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Abstract Mainstream biomedical and behavioral sciences are facing what has been
dubbed “the reproducibility crisis.” The crisis is borne out of failures to replicate the
results of published research at an average rate of somewhere near 50%. In this paper I
make a case that the prime culprit leading to this unsatisfactory state of affairs has been
the widespread use of p-values from tests of statistical significance as a criterion for
publication. Even though it has been known, and made public, for decades that p-values
provide no quantitative information about the likelihood that experimental results are
likely to be repeatable, they remain a fundamental criterion for publication. A growing
realization among researchers that p-values do not provide information that bears on
repeatability may offer an opportunity for wider application of research methods
frequently used in the research specialty known as Behavior Analysis, as well as a
few other research traditions. These alternative approaches are founded on within- and
between-participant replication as integral parts of research designs. The erosion of
public confidence in science, which is bolstered by the reproducibility crisis, is a
serious threat. Anything that the field of Behavior Analysis can offer as assistance in
ameliorating the problem should be welcomed.

Keywords Statistical significance . P-values . Replication . Individual-case designs

What has come to be called the “Replication Crisis” in science was illuminated as a
focus of attention among biological/medical scientists in a publication by John
Ioannidis titled “Why most published research findings are false,” (Ioannidis, 2005).
In the paper, Ioannidis sounded an alarm that published laboratory research findings
were being found not to be repeatable when researchers tried to follow them up. In a
famous example, C. Glenn Begley (cf. Begley & Ioannidis, 2015), when he took over
the laboratory at the corporation Amgen, had scientists attempt to replicate 53
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“landmark” studies in cancer research. Forty-seven of those attempts failed. Not long
after that Brian Nosek, a noted social psychologist, alerted those interested in Psychol-
ogy that much research, including some of his own, published in Psychology journals,
was not repeatable (Open Science Collaboration, 2015). Obviously, this cannot be good
for science, and the problem has become severe enough that lay publications are now
reporting on the issue (e.g., Siegfried, 2010; Harris, 2017).

A Root Cause of the Problem

There has been an explosion of papers about the origins of the Replication Crisis. Often
suggested as contributing factors are pressure to publish, outright cheating, unconscious
bias, data dredging (also known as p-hacking), too-liberal alpha levels in hypothesis
testing, and the social safety of accepted procedures (e.g., Barch & Yarkoni, 2013;
Branch, 2014; Head, Holman, Lanfear, Kahn, & Jennions, 2015; Świątkowski &
Dompnier, 2017). My view is that, although the last in that list is probably important,
the others do not contribute much to the problem. For example, eliminating data
dredging, which usually violates basic principles of significance testing, would likely
have little effect on the repeatability of published work. The same is true for sugges-
tions that the standard for publication be moved from p < .05 to something smaller, like
p < .005. Such changes would have little effect, in major part, due to a factor that is
interestingly missing from most lists of probable reasons. It is a feature of almost all the
work that has been found not to be repeatable. Specifically, a major criterion for
publication of the work has been statistical significance, and I argue here that that is
an important, maybe even the most important, part of the problem. The usual criterion
of p ≤ .05 is generally thought to imply that the failure rate in attempts at replication
should be less than 5%, not the more than 50% that has now been reported in several
instances (e.g., Open Science Collaboration, 2015). Unfortunately, that assumption is
false, with higher rates of replication failure entirely predictable from what a p-value
indicates, or more specifically what it clearly does not indicate.

The underlying misconception – that p-values measure the likelihood that a result is
“real” or repeatable – is so pervasive that the American Statistical Association (ASA)
felt compelled to assemble a committee of eminent statisticians to report on the
problem, and an outcome was publication, by the ASA, of a first-ever position
statement (Wasserstein & Lazar, 2016) on any statistical issue. Quoting from the
statement itself: “P-values do not measure the probability that the studied hypothesis
[null hypothesis] is true, or the probability that the results were produced by random
chance alone” (p. 131) and “By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.” [p. 132, italics in original]. Even more
important than those truths is the fact that a p-value provides no information about
whether the result should be believed, that is, that it is a repeatable finding. As a
consequence, as noted in the position statement, “The widespread use of ‘statistical
significance’ (generally interpreted as “p ≤ 0.05”) as a license for making a claim of a
scientific finding (or implied truth) leads to a considerable distortion of the scientific
process.” (p. 131, italics added).

