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Abstract We describe here two approaches introduced by Abrahamsen (1987) that can
be used by behavior analysts to interpret neuroscientific data. The first is a “boundary-
bridging” approach aimed at understanding the interdisciplinary interactions between
the behavioral and the neural levels of analysis while keeping the two domains
independent. When presenting the boundary-bridging approach, we describe
neuroplasticity, a perspective that describes how changes at the brain level can be
understood by examining behavioral factors. In the second part of the paper, we
contrast two “boundary-breaking” perspectives: neuropsychology and behavior analyt-
ic neuroscience. In neuropsychology, localized brain activation is used to explain
behavior. In behavior analytic neuroscience, brain responses are interpreted as behavior.
We discuss the conditions under which brain responses can be considered behavior and
propose that including brain responses within a behavioral framework may allow
carrying out a more sophisticated and temporally detailed behavior analysis.

Keywords Behaviorism . Neuroscience . Integration . Neuroplasticity .

Neuropsychology . Physiology

Some things are easier said than done. There is much talk about the benefits of
interdisciplinarity, and behaviorists have spoken of trying to reach out of our tradition-
ally defined domain to interact and fruitfully collaborate with other disciplines (Vyse,
2013). There is not, however, much discussion about the specific ways to pursue
interdisciplinarity or the theoretical and philosophical challenges involved in such
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endeavors. For example, when we talk about collaborations between behavior analysis
and neuroscience, we notice from the outset that the units of analysis appear to be
different in the two disciplines. Behavioral units are situated acts of the whole organism
interacting with and in an environmental context; the power of behavioral formulations
comes from the independence of these units from particular topographical constraints
(Skinner, 1935). Neural units, on the other hand, seem structurally definite, and there
are no obvious analogs of operants or stimulus classes in the neural domain. Given
these difficulties, how are behavior analysts supposed to interpret and interact with data
from the neural sciences?

Skinner (1938, p. 425) acknowledged the importance of maintaining the indepen-
dence of a behavioral level of analysis in relation to physiological variables, while
concurrently recognizing the importance of neuroscientific research.1 More specifically,
Skinner (1988, p. 470) mentioned that “A behavioral analysis has two necessary but
unfortunate gaps—the spatial gap between behavior and the variables of which it is a
function and the temporal gap between the actions performed upon an organism and the
often deferred changes in its behavior. These gaps can be filled only by neuroscience,
and the sooner they are filled, the better.” However, are all approaches to neuroscience
equally relevant to a science of behavior? Where, in the vast array of methods and
findings that characterize the current neuroscientific literature, can behavior analysts
find common ground?

In the following, we attempt to begin a discussion around these issues. Without
striving here to provide a comprehensive literature review, we identify parts of the
neuroscience literature that can be seen as compatible with the theoretical assumptions
of behavior analysis, and other parts that might be regarded as incompatible. We also
begin a discussion of ways in which neuroscientific tools and methods can enhance our
understanding of behavior qua behavior. We frame this discussion in the context of a
distinction introduced by Abrahamsen (1987) between “boundary breaking” and
“boundary bridging” as we have found the distinction to be a useful way to identify
and categorize interactions between formally defined disciplines.

A boundary, in Abrahamsen’s account, represents a conceptual dividing line be-
tween the subject matter of one formally defined discipline and another. There may be
many ways to characterize boundaries and the reasons they exist (e.g., Bechtel, 2012;
Choi & Pak, 2006) but that discussion is outside the scope of this paper, so for present
purposes, we assume that what constitutes a boundary is self-evident. The first part of
this essay will describe interdisciplinary interactions that can be defined as “boundary
bridging” and refer to some possible areas of bridging between a behavioral and a
neural perspective, specifically the neuroplasticity approach. An alternative to bound-
ary bridging is presented in the second part of the paper. This second approach, also
introduced by Abrahamsen (1987), is named “boundary breaking” in which the
traditional ways of delineating disciplinary boundaries itself comes under question. In
boundary breaking, the scope of a domain expands to account for data traditionally
considered to belong to another domain. Two boundary-breaking approaches, neuro-
psychology and behavior analytic neuroscience, are presented.

