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Abstract Behavior analysts have widely adopted and embraced within-subject repli-
cation through the use of reversal and multielement designs. However, the withdrawal
of treatment, which is central to these designs, may not be desirable, feasible, or even
ethical in practical settings. To examine this issue, we extracted 501 ABAB graphs
from theses and dissertations to examine to what extent we would have reached correct
or incorrect conclusions if we had based our analysis on the initial AB component only.
In our first experiment, we examined the proportion of datasets for which the results of
the first AB component matched the results of the subsequent phase reversals. In our
second experiment, we calculated three effect size estimates for the same datasets to
examine whether these measures could predict the relevance of conducting a within-
subject replication. Our analyses indicated that the initial effects were successfully
replicated at least once in approximately 85% of the cases and that effect size may
predict the probability of within-subject replication. Overall, our results support the
rather controversial proposition that it may be possible to set threshold values of effect
size above which conducting a replication could be considered unnecessary. That said,
more research is needed to confirm and examine the generalizability of these results
prior to recommending changes in practice.
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Within-subject replication has been central to the development of the science of
behavior analysis since its inception with nonhuman organisms (Skinner, 1938/1991).
Applied behavior analysts have widely adopted and embraced within-subject replica-
tion through the use of reversal and multielement designs to examine the effects of
treatments in a wide variety of populations (Shadish & Sullivan, 2011). One of the
main characteristic of the reversal and multielement designs is the repeated introduction
and withdrawal of an independent variable to demonstrate experimental control.

The professionalization of behavior analysis over the past 30 years with the forma-
tion of credentialing organizations such as the Behavior Analyst Certification Board®
(see Johnston, Carr, and Mellichamp (2017) and Shook (2005)) has given rise to a
generation of practitioners whose behaviors are controlled by a different set of contin-
gencies than those governing the design and conduct of experiments. Specifically, the
withdrawal of treatment, which is central to reversal and multielement designs, may not
be desirable, feasible, or even ethical in practical settings. The most obvious example is
related to the withdrawal of treatments that are designed to reduce behavior that may
produce irremediable harm to the individual or others even if they occur only once
(e.g., severe self-injury, unsafe gun use, risky sexual practices). That said, a behavior
does not need to be dangerous to prevent the implementation of withdrawal in practical
settings. For example, a parent or a teacher may simply refuse to stop implementing a
treatment once they observe desirable changes in a child’s behavior. Behaviors that
produce irreversible changes are also unconducive to designs involving withdrawal.

Another barrier encountered in practice is the cost, in terms of time and effort,
associated with conducting additional baseline observation sessions. Imagine that the
withdrawal of a treatment requires five additional observation sessions (Kratochwill
et al., 2010; Horner et al., 2005). In some parts of Canada, publicly funded agencies
provide services to thousands of individuals with developmental disabilities and have
extensive waiting lists (Ombudsman Ontario, 2016; Québec Ombudsman, 2012).
Assume that one of these agencies provides services to exactly 1000 individuals and
conducts five withdrawal sessions of 2 h with each person, which requires the effort of
one staff member. Not implementing withdrawal could therefore save 10,000 h of work
(not to mention additional sessions needed to reinstate the treatment), which would
allow the agency to take on more clients and reduce waiting times for families in need.
Cost issues also arise with families receiving privately or insurance-funded services.
Some families may be unable to afford the withdrawal phase or their insurance may
only cover a limited number of sessions. From a practical standpoint, these concerns
raise an important question: is within-subject replication always necessary in practical
settings for the demonstrated effects to be believable?

The AB design is a quasi-experimental alternative to experimental designs that does
not require the withdrawal of treatment. One issue with using the AB design is that the
lack of replication increases the probability of reaching spurious conclusions about the
effectiveness of treatment (i.e., type 1 errors). The magnitude of this problem is,
however, open to debate. Using Monte Carlo simulations, researchers have shown that
the probability of a type 1 error is low (i.e., < 0.05) when AB data are examined via
visual analysis employing structured criteria (Fisher, Kelley, & Lomas, 2003; Krueger,
Rapp, Ott, Lood, & Novotny, 2013; Novotny et al., 2014). One potential limitation of
using simulated data is that the error may not correctly mimic patterns observed with
human participants. To address this issue, Lanovaz, Huxley, and Dufour (2017)
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recently replicated the study conducted by Fisher et al. (2003) using nonsimulated data.
Similarly, they concluded that the error rate remained low when the treatment phase
contained at least five data points.