The basis for that last statement may seem mysterious to many, but should not be
because p-values provide no, that’s right, no, information about the likelihood that an
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experimental result will be reproduced if a replication is carried out. This has been
known for decades, has been pointed out in scores of published papers (e.g., Bakan,
1966; Berkson, 1942; Branch, 2014; Carver, 1978; Cohen, 1994; Goodman, 1999;
Nickerson, 2000; Rozeboom, 1960), and therefore presumably is understood by virtu-
ally every statistics textbook author. If this comes as a surprise to the reader, please
know that you are not alone. Available survey data indicate that upwards of 90% of
practicing scientists mistakenly believe that p-values provide information about likely
repeatability (Haller & Krauss, 2002; Oakes, 1986).

Let me recap for the Behavior Analysis community the truth about p-values. To
begin, the definition of a p-value (in not quite fully formal language) is that it represents
the probability of seeing a result (or a more extreme one) given that the null hypothesis
is the true state of affairs. That is, it is what is called a conditional probability, in that the
value depends on what the “given” is. Importantly, that means a p value is not the same
as the probability that the null hypothesis is true given the results obtained. Neverthe-
less, the p-value is generally used to make a decision about the truth of a null
hypothesis upon which it has no bearing. It is simple to show that this is the case.
For any two conditions or events, the probability of one given the other is not reversible
with respect to which condition is the given. For example, the probability that it is
cloudy given that it is raining is not the same as the probability that it is raining given
that it is cloudy, nor is the probability that a person is dead given that he or she was
hanged the same as the probability that a person was hanged given that he or she is
dead (examples are from Carver, 1978). In each case, the two probabilities are
unrelated to each other. One tells you nothing about the other. Ironically, therefore,
although p-values are computed to guess about whether the null hypothesis is true, the
calculated probability is unrelated to whether the null hypothesis is in fact true. To take
a salient example, modeled on one by Falk and Greenbaum (1995), consider the
following so-called logic: If the next person I meet is an American (the given), it
probably will not be the President (actuarial conditional probability of about
.000000003). But I just met the President. Therefore, confronted with
p ≤ .000000003, I reject the given as being the case, and I conclude that the President
is not an American. That is precisely analogous to the logic used in null-hypothesis
significance testing, an approach that is employed almost uniformly in the
biological and behavioral sciences to determine whether a research finding is
worthy of publication. Is it any wonder then, given that a low p-value is a
common criterion for publication in the scientific literature, that published
research is frequently not repeatable?

Most of us remember examples from statistics classes that did not seem as laughable
as the one just told about the President. For example, you may recall something like the
following. If a die is fair (the given), it should come up, in the long run, with each face
1/6th of the time. I roll the die 10 times, and it comes up six every single time. If the die
is fair, the probability of that outcome is 1/6th to the 10th power (about .000000017).
This may seem to be good evidence that the die is not fair – specifically, the probability
that the die is unfair. But that is not the probability we calculated. Our outcome,
.000000017, is simply the probability of any particular sequence of the six sides that
emerges from 10 rolls, so whatever particular sequence (e.g., 1, 2, 3, 4, 5, 6, 5, 4, 3, 2)
was obtained would have the same probability of occurring. So now maybe you are not
so confident in declaring the die unfair. So what might be done to obtain more useful
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evidence? How about rolling the die 10 more times? That is a good idea, but more on
that later.