We hasten to qualify our discussion in two important ways. First, in our experience,
interactions between defined disciplines can rarely, if ever, be characterized as pure

1 For a recent and comprehensive treatment of Skinner’s approach to neuroscience, refer to Zilio (2016).
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versions of one or the other of these two approaches. Instead, the interactions likely
consist of some mix of boundary breaking and boundary bridging. Thus, the two types
of interactions are not mutually exclusive. Second, we do not intend to suggest that
these two are the only kinds of interactions possible between disciplines. A closer look
at varieties of examples of interdisciplinarity may reveal other categories of interaction,
so our account should not be viewed as exhaustive.

Boundary Bridging

“Interdisciplinarity” is a synthesis of two or more disciplines, establishing a new level
of discourse and integration of knowledge. For example, when nuclear physics is
combined with medicine, it leads to new treatments for cancer. When methods from
mathematics were transferred to physics, mathematical physics was born, and when
they were transferred to meteorological phenomena or stock-market processes, they
gave rise to chaos theory. Transferring methods from particle physics to astrophysics
produced quantum cosmology, and from the transfer of computer methods to art,
computer art was generated. Interdisciplinary efforts can create new disciplines. For
instance, quantum information processing amalgamates elements of quantum physics
and computer science; bioinformatics combines molecular biology with computer
science (Choi & Pak, 2006, p. 355).

A boundary-bridging approach entails an interdisciplinary collaboration between
scientific domains. Scientists interested in one domain interact with researchers focused
on another area, occasionally giving rise to an entirely new, hybrid discipline. As an
example, behavioral scientists and neuroscientists have collaborated in trying to under-
stand the relation between behavioral variables and corresponding neural mechanisms,
developing the neuroplasticity approach (e.g., Kilgard, 2012). Neuroplasticity is a
boundary-bridging perspective consistent with the idea that the brain is a flexible and
continuously changing system. More specifically, neuroplasticity research focuses on
the relation between changes at the behavioral level and matching changes at the neural
level, showing how brain activity and structures can vary over time as a function of
exposure to environmental variables. Contingency-related neural changes have been
found to involve several brain areas, including the visual and auditory brain cortices,
previously considered to be stable after early critical learning windows. For instance,
Recanzone, Schreiner, and Merzenich (1993) demonstrated an increase in the propor-
tion of the cerebral cortex responding electrophysiologically to auditory stimuli whose
pitch correlated with reinforcement. More specifically, monkeys’ behavioral responses
were differentially reinforced in training a discrimination between tones having very
similar frequencies. Consequently, the proportion of brain tissue responding to “behav-
iorally relevant” frequencies expanded compared to that responding to irrelevant
frequencies, as measured by implanted electrodes in the auditory cortex. Importantly,
experience-dependent plasticity at the brain level is found at all levels of resolution,
from the cellular level (e.g., Bliss & Collingridge, 1993) to the macro-structural level.
At the macro-level, for example, quantitative structural assessments show how amounts
of gray matter change as a function of learning (e.g., Draganski, Gaser, Kempermann,
Kuhn, Winkler, Büchel, & May, 2006). Remarkably, Driemeyer, Boyke, Gaser, Büchel,
and May (2008, pp. 3–4) showed that “in some cases, dynamic alterations in gray-
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matter structure can occur very rapidly within a time range of a single week.” It has also
become apparent in the past 20 years that, contrary to previous perspectives, new
neurons are continuously generated and the rate of neurogenesis is dependent on
environmental factors such as the availability of social interactions (Stranahan,
Khalil, & Gould, 2006).

