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Strengths and limitations of this study

►► This is the first study looking at the association be-
tween Glasgow Admission Prediction Score (GAPS) 
and patient outcomes.

►► The original derivation of GAPS presents a potential 
limitation, as it was carried out at a single geograph-
ical centre.

►► Although this study was conducted at two geo-
graphically different regions, both EDs were tertiary 
units with similar resources.

►► Sampling was carried out during a single period at 
each centre, resulting in possible seasonal idiosyn-
crasies affecting the results.

►► Although it does aid in its implementation, the sim-
plicity of GAPS may limit its accuracy when com-
pared with computerised methods.

Abstract
Objectives  To assess whether the Glasgow Admission 
Prediction Score (GAPS) is correlated with hospital length 
of stay, 6-month hospital readmission and 6-month all-
cause mortality. This study represents a 6-month follow-up 
of patients who were included in an external validation of 
the GAPS’ ability to predict admission at the point of triage.
Setting  Sampling was conducted between February and 
May 2016 at two separate emergency departments (EDs) 
in Sheffield and Glasgow.
Participants  Data were collected prospectively at triage 
for consecutive adult patients who presented to the ED 
within sampling times. Any patients who avoided formal 
triage were excluded from the study. In total, 1420 patients 
were recruited.
Primary outcomes  GAPS was calculated following triage 
and did not influence patient management. Length of 
hospital stay, hospital readmission and mortality against 
GAPS were modelled using survival analysis at 6 months.
Results  Of the 1420 patients recruited, 39.6% of these 
patients were initially admitted to hospital. At 6 months, 
30.6% of patients had been readmitted and 5.6% of 
patients had died. For those admitted at first presentation, 
the chance of being discharged fell by 4.3% (95% CI 3.2% 
to 5.3%) per GAPS point increase. Cox regression indicated 
a 9.2% (95% CI 7.3% to 11.1%) increase in the chance of 
6-month hospital readmission per point increase in GAPS. 
An association between GAPS and 6-month mortality was 
demonstrated, with a hazard increase of 9.0% (95% CI 
6.9% to 11.2%) for every point increase in GAPS.
Conclusion  A higher GAPS is associated with increased 
hospital length of stay, 6-month hospital readmission 
and 6-month all-cause mortality. While GAPS’s primary 
application may be to predict admission and support 
clinical decision making, GAPS may provide valuable 
insight into inpatient resource allocation and bed planning.

Introduction
Crowding gives rise to a myriad of chal-
lenges for emergency departments (EDs) 
and the wider hospital, resulting in poorer 
clinical outcomes, lower patient satisfaction 
and an impaired working environment.1–4 
As demand on EDs and hospitals continues 
to increase and resources remain limited, 

data-driven models to ensure operational 
efficiency will gain increasing importance for 
improving patient flow.5–9

Length of hospital stay (LOS), risk of read-
mission and mortality are key descriptors of 
hospital performance. These three factors 
are all associated with increased costs for 
healthcare providers. Increasing LOS and 
hospital readmissions represents risks to 
patient safety from adverse drug reactions to 
hospital-acquired infections.10–14 Predicting 
these outcomes at triage could enhance clin-
ical decision making, as well as predicting 
operational demand, including the need for 
higher levels of care.9 14 15

A clinician assessing a patient in the ED 
who knows that the patient is probabilistically 
at a higher risk of mortality, reattendance or 
prolonged hospital stay may be less inclined 
to discharge the patient without a more thor-
ough work-up or senior advice and conversely 
may be less likely to admit a low-risk patient 
‘just in case’ if their clinical parameters 
put them at a low risk of adverse outcomes. 
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Table 1  The Glasgow Admission Prediction Score

Variable Points

Age 1 point per decade

NEWS* 1 point per point on NEWS

Triage category† 3 5

 �  2 10

 �  1 20

Referred by a GP 10

Arrived by ambulance 5

Admitted <1 year ago 5

*NEWS, National Early Warning Score33 (See online supplementary 
appendix file 1).
†Triage category–Manchester triage system triage category34 (See 
online supplementary appendix 2).
GP, general practitioner.

Moreover, focused and prompt follow-up of patients iden-
tified at a high risk of readmission or 6-month mortality 
could enable a targeted community response.16–20

Hospital managers, who need to be able to respond 
quickly to changes in demand for bed capacity, could have 
a much clearer idea of predicted bed demand if patients 
in the ED had an estimated probability of admission and 
predicted length of stay at an early stage in their visit.

A number of methods and tools such as the HOSPITAL 
score and LACE index have been shown to be associated 
with the aforementioned adverse outcomes.21 22 However, 
many are linked to specific patient cohorts and lack 
the capabilities to predict all of the patient outcomes 
discussed previously. Most importantly, the majority are 
not appropriate for use in the ED due to their lack of 
simplicity and requirement for historical information or 
information obtained past the point of the ED.10 11 20–27

The GAPS (table 1) is a prediction tool, utilising infor-
mation readily available to predict patient admission 
at the point of triage in the ED. GAPS was derived and 
validated from 322 000 unselected adult attendances in 
NHS Greater Glasgow and Clyde.28 Furthermore, GAPS 
has been found to be an accurate predictor of patient 
disposition and has been found to be superior to triage 
nurses’ ability to predict admission at the point of triage. 
In addition, GAPS is currently being used at a number of 
UK sites, including Glasgow, Sheffield, Nottingham and 
Torbay, to aid in patient streaming in the ED.28–30

Although GAPS has been employed as a method of 
predicting admission, it has not been shown to be asso-
ciated with adverse patient outcomes, a fact that weakens 
the case for its widespread adoption. This is the first study 
looking at the correlation between GAPS and adverse 
patient outcomes.