A key difference between the die example and the usual practice in null-hypothesis
statistical testing is that with the die we have a reasonable initial belief about the given
(our null hypothesis). That is, we assume that the die is fair because for most of our
lives we have found only dice that are fair, and we conduct the statistical test to see how
likely our result would be if it were, in fact, fair. That is not what goes on in most
scientific experiments. We do the experiments, usually based on some ideas, or even
formal hypotheses, about what is going to happen. The null hypothesis is not what we
expect to happen. In fact, we believe in advance that it is false and try to get additional
evidence to support our assumption. But there is a serious problem with that. If
the null hypothesis is not true, which we expect (or at least hope), then the p-
value is meaningless. The p-value is defined as a probability given the truth of
the null hypothesis. If the given is not true, then the calculated probability
value has no meaning.

It is additionally the case that, for most research projects, the chosen null hypothesis
predicts no effect, an assumption that is almost always empirically false. As Meehl
(1978) noted, “As I believe is generally recognized by statisticians today and by
thoughtful social scientists, the null hypothesis, taken literally, is always false.” (p.
822). There are many other problems inherent in null-hypothesis significance testing
(cf., e.g., Branch, 2014; Cohen, 1994), but the key point here is that p-values provide
no information about whether you should believe whether an experimental effect or
scientific outcome should be believed. Journal reviewers and editors need to keep that
fact in mind, and act accordingly. Attempting to make inferences about whether a result
is likely repeatable by using p-values is like trying to measure temperature with a
yardstick. A yardstick measures something, that is, length, but those measures are
unrelated to temperature. A p-value measures something, but not the probability that
the null hypothesis is true, which is what you would really like to know. It should now
be clear that the oft-used synonym for “statistically significant, “statistically reliable,” is
a non-sequitur. Statistical significance provides no information about reliability, none.

A Path to Ameliorating the Crisis?

If a p-value does not provide information about repeatability, it should not be used as a
criterion for publication. What should be a “replacement” criterion then? This is where
research approaches common in Behavior Analysis may have something to add in an
attempt to make published science more likely to be true. In what follows, I first outline
for scientists who are not familiar with Behavior Analysis research some basic charac-
teristics of the approach, with the suggestion that researchers in other domains, like
cognitive or social psychology, consider trying to incorporate them into their investi-
gations. Then I follow with some suggestions about actions that might assist in dealing
with the crisis.

A fixed, inviolable standard like p ≤ .05 is neither possible in science nor necessary.
A skeptic might suggest that operating without fixed standards leaves open the door to
all kinds of biases and therefore research that is not repeatable. It is hard to imagine,
however, a worse status quo than the one that has arisen in Psychology with a fixed
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decision standard. More to the point, however, the successes of Behavior Analysis (and
another domain or two that will be mentioned) show that a coherent collection of
scientific facts, testable theories, and effective technologies (cf. Madden, 2013b) can be
developed without reliance on a fixed statistical standard for publication. More com-
pelling comfort may come from viewing the history of science. Statistical significance
testing was invented a bit before the mid twentieth century and did not come into
prominent use until the second half of that century. Foundational research that has stood
the test of time in physics, chemistry, physiology, biology, and psychology was
conducted and published before statistical significance was invented.

Good science before significance testing was made possible by careful experiments
that were shown to be repeatable. How was that shown? By repeating the experiments,
a process known technically as replication. Much Behavior Analysis research, model-
ing itself in part after science that preceded the invention of significance testing, is
characterized by methods that are grounded in replication. Replication can be per-
formed by researchers at other laboratories, but it can also be performed by an
individual researcher as part of her/his research design. Research in Behavior
Analysis has been characterized by both approaches. To focus on the latter, I
shall discuss briefly how individual researchers have incorporated replication
into their basic research designs.