The idea that the organization of cortical areas is dynamic is supported by experi-
mental evidence showing that cortical areas can be “instructed” to rewire to perform
different kinds of operations. For instance, Roe, Pallas, Hahm, and Sur (1990) rerouted
visual connections to the auditory pathway in ferrets to assess whether the auditory
cortex would develop the sensitivity to visual orientation of stimuli typical of the visual
cortex. The authors reported that, when connected to input from the retina, the auditory
cortex can reorganize in a way that resembles the visual cortex. Importantly, rewired
organisms emitted quicker fear responses to visual stimuli compared with intact
animals (Newton, Ellsworth, Miyakawa, Tonegawa, & Sur, 2004). Those results are
consistent with the finding that fear responses are typically faster when organisms
respond to auditory stimuli compared with visual stimuli. Researchers concluded that
the auditory cortex rewired in a way that resembled the visual cortex while still
retaining some features more typical of the auditory cortex (e.g., higher horizontal
interconnectivity). Such rewiring might have allowed rewired organisms to emit fear
responses at a higher speed compared with intact animals, which were responding to
the visual stimuli by using their visual cortex instead of the faster auditory cortex.

Analogous to a behavior analytic approach, a focus of neuroplasticity research
involves understanding how environmental variables yield change over time. Also,
neuroplasticity and behavior analysis are both compatible with a selectionist frame-
work. Selectionism is an approach originating from evolutionary biology, proposing
that biological and behavioral categories can be explained by repeated instances of
variation, selection, and replication over time (e.g., Palmer & Donahoe, 1992).
Kilgard (2012), a leading neuroscientist focused on neuroplasticity, has explicitly
interpreted experience-related changes in cortical maps from a selectionist perspec-
tive. Cortical maps are, for instance, the way populations of neurons responding to
specific sound frequencies are spatially distributed in the cortex. The auditory cortex
is typically organized tonotopically along gradients that gradually shift from low
frequencies to high frequencies, but the relative proportion of neurons responding to
specific frequencies has been found to vary as a function of reinforcement contin-
gencies. Kilgard argues that “it is surprising that map plasticity has not been
seriously entertained as a source of replication with variation upon which
reinforcement-based selection could operate as a possible neural basis for adaptive
behavior” (Kilgard, 2012, p. 717). Importantly, Kilgard’s statement not only men-
tions the basic selectionist categories of variation, selection, and replication (see
Hull, Langman, & Glenn, 2001) but also includes a specific reference to reinforce-
ment learning, supporting the idea that neuroplasticity research and behavior analysis
share a common theoretical framework.

Summarizing, we described neuroplasticity as a boundary-bridging approach that
makes sense of changes in neural morphology and activation patterns by taking into
account behavioral variables. We also proposed that the neuroplasticity approach is
philosophically close to a selectionist perspective, and as such, it can probably be
considered an approach compatible with a behavior analytic view.
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Boundary Breaking

A second kind of interaction between formally defined disciplines is character-
ized by Abrahamsen (1987) as boundary breaking. In boundary breaking, the
traditionally maintained subdivisions between disciplines are either explicitly
challenged or implicitly ignored. That is, the nature of the interaction is one
in which one discipline subsumes the subject matter of another discipline as its
own. We will examine two antithetical boundary-breaking approaches, the first
one existing in the literature and the second one potentially taken by behavior
analysts interested in neural variables: neuropsychology and behavior analytic
neuroscience.

Neuropsychology

An example of boundary breaking is found in the literature described as neuropsychol-
ogy. In neuropsychology, order is described at a level of analysis and that information is
used to explain (away) the order seen at another level of analysis. More specifically, this
literature takes the position that the behavior of organisms is the result or by-product of
brain modules and, in its most extreme forms, argues that the behavior will eventually
reduce to the action of molecules. For example, certain parts of the neuropsychology
literature assume that the distinctions and categories of psychological analyses will be
completely explained as the by-product of neural or neuro-chemical processes (e.g.,
Bickle, 2008). For instance, Bickle (2008, pp. 48–49) states that “real reductionism in
genuinely reductionistic neuroscientific practice is a matter of intervening causally,
directly into processes at increasing lower levels of biological organization… The
cognitive phenomenon reduces to the cellular or molecular mechanisms intervened
into, within the anatomical circuits leading ultimately to the motor peripheries gener-
ating the measured behaviors.” This approach can be regarded as a form of explanatory
reductionism (Thompson, 1984; Schaal, 2003) defined as viewing the subject matter of
a discipline as being an index or a by-product of the organization of another subject
matter and its own level of analysis.