An interesting possibility is raised by evidence suggesting that AB designs lead to
incorrect conclusions about the existence of an effect only infrequently: Perhaps the
withdrawal/replication strategy is not always necessary. In the present investigation, we
tested this proposition by examining the actuarial extent to which effects observed in an
initial AB component of nonsimulated data are replicated in subsequent phase reversals
(from B1 to A2 and A2 to B2). Given the possibility that data from an initial AB
component are an imperfect predictor of subsequent AB results, we also examined
whether the effect size observed in the first AB component could predict the reliability
of replication in subsequent components.

General Method

To examine the probability of replication of the effects observed in the initial AB
component of ABAB designs, we extracted ABAB graphic datasets from theses and
dissertations and then compared the outcome (i.e., clear change or no clear change)
across phase changes within each dataset using structured criteria. Following the initial
analysis, we calculated three measures of effect sizes for each dataset and examined to
what extent each measure could predict the replication of the effects observed in the
initial AB component.

Identification of ABAB Graphs

We chose to search for dissertations and theses in order to avoid publication bias
reported in the behavioral literature (Sham & Smith, 2014); that is, we expected that
published data would be less likely to included failed replications. To identify ABAB
graphs, we searched the ProQuest Dissertations & Theses Global database between
October 4, 2016 and May 12, 2017. Initially, we used the keywords “reversal design”
or ABAB and requested that only the results with full texts be displayed by relevance.
This search yielded more than 12,000 results, which the second author would hand
search in order until she had identified 500 graphs. After identifying 150 graphs, we
conducted a second search to improve efficiency as the second author had not identified
relevant graphs in more than 60 consecutive theses and dissertations. This second
search used the keywords ABAB combined with “single case.” This strategy generated
approximately 1100 results. The second author continued to hand search the articles in
order of relevance until we met our target. In total, we identified 501 graphs from 81
theses and dissertations.

To be included in our analysis, a graph had to include an ABAB design where A
represented a baseline condition and B a treatment condition, be based on empirical
data, and have a minimum of three data points per phase. A graph could contain more
than two replications (e.g., ABABAB), but we only kept the initial ABAB phases for
our analyses. We rejected graphs that were missing multiple data points, used multiple
probes, or if the quality of the graph did not allow the data to be extracted. If a graph
contained two or more behaviors being measured simultaneously, we counted each data
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path as a separate graph. However, we only kept the most representative path when two
concurrent behaviors were highly correlated (i.e., had matching trends) to avoid biases
introduced by having nearly identical datasets.

Data Extraction and Preparation

For each ABAB graph, we extracted the data from the four phases using
WebPlotDigitizer, a free web-based app designed to provide the value of data points
on graphs (version 3.9; Rohatgi, 2017). Previous research has shown that, when applied
to single-subject research, this app renders data of adequate accuracy (Moeyaert,
Maggin, & Verkuilen, 2016). We entered the resulting data values into a spreadsheet
and specified the purpose of the treatment (i.e., increase or decrease behavior), which
we subsequently used to conduct the analyses described in the following sections.

Study 1: Probability of Replication

Procedures

To examine the probability of replication, we applied the dual-criteria method of
analysis (Fisher et al., 2003) to the three phase changes in each dataset (i.e., A1 to
B1, B1 to A2, and A2 to B2). We selected the dual-criteria method because (a) visual
structured criteria are more reliable and objective than visual analysis alone, which
minimizes biases introduced by the analyst (see Ninci, Vannest, Willson, and Zhang
(2015)), and (b) it is the only visual analysis rubric for AB designs for which both
power and type I error rates are documented. To conduct the analyses, we programmed
a Python™ script to produce three graphs for each dataset: one graph showing the first
AB component, one graph showing the middle BA component, and one graph showing
the final AB component. Each graph also contained a code indicating the expected
direction of the behavior change (i.e., increase or decrease) as the method of analysis is
unidirectional. In all cases, the first and final AB components had the same expected
direction whereas the direction was reversed for the middle BA component. Each graph
included a continuation of the mean and trend lines from the first phase to the second
phase, which allowed the application of the dual-criteria method. We counted the
number of points falling above (when the purpose was to increase behavior) or below
(when the target was to decrease behavior) both lines and compared it to the binomial
distribution as described by Fisher et al. (2003).