As an example, consider the simplest kind of experimental design used by Behavior
Analysis researchers, the ABA design. Replication is evident throughout. Usually
multiple observations take place within Condition A, in order to establish a baseline.
That sequence of observations is, of course, a series of replications of what will happen
in Condition A. When Condition B is implemented, it too also subsumes multiple
observations, providing another series of replications. When Condition A is re-im-
posed, it represents an attempt to replicate on a larger scale in that it is an attempt to
replicate the previous baseline. Suppose, for example, that whatever is measured
changes notably when Condition B replaces condition A and then returns to is original
level when A is re-implemented. At that point, depending on a variety of factors, a
scientist might decide that an interesting fact has been observed. Or, depending on the
same or other factors, the scientist might say to herself, “That’s an interesting outcome.
I wonder if I should believe that Condition B was the cause of the observed change in
the measure? I think I’ll redo the whole process: A, then B, then A, again.” Doing it
over, of course, is a replication at yet another level. Replication extends further if the
experiment is repeated with additional participants. If the results are consistent across
multiple levels of replication, the scientist gains confidence in the repeatability (and
concomitantly the generality across people) of the results, maybe even so much so that
she thinks she should make it more widely known by publishing them.

Of course, the simple design described in the preceding paragraph is appropriate
only if effects of a particular experimental set of conditions are repeatable over time, in
the same individual. Sometimes this is described as the effects being “reversible.”
There are many, many cases, however, where that is not true. A single experience with
a set of conditions may change the results of subsequent exposures. Notable examples
of this are the many effects that are supposed to indicate what is called learning.
Fortunately, Behavior Analysts have developed procedures to deal with circumstances
like that while maintaining the focus on replication as the fundamental method of
determining reliability at the level of the individual person or other animal. The
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interested reader can find a useful overview of such techniques in Perone and Hursh
(2013) or a more comprehensive account in Johnston and Pennypacker (2009).

As intimated earlier, Behavior Analysis research does not have a monopoly on
individual-case designs focused on replications. The study of sensory and perceptual
processes is replete with such designs (e.g., Goldstein, 2014), and basic research in
physiology has had a similar focus ever since the pioneering work of Claude Bernard
(cf. Bernard, 1865/1957). There is no practical reason that current medical, behavioral,
and other biological sciences cannot make greater use of the approach.

An example of how a sensory process was and can be studied without resorting to
p values is provided by the familiar phenomenon of dark adaption. An experiment (cf.
Aubert, 1865; Phillips, 1939; Bartlett, 1965) involves adapting a person to some level
of bright light, and then switching to complete darkness. During the period of darkness,
tests are periodically conducted to determine the minimum intensity of a stimulus (e.g.,
a small spot of light) that can be seen. There are many important details of such
experiments that are being ignored in this presentation, but the basic design is present-
ed. Figure 1 presents some hypothetical data from such an experiment. The dotted lines
show data from three individuals, and the solid line the average for those three. The
dotted functions show common characteristics. First, they all decline across time,
showing that ever dimmer light becomes visible as adaptation progresses (The Y axis
scale is arbitrary. If it were in real units of luminance it could span several log units.)
Second, each individual’s curve has two discernable parts, an initial decline (that is, an
increase in sensitivity) that levels out, followed by a larger decline that continues until a
constant level in reached. In our fictional experiment, this two-part curve, has been
replicated in the three studied participants. Actual experimentation has shown that this
function is repeatable within an individual, and usually repeatable across individuals.
As indicated, the duration of the first part of the curve varies from individual to
individual, and additional research has shown that those differences, too, are reliable
(Phillips, 1939; Pirenne, 1962; Wolf, 1960). The important discovery of the two-part
function played, and plays, an important role of the duplex theory of the retina, that is,
that there are two main types of receptors, cones and rods (cf. Goldstein, 2014; Bartlett,
1965). Note that the average function does not clearly indicate the two-part nature of
the function for each individual, a fact that will be considered later.