There are two reasons that a neuropsychological reductionist view is incompatible
with behavior analytic thinking. Skinner’s earliest and perhaps most important contri-
bution toward the development of a science of behavior was to develop and articulate
the position that behavior-environment interactions constituted their own, unique level
of analysis that did not need support from analyses at other levels (Skinner, 1935;
Branch & Schaal, 1990). Some biologists have echoed a similar stance. For instance,
the evolutionary biologist Mayr (1985, p. 58) said, “Systems at each hierarchical level
have two characteristics. They act as wholes (as if they were a homogenous entity), and
their characteristics cannot (not even in theory) be deduced from the most complete
knowledge of the components.” Second, neuropsychology is compatible philosophi-
cally with an essentialist perspective; behavior analysis is not. Essentialism is described
by Palmer and Donahoe (1992, p. 1345) as “the tendency to view categorical phenom-
ena in nature as reflections of universal, enduring qualities intrinsic to each class or
unit.” Neuropsychology relies on the essentialist assumption that there is a process
mapped to each brain structure (e.g., episodic remembering is explained by pointing at
underlying hippocampal activation; fear processing is explained by pointing at the

BEHAVANALYST (2017) 40:209–224 213



amygdala), and this process-to-structure mapping is typically considered to be very
consistent across organisms of the same species.2

It is possible that an essentialist neuropsychological mapping of particular operations
to specific brain areas is likely to occur in some phylogenetically older areas of the
brain. For instance, some parts of the so-called reptilian brain (that humans share with
reptiles and common ancestors) like the medulla oblongata are relatively conserved
across species, and the operations carried out appear to be very similar. For example,
the medulla oblongata is involved in regulating a variety of vital functions, including
heart rate and blood pressure, in a range of species ranging from fish to humans (e.g.,
Zillmer, Spiers, & Culbertson, 2007, p. 137). However, phylogenetically younger brain
areas—e.g., the neocortex—are typically structured in a way that appears to allow a
large number of operations to be carried out. The six-layered structural organization of
the neocortex—centered on the cortical column as an operational unit—is, in fact,
roughly the same across occipital, temporal, parietal, and frontal areas.

Since neocortical areas within distinct lobes carry out different operations, it is
plausible that the neocortex is characterized by significant operational flexibility. A
specific cortical area typically described as the prefrontal cortex (PFC) is considered by
some researchers (e.g., Gaffan, 2002) a clear example of operational flexibility. The
PFC is the most “recent” brain area from a phylogenetic perspective in the human brain
and represents about one third of the total neocortex. Interestingly, the PFC has proven
to be one of the most difficult parts of the neocortex to characterize. Researchers have
struggled to reach a consensus on the operations carried out in the area. Gaffan (2002)
has proposed that the lack of specialization of the PFC may point to the possibility that
phylogenetic pressures have led to the selection of larger areas that do not carry out
specific operations. This lack of specialization might have allowed behavioral flexibil-
ity and adaptability.

If this explanation is accurate, it may oppose the perspective that selection of specific
operational brain modules (e.g., the Language Acquisition Device; Chomsky, 1985) is
responsible for the observed differences between human and nonhuman animals. On
the contrary, what appears to characterize phylogenetically recent and more uniquely
human areas, such as the PFC, is their lack of operational specificity. Specifically,
Gaffan mentions that “according to this view, the prefrontal cortex is not just the apex
of a hierarchy of specialized cortical areas but also the level at which the principle of
hierarchically organized localized specialization of function is discarded. This explains
why the prefrontal cortex occupies such a large area without strongly differentiated
functional subdivisions” (Gaffan, 2002, p. 1117). Consistently, neurosurgeons have
become increasingly aware of the dynamic nature of the cortex affirming, for example,
that

Current developments in functional mapping and neuroimaging techniques have
radically changed the classical static view on the functional organization of
cortical areas, for a new dynamic perspective on the brain (Duffau, 2005). Indeed,