Analyses

We considered that a phase change showed a clear change when a sufficient number of
points fell above or below both lines (see Table 1 from Fisher et al. (2003) for specific
number of points); if not, we rated it as showing no clear change. This analysis allowed
us to determine whether the introduction of the treatment (for phase changes from A to
B) or the withdrawal of treatment (for the phase change from B to A) produced changes
from the expected direction of the trend observed in the previous phase (Kazdin, 2011).
For each dataset, we then compared the results of the first AB component to the
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subsequent BA and AB components. Specifically, we calculated the percentage of
datasets for which all three components agreed (i.e., all showed clear change or all
showed no clear change) and also the percentage of datasets for which the effects
observed in the first AB component were replicated at least once.

Results and Discussion

Table 1 shows the empirically determined probabilities of replication for our datasets.
According to the dual-criteria method, the initial AB component of the ABAB graphs
displayed a clear change in 280 datasets and a no clear change in 221 datasets. Results
of the initial component agreed with at least one of the two subsequent components
about 85% of the time. Results of the initial component corresponded to those of both
subsequent components about 64% of the time. To put our results into perspective, an
analysis would require a power of 0.87 for an initial true effect to be detected and
replicated at least once 85% of the time and a power 0.86 for all three components
agreeing on a true effect for 64% of the time. These results are consistent with the
power of the dual-criteria method reported by Fisher et al. (2003) for large effect sizes.
Other investigators have also shown that single-subject research tends to yield large
effect sizes (Ferron & Levin, 2014; Marquis et al., 2000; Rogers & Graham, 2008).
Thus, we conducted a second study to more carefully consider the relationship between
effect size and replicability.

Study 2: Effect Size as a Predictor of Subsequent Replication

Study 1 revealed a high probability of initial AB effects replicating; however, initial
effects failed to replicate approximately 15% of the time. This suggests that a
practitioner who attended only to initial AB data and conducted no replication
would reached erroneous conclusions for approximately one of six cases. Put in the
simplest terms, our data from study 1 suggest that in some cases it will remain
profitable to conduct the replications that have been considered a hallmark of
single-case research. Exactly when replication is, and is not, merited remains to
be determined. In the present study, we explored whether the initial effect size
might predict whether it would be necessary to conduct a replication.

Table 1 Percentage of datasets for which the effects observed in the initial AB component were successfully
replicated at least once or twice

Number of datasets Successful replications

At least one Two

All datasets 501 85.4% 64.3%

First AB showed clear change 280 85.0% 63.6%

First AB showed no clear change 221 86.0% 65.2%
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Procedures

Many effect size measures are available for single-case designs and there is no
consensus on which one is the best (Kratochwill et al., 2010; Parker, Vannest, &
Davis, 2011). For the present study, we employed three effect size estimates that we
believe are representative of the options available. The standardized mean difference
(SMD), the percentage of points exceeding the median (PEM), and the Tau-U (all
described as follows) are calculated quite differently but have similarities to some of the
other measures that we did not employ (Vannest & Ninci, 2015). On this basis, we
assumed that our findings would not be idiosyncratic to any single effect size measure.

The SMD is a dimensionless measure of change in standard deviations, which is
analogous to Cohen’s d for group designs (Cohen, 1992). The SMD’s utility in single-
case research is not well documented (Kratochwill et al., 2010); however, it has been
used as part of Monte Carlo studies to examine the power and type I error rate of
statistical and visual analyses (e.g., Fisher et al., 2003; Levin, Ferron, & Kratochwill,
2012). Theoretically, SMD can take on any positive or negative value. Although there
are no clearly established guidelines for the interpretation of SMD for single-case
designs, researchers have suggested that most effective interventions produce effects
sizes with absolute values larger than three (Levin et al., 2012; Rogers & Graham,
2008). We calculated SMD for each dataset by subtracting the mean of phase A from
the mean of phase B and dividing the result by the standard deviation of phase A.

The PEM is a simple measure that does not involve any complex computations, but
rather involves counting the number of points for the treatment phase that fall above or
below the median for the preceding phase and then dividing the count by the total
number of points in the target phase (Ma, 2006). The value of PEM can vary between 0
and 100%, but random fluctuation alone should produce a value varying around 50%.
Ma (2006) indicates that highly effective treatments produce a mean PEM value of
94%, moderately effective treatments a mean value of 76%, and ineffective treatments a
mean value of 48%. We used the R statistical package to compute PEM automatically
for our analyses (R code available from the first author). The main drawback of PEM is
that it does not consider all points and is impervious to data trends.