An important point to remember is that, in the no-significance-testing world of
research, the first person the scientist must convince of the repeatability of the effect is
herself, not journal editors or others in the scientific community. She must be convinced
because her reputation as a scientist rides on it. If someone else tries and fails to
replicate the effect, there is no possibility for the first scientist to claim (mistakenly, as
we have seen) that, “Oh, this must have been one of the 5% of the time that a p-value
indicated that an effect is not repeatable,” or “I conducted my analyses according to
conventional standards, so my reputation is not at risk.” It is my view that this social
safety provided by a fixed decision criterion is one of the attractions of significance
testing. Granting a scientist the protection of being able to say, “I played by the
conventional rules of significance testing, so I expect some percentage of the effects
I claim not to be reliable.” is of little help in promoting repeatability. For a researcher
whose work is found not to be replicable, the correct response is not that “It’s not my
fault,” but instead, something like “Dang, what variable or variables did I overlook?”
Interestingly, that is the same question frequently (at least in my research career) asked
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within a laboratory when experimental subjects do not show the same effect of a
particular intervention.

It should be acknowledged, of course, that moving to procedures like those
often used by in Behavior Analysis and the study of sensory processes is not a
panacea. There is no guarantee that results from one lab will be reproducible in
another, but the emphasis on replication across laboratories, and the success of
such attempts, are likely to be enhanced by its emphasis within laboratories. It
is difficult to believe, in any event, that an emphasis on replication can result
in rate of cross-laboratory replication failure of 40–50%, which is what appar-
ently prevails in the literatures that depend on statistical significance as a
publication criterion.

A common criticism of research in Behavior Analysis is that too few
participants are studied; that it relies too much on so-called N = 1 studies. What
N = 1 implies to thoughtful behavior analysts is not that one participant is
enough (although there are rare cases where that is true), but that each
participant is studied and evaluated individually. If inter-participant generality
is important, then many participants are likely needed, with each treated as an
attempt at replication. One of the positive side-effects of such an approach is
that it makes it simple to identify individual differences and to commence the
search for variables responsible for those differences. Of historical note is that
in B.F. Skinner’s Behavior of Organisms (Skinner, 1938), his description of his
first experiments on operant conditioning focused on 4 rats. Over the rest of the
book, however, more than 70 additional rats were successfully trained with the

Fig. 1 Hypothetical data from an experiment on dark adaptation. Y axis: Luminance of a just-visible spot of
light (arbitrary units). X axis: time in minutes. Dotted functions display data from an individual. Solid line is
the mean of the three individual-person curves
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same method. And of course, thousands more rats (and other kinds of animals)
subsequently have been effectively trained using his techniques.

Methods that do not involve tests of statistical significance share a common feature.
The critical characteristic involves focusing on individuals, rather than group averages.
One way to think about the approach is that each individual studied is thought of as an
independent experiment. That has two valuable consequences.

First, treating individuals as experiments permits better contact with research
in basic physiology where each individual, or in many cases part of an
individual (for example an organ like a liver) is treated as an independent
experiment. That means that when you study additional individuals or organs
(like livers) you are conducting attempts at replication. Here, therefore, is a
way in which replication is automatically included in the research design,
simply by changing the focus of observation. No new experimental techniques
are required. What is required, however, is some way of analyzing the data to
emphasize that independent experiments have been conducted.

Second, and likely less appreciated, is that, at least in the behavioral and
medical sciences, the focus of research methods often is on the point of most
likely potential application, the individual. One of the apparently attractive
features of the significance-testing-based approach is that it has encouraged
the averaging of data across individuals because of the statistical relationships
between group averages (and other features of aggregate data, like variance)
from random samples from a population and the statistical parameters of the
entire population itself. Sample statistics can be used to make estimates about
population parameters. Thus the sample data can be used to say things about
the entire population under study. That fact is attractive because it appears to
increase generality of the research findings. What could be more general that
something that applies to the entire population? That generality, however, is
illusory if the goal is to understand what is happening at the level of the
individual. That is because a population parameter (like mean or variance),
even though it is derived from the activity of individuals, is not a measure of
what individuals do. A good example of that fact appears in Fig. 1. The mean
curve does not clearly reveal the two-part nature of the curves for individuals,
and the two-part curve is a foundational attribute of dark adaptation and
contributes directly to the analyses of the physiology associated with dark
adaption.