2 A potential explanation for this approach is the early and extensive reliance of cognitive science on the
computer metaphor in which every bit of observed functionality is seen to be the result of software or hardware
under the surface. This perspective might have resulted in the subsequent attempt within neuropsychology to
map each behavioral regularity to a part of the underlying physiological substrate, i.e., the brain.
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many recent investigations have highlighted the dynamic capability of the brain
to reorganize itself, both during everyday life (e.g., learning) and after a patho-
logical event (e.g., stroke or glioma) (Ius, Angelini, de Schotten, Mandonnet, &
Duffau, 2011, p. 992).

Summarizing, neuropsychology is an example of boundary breaking close to reduc-
tionistic and essentialist perspectives, both of which are incompatible with core behav-
ior analytic assumptions. Another approach—opposite in many respects to neuropsy-
chology—is proposed next: behavior analytic neuroscience.

Behavior Analytic Neuroscience

Another instance of boundary breaking is described here as behavior analytic neuro-
science. Behavior analytic neuroscience is non-reductionist (and therefore antithetical
to neuropsychology) and is concerned with understanding under what conditions brain
responses can be considered behavior and interpreted solely within a behavioral
framework. In this boundary-breaking scenario, some neuroscientific measurement
systems can be regarded simply as extra tools at the disposal of the behavior analyst.
For instance, using implanted electrode arrays, the experimenter can measure the real-
time activity of hundreds of neurons and train the operant control of brain responses to
move external devices (e.g., Schwarz, Lebedev, Hanson, Dimitrov, Lehew, Meloy, &
Nicolelis, 2014). Similarly, a real-time measure of brain activity can be obtained
noninvasively in human participants by using measurement tools such as electroen-
cephalography (EEG) and event-related potentials (ERPs; see Ortu, 2012 for a detailed
description of the technology). ERPs are a millisecond level resolution measure of the
coordinated response (post-synaptic potentials) of thousands to millions cortical neu-
rons.3 The behavior analytic neuroscientist might treat these neural responses similarly
to lever presses, key pecks, and other traditional dependent variables, as long as they
clearly show sensitivity to antecedent and consequential manipulations. Brain re-
sponses in this scenario do not have any kind of special status—they do not differ
qualitatively from muscle movements—they instead are responses typically not taken
into account because undetected by traditional measurement tools.

Historically, researchers interested in operant conditioning have explored measure-
ment systems that allow recording responses that would not be detected by traditional
apparati. For example, Hefferline, Keenan, and Harford (1959) used electromyographic
amplification to detect very small muscle twitches below the threshold of awareness
(see also Laurenti‐Lions, Gallego, Chambille, Vardon, & Jacquemin, 1985). An escape
and avoidance contingency was set up by the experimenters so that an increase in rate
of the invisible (and involuntary) muscle twitches would interrupt or postpone aversive
noise stimulation. The rate of the measured muscle twitches changed according to the
contingencies set up by the experimenter, even if participants were not aware of
emitting responses. Analogously, an amplified stethoscope allowed Furman (1973) to

3 So far, three kinds of EEG/ERP brain responses have been used successfully to create a real-time interface
with external devices that require a minimal amount of averaging. More specifically, steady-state visually
evoked potentials (SSVEPs), the P300 response, and the Mu Rhythm (Wolpaw, Birbaumer, Heetderks,
McFarland, Peckham, Schalk, & Vaughan, 2000; Pfurtscheller, Brunner, Schlögl, & Da Silva, 2006a, b;
Sepulveda, 2011).

BEHAVANALYST (2017) 40:209–224 215



measure digestive system activity and arbitrarily increase or decrease the rate of
peristaltic movements via delivery of social praise to participants suffering from
chronic diarrhea. Along the lines of “untraditional” dependent variables within operant
research, researchers Sterman, Wyrwicka, & Roth (1969) and Wyrwicka & Sterman
(1968) trained cats to produce a specific brain response (the sensorimotor rhythm,
SMR) by delivering a food reward contingent on the brain response. After several
weeks of training, the experimenters withheld reinforcement after cats produced the
SMR, and experimenters measured a clear extinction burst involving the brain response
(see Fig. 1). In the following decades, the whole new field of neurofeedback developed,
showing the clear sensitivity of a portion of brain activity to operant contingencies (e.g.,
Sterman & Egner, 2006).

