection of features on principal components,
which can be used to study the correlation and importance
between different features. As shown in Figure 3, compared
with other signs, the features of characteristic peaks
(markers 2, 5, 6, 8, 9, 11, 20, 21, 22, 23, and 33) were more
important compounds because their positions were far from
the coordinate origin. As can be observed, only a few
characteristic variables could be used to distinguish grade 2,
grade 3, and grade 4 rapeseed refined oil rapidly (e.g.,
markers 8 and 33). However, there were relatively few
feature variables between grade 1 and grade 2 oil samples,

and the feature variables were close to the origin of the
coordinate system and of less importance, which could not
be used to distinguish grade 1 and grade 2 refined oil
samples. +erefore, it was necessary to further use che-
mometric tools to establish a model for recognition.

+e kNN algorithm is a simple technique to generate
nonlinear boundaries between classes. kNN finds the closest
k samples of the training dataset to the unknown sample and
assigns the predominant class to it [33].+e scoring matrices
of the former two principal components were selected as
input variables, and a kNN classifier was applied to find out
the percentage of the correct classification of the chemo-
metric model. Before building the model, 70% of the samples
were randomly selected to construct the calibration model
and the rest 30% samples were used to evaluate it. +e
accuracy of classification was used as an indicator of the
performance of a classifier.+e results obtained are shown in
Figure 4. As can be observed, both the training set
(Figure 4(a)) and testing set (Figure 4(b)) obtained a good
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Figure 4: Classification results of the model from the training set (a) and testing set (b).
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classification, and all the samples were distinguished to the
right categories without any errors. +erefore, the method
developed in this study verifies that different refined grades
of rapeseed oil can be determined by GC-IMS and
chemometrics.

4. Conclusions

In this paper, GC-IMS has been proposed to analyze the
VOCs differences of the rapeseed oil with different grades.
124 samples were detected, and the characteristic peaks were
extracted and analyzed by the colorized difference method
and PCA algorithm. A combination of these methods was
proved to be useful for feature extraction. Moreover, a kNN
recognition model was constructed, and the results showed a
good classification of rapeseed oil with different refined
grades.

+e methodology developed has a capability to distin-
guish different refined grades of vegetable oil. +e analysis
time only needs about 30min, which is greatly less than the
traditional techniques, and no sample pretreatment is re-
quired. +erefore, GC-IMS can be seen as a powerful au-
thentication method with chemometrics and can also be
spread and applied in other areas.
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