A commonly used example of inference about population parameters is the
confidence interval that can be calculated once a sample mean has been has
been determined. It is an interval in which the population mean will be
contained some percentage (e.g., 95%) of the time.1 The confidence interval
permits inferences about the value of the population parameter, not about what
any individual will do. The direction of inference is not from sample to
individuals. Population parameters are actuarial data, not data that necessarily
apply to individuals.

1 Note that confidence interval does not convey the probability that the population mean is within the
particular interval calculated. An especially clear explication of this fact is provided by Sanabria and Killeen
(2007, pp. 472–473).
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When using means in research on individuals, the representativeness of a
mean is at issue. By representativeness I mean how well the mean corresponds
to the scores of the individuals whose data are averaged. If the mean is
representative, it permits inferences about individuals. Statements like, “the
scores for individuals were all within 10% of the mean value” permit conclu-
sions about individuals. Measures like standard deviation are less useful, partly
because the exact same means and standard deviation can arise from grossly
different distributions as illustrated in Fig. 2 from Cleveland (1994; see also
Anscombe, 1973). The four distributions in the upper panel differ markedly, yet
their standard deviations are identical.

The primary point being made here is that population parameters, although often
highly useful for things like public health actions, do not directly deal with behavior,
mind, or bodily health of individuals, nor do they automatically permit useful infer-
ences about measures of individuals. As Sidman (1960) astutely noted long ago, “…
reproducible group data describe some kind of order in the universe and, as such, may
form the basis of a science. It cannot, however, be a science of individual behavior
except of the crudest sort….My own feeling is that it belongs to the actuarial statisti-
cian….” (p.275).

Fig. 2 Upper panel: Four horizontally arrayed distributions of twenty values, with each symbol representing a
value along the X-axis. Lower panel: The corresponding means and standard deviations of the four
distributions shown in the top panel. From Cleveland (1994, p.251, Figure 3.76.) Reprinted with permission,
courtesy of AT&T Archives and History Center
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The Issue of Generality

How do procedures grounded in replication in individuals lead to the kind of generality
that seems inherent in the group averages that characterize most studies employing
significance testing, which permits generalization to a population? Another way to ask
this is what should a researcher who is ultimately interested in individuals do with data
from independent groups that have been subjected to different procedures? There are
several answers to these questions. First, to the extent that procedures developed by
Behavior Analysts can be applied, their use guarantees replication attempts as part of
the research design. Replication across individuals is a direct test of generality, and
replication across varied conditions also provides such tests (cf. Branch &
Pennypacker, 2013). Second, if the goal is to compare group averages (as is very often
the case, at least in psychology), data from individuals can be emphasized, both
graphically and in novel measures. Suppose, for example, two independent groups of
20 studied participants are exposed to either of two conditions, a control condition and
an experimental condition. In many experiments, each participant will, in fact, be
exposed individually, so his or her response will be independently obtained. We
average the data across individuals and find that the mean from the control group is
100, and that of the experimental group is 110. Both sample standard deviations are 10.
Consider an example from Fig. 2. Let us begin with the individual data in the second
row of the top frame as data from a control group (chosen because the distribution
looks like a lot of real data distributions). Then let us add 10 to each value to produce
another, experimental, group. We can perform a t-test if we wish, and it will reveal a
statistically significant difference (p < .004), with an effect size of 1 standard
deviation, usually identified as a large effect. Recall, however, that statistical
test reveals nothing about reliability of the difference and nothing about indi-
viduals unless additional analyses show the means to be representative of the
individuals. If our interest is solely in group-mean effects, a good path would
be to replicate the entire study to assess reliability.2