A framework potentially useful for understanding brain responses from a behavior
analytic perspective is the one proposed by Notterman and Mintz (1965) in their

Fig. 1 Extinction bursts involving the sensorimotor brain response in cats. The y-axis represents duration of
each brain response, and the x-axis represents time in minutes. The dotted vertical line represents the moment
in which organisms were put on extinction. Reproduced with permission from Wyrwicka and Sterman (1968)
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operant analysis of subcriterion responses (i.e., responses that do not activate the switch
closure but are still above a threshold of detectability by a force transducer). Notterman
and Mintz expanded on the traditional digital (binary) nature of operant measurements
and introduced an analog analysis based on a continuous measure of response-force,
essentially lowering the threshold of response observability. Figure 2 shows a sche-
matic depicting measurement of subcriterion responses. Such measurement captures the
moment to moment dynamic nature of the operant, allowing the experimenter to carry
out a more sophisticated behavior analysis. Similarly to force transducers, which allow
measuring behavioral dynamics that are not captured by the switch closure, we propose
here that neuroscientific dependent variables such as EEG and ERPs permit uncovering
a further portion of the operant that is not measured by the traditional switch closure or
by force transducers. EEG and ERPs, similar to response-force, also represent a
continuous measure, and Fig. 3 shows an experimental example of the temporal
correlation between response force and an ERP response preceding muscle movement.
Figures 1, 3, and 4 also show how traditional dimensions of behavior such as
rate/frequency, magnitude, latency, and inter-response time can be measured from brain
ERP responses. Interestingly, ERP researchers have used a nomenclature to describe
dimensions of brain responses that overlaps considerably with the terminology used by
behavioral scientists, especially the ones interested in response force/magnitude.
Figure 4 shows specifically how ERP researchers have in fact been measuring peak
amplitude of brain responses, peak latency, and inter-peak latency.

As an example of how introducing new measurement tools (including neural
measures) may facilitate a more sophisticated behavior analysis, let us consider the
traditional ways in which response latency is measured. When considering a response
evoked by presentation of a stimulus, occurrence of the switch closure caused by a
lever press can be regarded as the onset of the response. The time interval between
stimulus delivery and the switch closure is typically described as response latency.
However, if we measure initiation of muscle movement preceding the lever press (with

Fig. 2 Schematic representing data collection of criterion and subcriterion responses via a force transducer. a
Responses exceeding the force requirement indicated by reinforcement criterion (SR Crit.) are scheduled for
reinforcement; b, c Responses meeting or exceeding the force requirement indicated by recognition criterion
(Rec. Crit.) are recorded as responses but are not scheduled for reinforcement; d Fluctuations below the
recognition force criterion are indistinguishable from measurement noise and are not recorded as responses.
Reproduced from Brener and Mitchell (1989)
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electrodes placed on the muscle fiber of interest), we would see that the electromyo-
graphic (EMG) response necessarily precedes the lever press. Accordingly, by consid-
ering detection of muscle movement as the onset of the response, latency of the
response would be shortened. Similarly, brain activity in the motor cortex (measured
by EEG) preceding the EMG response and the lever press can occur hundreds of
milliseconds before any detectable muscle movement. If the experimenter can measure
and describe the reliable temporal sequencing of the three described variables (a lever
press preceded by an EMG response preceded by an EEG response), what counts as the
moment at which behavior initiates after stimulus presentation? Should the earliest
measurable response that is related in an orderly way to antecedent stimulation be

Fig. 3 Concurrent brain ERP response (bottom panel) and a muscle EMG response (top panel) are shown.
The onset of the brain response is shown preceding the muscle response. Reproduced with permission from
van Boxtel, van der Molen, Jennings, and Brunia (2001)
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considered as the onset of the response? This would allow the possibility of delivering
reinforcement accordingly, thereby potentially decreasing the response-reinforcement
delay.