Tau-U compares changes from one phase to another while controlling for baseline
trends (Vannest & Ninci, 2015). It produces a Tau-U value, which can subsequently be
converted to a z score and p value. Tau-U has amongst the best properties as it considers
all points in each phase, offers a correction for baseline trends, and allows for inferential
statistics. The value of Tau-U generally varies between − 1 and 1. Vannest and Ninci
(2015) propose that small changes have absolute values of 0.20 or less, moderate
changes have absolute values of 0.20 to 0.60, and large changes have absolute values
greater than 0.60. To compute Tau-U for each dataset, we used the R statistical package
with code developed by Pustejovsky (2016).

To facilitate comparison across datasets, we used the absolute values of the effect
sizes for our subsequent analyses (as the SMD and Tau-U could have negative values).
Because SMD and Tau-U can produce both negative and positive values, we occasion-
ally observed effect sizes in the opposite direction of the desired change, especially for
datasets with no clear change. In these cases, using the absolute values would have
biased our results, as the value could be high even though its direction suggested that
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the treatment was ineffective. To address this issue, we assigned the value of zero to the
effect size when it was in the opposite direction of the desired change.

Analyses

To examine the predictive properties of effect size, we calculated the probability of
failing to replicate the effects observed in the initial AB component (i.e., clear change
or no clear change) given values above or lower certain effect size thresholds. The
probability of failing to replicate the results is akin to the decision error rate produced
by not conducting a replication. To set the thresholds, we considered a broad range of
effect sizes that were generally representative of the values that we observed in our
current datasets.

Results and Discussion

Figure 1 shows the proportion of datasets with values above or below specific
thresholds of effect size for which there was a failure to replicate the initial observed
effects (i.e., the error rate). For all measures of effect size, larger values produced lower
error rates for datasets showing clear change whereas lower values produced lower
error rates for datasets showing no clear change. When comparing across measures, the
SMD was associated with the lowest error rates for data showing change whereas PEM
and Tau-U produced the lowest error rates for data showing no change. It should be
noted that some effects may have failed to replicate despite the treatment having a true
effect. If we set the power of our analyses at 0.86 (based on the results of study 1), the
probability of observing no replication due to a lack of power would be 0.02 (i.e.,
0.142). The results of study 2 support the rather provocative proposition that it may be
possible to set threshold values of effect size above which conducting a replication
could be considered unnecessary (or at least optional). Inherent in this proposition is the
assumption that as effect size in an initial AB component rises, decision errors that
might be revealed in a subsequent component become increasingly rare.

General Discussion

Overall, our findings suggest that practitioners may not always need to conduct a
replication in practical settings and that measures of effect size may provide a conve-
nient aid to decisions about when to conduct a return to baseline and replication of
intervention. We emphasize, however, that at present, there exists limited empirical
guidance for such decisions. There is no reason to expect that a single relationship
between effect size and replicability holds for all circumstances. In the present analyses,
we pooled data from, and treated as interchangeable, a wide variety of investigations
that subsumed many different target behaviors, types of disorder, and settings. Such
factors may well influence the probability of replication, and so additional research is
needed in which these factors are treated as covariates.

Practitioners should also bear in mind that the AB design does not allow the
demonstration of functional control. The main threat to internal validity when using
AB designs is history (Christ, 2007). That is, the introduction of the independent
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variable may coincide with other life events that produce behavior changes. Conse-
quently, variables unrelated to treatment may inadvertently cause behavior changes,
which may be erroneously explained as being the result of treatment. In our analyses,
we assumed that changes produced by confounding variables during the initial phase
change would not be replicated, but we did not consider confounds that may operate
within phases or across subsequent phase changes. As such, the issue of confounding
variables remains unresolved and should be carefully considered in future research.

From a practical standpoint, it is also important to discuss what would happen with
the individuals for which the absence of replication would lead to an error: The
practitioner may conclude that a treatment is effective when it is actually not, or the
practitioner may conclude that a treatment is ineffective when it is actually effective. In

Fig. 1 Error rates for datasets showing clear change (left panels) and no clear change (right panels) for values
lower or above specific thresholds for standardized mean difference (upper panels), percentage of points
exceeding the median (middle panels), and Tau-U (lower panels)
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the first case, continuing the implementation of an unnecessary treatment would waste
time, effort, and resources that might have been used to enhance well-being. In the
second case, the practitioner risks stopping a treatment that would have been effective
and subsequently implementing a more intrusive alternative. The costs and side effects
would be highly dependent on the nature of this alternative treatment. Future research
should conduct a cost-benefit analysis of such situations to address this issue more
thoroughly. In sum, our empirical results indicate that AB designs are not as prone to
error as one may assume using theoretical reasoning alone, but more research is
essential to confirm and examine the generalizability of these results prior to
recommending changes in practice.
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