If we are interested in individuals, at least two general avenues of action present
themselves. First, graphical methods can be used to illustrate what individuals in a
group did. For example, dot plots, like those shown in the figure, wherein every
subject’s response is shown will be completely transparent about representativeness
of the average, or box-and whisker plots will summarize features of how individuals
fared. Other graphical methods can be found in Tukey (1977) and Cleveland (1994).
The second approach is to engage in additional data analyses that focus more on
individuals. As an illustration, the data would permit simple counts of a variety of
possibilities that focus on individuals. Suppose for instance, you were interested, post
experiment, in whether any randomly selected pair, one from each group, would reveal
a difference at least as big as the mean difference. You could compare all the possible
pairs and determine the percentage of cases in which such a difference occurs. That
would give you an estimate about what goes on at the individual-subject level, an
estimate you could use to predict the likelihood of such differences for individuals. In

2 In lieu of that, there are methods like bootstrapping (cf. Thompson, 1993, 1994) and jackknife approaches
(e.g., Tukey, 1958) that attempt to evaluate the likely repeatability of sample results, as well as to provide some
indications of the roles individuals play in producing the group mean.
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the case of the current example, such a count reveals that 53% of the 400 individual
comparisons would yield a difference of 10 or larger between the two individuals
tested. So in this case, a large statistical effect permits effective prediction at the
individual level about half the time. As a side note, adding 10 to each value in the
4th row and comparing it to our control group yields the same values for the t-test
(because the means and standard deviations are the same as for the first test), but results
in only 36% of the paired-individual comparisons showing a difference greater than the
mean difference. Such a comparison reveals the potential importance of the distribu-
tions of values that could be missed if one were simply using only standard data
analysis procedures grounded in statistical significance.

In any event, behavioral and biomedical researchers tend to be very clever people
who surely could invent new methods of analyzing data, ways that promote a focus on
individual changes and predictions about them. Examples of additional ways to
direct the focus onto individuals and to emphasize replication can be found in
Branch (2014), Loftus (1996), and Thompson (1993, 1994). I note with satis-
faction that there is increasing interest in prediction for individuals in the
medical sciences (e.g., Goodman, 1999; Kent & Hayward, 2007a, b; Morgan
& Morgan, 2001; Penston, 2005; Williams, 2010).

There is also a “grass roots” approach to dealing with the problem of relying on
statistical significance as a publication criterion. Of course, substantial influence can
and should come from journal editors. Certainly, it would not be improper to implement
a policy that indicates that mere statistical significance will not be considered as
evidence of likely reliability. That is, evidence of other sorts, such as replications
within the experimental design, or the careful utilization of standardized techniques
that have already been shown to produce reproducible results, would be required. A
good start is to employ techniques that bring data analyses closer to what individuals do
(e.g., Thompson, 1993, 1994; Tukey, 1958). Reviewers, too, could assist by first gently
pointing out that statistical significance provides no information about reliability (since
many researchers apparently still believe that it does), and then offering suggestions
about how data and characteristics of the research design and implementation can be
presented in ways that focus on evidence of repeatability.

Conclusions

Behavioral and biomedical sciences have reached an important crossroads. Historically,
scientific knowledge has held a believability advantage over everyday dis-
course. It did so because the scientific literature was doubly checked before it
was made public. The two checks were peer review and replication. The first
check was for logical consistency and verbal clarity, as well as assessment of
the rigor of the measurements and designs. The second check, replication, was
the acid test. The first check has been critically weakened by the advent of
statistical significance testing. Reviewers have mistakenly given unwarranted
emphasis to p-values, with less attention to indicators that the results will
survive replication tests. That is due, in large measure, to a failure of adequate
training in statistics, wherein the severe limits to what p-values actually mean
have not been effectively communicated.
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The replicability crisis has not gone unnoticed by the public, perhaps most damag-
ingly by politically motivated persons, who increasingly ignore science in deciding
courses of action. If science is to regain its just position, it has to correct the problem of
unrepeatable research results. A first step would be to remove statistical significance as
a criterion for publication.
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