A potential advantage of using measurement tools that may allow detecting portions
of the operant that are not typically recorded by traditional lever presses or even EMG
is that these tools may open the door to measuring occurrence of what have been
historically described as covert responses (Skinner, 1953, 1957). Let us consider for
instance the case in which a neural response is reinforced before the subsequent motor
response; in this situation, the participant may learn not to emit the motor response at
all. While this may potentially be deleterious in the case of typically developing
participants, measuring and reinforcing neural responses may have a degree of useful-
ness in paralyzed participants that have lost the availability of some or all motor
topographies that are traditionally reinforced. Importantly, brain responses have already
been used to create spelling interfaces for patients with neuromuscular disabilities and,
in general, brain responses are widely used as behavioral topographies to create brain-
computer interfaces (BCIs) with a wide variety of applications (e.g., Wolpaw,
Birbaumer, Heetderks, McFarland, Peckham, Schalk, & Vaughan, 2000; Sepulveda,
2011). Moreover, within the neurosciences, researchers have also tried to assess if
covertly performing specific motor activities activates brain areas in a similar fashion as
behavior carried out via muscle effectors. More specifically, several studies (e.g., Porro,
Francescato, Cettolo, Diamond, Baraldi, Zuiani, & Di Prampero, 1996; Schnitzler,
Salenius, Salmelin, Jousmäki, & Hari, 1997) compared brain activation in the motor
cortices during execution of overt vs. covert motor responses, finding activation in both
cases. Importantly, Porro, Francescato, Cettolo, Diamond, Baraldi, Zuiani, and Di
Prampero (1996) quantified the difference in magnitude of activation in the motor
cortex between covert and overt execution. Activation during motor imagery was 30 %
as great as during overt motor performance, suggesting a quantitative, but not qualita-
tive, difference between covert and overt performance. Similarly, a study by Caldara,
Deiber, Andrey, Michel, Thut, & Hauert (2004) suggested that the difference between

Fig. 4 Schematic of a brain response measured through event-related potentials. Highlighted dimensions of
the response are peak latency, onset latency, inter-peak latency, and peak-to-peak amplitude. Reproduced with
permission from Banoub, Tetzlaff, and Schubert (2003)
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overt and covert responses “consists of a quantitative modulation of the activity of
common structures in M1… primary motor structures are involved to the same extent
in the actual or imagined execution of a motor act. These findings reinforce and refine
the functional-equivalence hypothesis between actual and imagined motor acts.” The
functional-equivalence hypothesis states that covert motor behavior can be considered
equivalent to overt motor behavior because brain activity measured during covert motor
behavior resembles the activity present during overt performance. Importantly, motor
imagery can also lead to improvements in overt motor performance, despite the absence
of any overt movement (e.g., Driskell, Copper, & Moran, 1994; Feltz & Landers,
1983). Covert practice has been used accordingly to improve overt performance in
patients with motor disabilities (Dickstein, Dunsky, & Marcovitz, 2004; Dijkerman,
Letswaart, Johnston, & MacWalter, 2004; Johnson-Frey, 2004; Kimberley, Khandekar,
Skraba, Spencer, Van Gorp, & Walker, 2006; Stevens & Stoykov, 2003). These results
are consistent with behavior analytic theories on the assumption of continuity between
overt and covert behavior (e.g., Palmer, 2009).

In sum, in the boundary-breaking approach characterized as neuropsychol-
ogy neural structures and biochemical factors are seen as having essential and
enduring properties that explain the organization of the behavioral phenome-
non. Conversely, the approach described as behavior analytic neuroscience is
non-reductionist and considers brain responses within an operant framework
as behavioral topographies that are undetected by traditional measurement
tools.

Conclusion

We elaborated on two approaches proposed by Abrahamsen (1987) potentially
useful to relate a behavior analytic approach to neuroscientific variables. The
first one, described as boundary bridging, involves an explicit collaboration
between levels of analysis. Within boundary bridging, we have described
neuroplasticity, centered on how behavioral factors can influence neural struc-
tures. We have argued that the neuroplasticity approach tends to be compatible
with the behavior analytic perspective, as both are focused on selection pro-
cesses occurring over time. In the second part of the paper, we discussed the
boundary-breaking approach and contrasted neuropsychology, typically focused
on understanding the “essential” role of brain structures in explaining behav-
ioral functions, to behavior analytic neuroscience, a direct application of be-
havior analytic principles to neural data (i.e., neural responses are interpreted as
behavior). When describing behavior analytic neuroscience we outlined the
similarities in the measured dimensions of motor and brain responses and
suggested that by including brain responses in a behavioral framework it may
be possible to uncover portions of operant classes that have so far been
undetected.

Although the approaches were presented separately for clarity purposes, there are
instances in which they can co-occur. Boundary-breaking and boundary-bridging
approaches may coexist: discipline A may try to break a boundary and “conquer”
some of discipline B’s “territory,” while discipline B may at the same time take into
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consideration elements from discipline A in a boundary-bridging fashion, i.e., relating
elements from disciplines A and B while keeping their respective independence intact.
From the perspective of behavior analysis, both approaches appear to be important and
should probably be pursued: the neuroplasticity boundary-bridging approach may lead
to a deeper understanding of the conditions under which behavioral factors bring about
neural changes, while the boundary-breaking behavior analytic neuroscience may help
uncover portions of behavior that had previously gone unnoticed because they were not
measured with traditional measurement tools. When investigating the interaction be-
tween the neural and behavioral levels in neuroplasticity, all variance in brain activity,
at all levels of resolution, can be taken into account, together with structural, neuroan-
atomical observations. Conversely, when investigating neural responses as behavior in
behavior analytic neuroscience, only the portion of an activated brain sensitive to
antecedents and consequences is taken into account. Neuroplasticity requires an un-
derstanding of what is known about the physiology involved in the operations carried
out by brain areas and how sub-areas are organized with regard to each other. Behavior
analytic neuroscience, conversely, does not necessarily require an understanding of
neuroanatomy or of the physiological processes involved (similarly to how detecting a
lever press does not require understanding arm or hand physiology), as the brain
responses taken into account are treated equivalently to the dependent variables
traditionally examined within a purely behavioral framework.

The neuroplasticity approach has generated a great deal of research in the past
20 years. Regarding behavior analytic neuroscience, the experimental analysis of
behavior would undoubtedly benefit from focusing on neural responses. Similarly
to how Notterman (1959) showed the dissociability of response force and rate
during continuous reinforcement, leading to the possibility that different dimensions
of behavior may in principle be independent of one another, introducing brain
responses into the picture may, for instance, allow having a more complete
understanding of the effects of reinforcement on different dimensions of the
operant. Moreover, the temporally detailed richness of brain responses may allow
establishing fractally nested levels of resolution in which what behavior analysts
have described as molecular behavioral analyses, with the typical temporal resolu-
tion of a few seconds, may be broken down into micro-behavioral analyses
involving events lasting hundreds or tens of milliseconds. Such analyses may
allow behavior analysts to contribute developing brain-computer interfaces to allow
disabled patients to interact with the environment by gaining operant control of
their brain responses. On a different but not unrelated note, such detailed under-
standing of portions of the operant that have so far been undetected may eventu-
ally allow testing some key unresolved questions regarding complex human be-
havior. For example, the outstanding question regarding a verbal mediation in the
emergence of untrained relations in stimulus-equivalence research could benefit
from the possibility of measuring covert verbal responses (Horne & Lowe,
1996). Similarly, can relational behavior be explained satisfactorily as a generalized
operant or is there a role played by covert verbal responses in relational tasks
(Palmer, 2004)? Can some instances of remembering be characterized as iterative
covert problem solving (Palmer, 1991)? Using neuroscientific tools to uncover
unobserved behavior may help behavior analysts carry out a better-informed and
therefore more sophisticated behavior analysis.
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