Methods
This was a prospective observational study aiming to 
determine whether GAPS is correlated with inpatient 

length of stay, 6-month hospital readmission and 6-month 
all-cause mortality. Sampling was carried out at two large 
EDs in two geographically discrete areas of the UK. This 
study represents a 6-month follow-up of patients who were 
included in an external validation of the GAPS’ ability to 
predict admission at the point of triage. The results of this 
validation are described in an earlier paper.30

Setting and participants
Data were collected on all adult attendances to ED 
triage at two large teaching hospitals in the UK. They 
were the Sheffield Teaching Hospitals NHS Foundation 
Trust ED and the Glasgow Royal Infirmary ED, having 
approximately 150 000 and 95 000 annual attendances, 
respectively.

All patients aged 16 years or below who presented to 
the ED were not included in the study. Any patients who 
avoided formal triage by being taken directly to the resus-
citation room or to minor injuries were excluded from 
the study. Finally, patients who left the ED before treat-
ment was complete were also excluded from the analysis.

Sample size
The power calculation was based on splitting the group 
into a high GAPS and low GAPS group based on the 
median GAPS. To have an 80% probability of demon-
strating a hazard ratio (HR) of at least 2 (ie, the high GAPS 
group having twice the hazard of death of the low GAPS 
group) with statistical significance (at p<0.05) required a 
minimum of 1307 patients, assuming an overall 6-month 
mortality of 5%.31 This also meant following patients out 
to 6 months. Although 30 days would be a more typical 
time period to assess unplanned reattendance rates, we 
were able to assess reattendance both at 30 days and at 
6 months given the follow-up period.

The sample size needed to demonstrate a similar 
correlation to both readmission and length of stay would 
be much smaller than that for mortality because of the 
much higher event rates. At the sample size to which we 
were committed by the mortality analysis, there was a 
near certainty of detecting a HR of 2 for readmission and 
index length of stay (beta >0.9999)

Data collection
Sampling was designed to extract data from all time 
periods equally, totalling 168 hours at each sampling site. 
Sampling periods were arranged in shifts with researchers 
collecting required data on all consecutive patients at 
the point of triage. Data were collected at each site for 
all consecutive patients who attended during 21 sched-
uled 8-hour sampling periods. These sampling periods 
were arranged, so every hour of each day was represented 
once at each site. At the Sheffield site, data were collected 
between the 8 and 17 February 2016 and at the Glasgow 
site, between the 5 and 26 May 2016.

GAPS was then calculated for each patient indepen-
dent of their clinical management. Any patients admitted 
to hospital from the ED were followed up to hospital 
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Table 2  Demographics of Sheffield and Glasgow patients

Variable Sheffield Glasgow Total

Total patients 637 787 1424

Sex

 � Male 294 407 701

 � Female 343 380 723

Age

 � 10–19 17 17 34

 � 20–29 119 148 267

 � 30–39 60 106 166

 � 40–49 85 117 202

 � 50–59 97 147 244

 � 60–69 62 84 146

 � 70–79 84 80 164

 � 80–89 76 79 155

 � 90+ 37 9 46

Triage category

 � 1 26 0 26

 � 2 198 185 383

 � 3 65 528 593

 � 4 348 72 420

 � 5 0 2 2

NEWS score

 � 0 224 223 447

 � 1 187 239 426

 � 2 84 116 200

 � 3 60 75 135

 � 4 30 53 83

 � 5 + 52 81 133

Arrival by 
ambulance

 � Yes 333 344 677

 � No 304 443 747

Final disposition

 � Admitted 233 334 567

 � Discharged 404 453 857

Readmitted

 � Yes 178 257 435

 � No 459 526 985

Mortality

 � Yes 38 42 80

 � No 599 741 1340

NEWS, National Early Warning Score.

discharge to determine inpatient length of stay. Patients 
were then followed up at 6 months to collect data on 
hospital readmission and all-cause mortality. These data 
were made available using electronic patient records. Any 

patients who died in the department or were transferred 
to another hospital were considered to be admitted to 
hospital for the purpose of the analysis.

Patient and public involvement
This study used routinely collected clinical data; there-
fore, no patient or public involvement was required.

Statistical analysis
All statistical analysis was carried out using R V.3.2.2. 32 
A univariate Cox proportional hazard regression was 
used to determine the difference in rates of endpoints 
according to GAPS. The three outcomes tested were as 
follows:
1.	 Inpatient length of stay, where discharge counted as the 

endpoint. Any inpatient deaths during the index pre-
sentation or inpatient lengths of stay greater than 6 
months were right-censored.

2.	 Hospital readmission. Here, the exposure to risk of read-
mission started at discharge from the index presenta-
tion (whether from the ED or, if admitted, from hospi-
tal). Any patient who was subsequently admitted via an 
unscheduled reattendance (and not including those 
who attended ED but were not admitted) was deemed 
to have reached the endpoint. Patients who reached 6 
months of follow-up from the index presentation with-
out being readmitted were right-censored. Deaths that 
did not occur in hospital were also right-censored. Pa-
tients who died during the index admission were not 
included as they were never exposed to the risk of re-
admission.

3.	 All-cause mortality, with all patients surviving beyond 
6 months being right-censored.

Kaplan-Meier curves were generated to illustrate the 
results of the Cox proportional hazards model, with three 
approximately equal quantiles (high, medium and low 
GAPS).

Results
A total of 1487 patients attended for triage during sampling 
periods, with 686 patients in Sheffield and 801 in Glasgow. 
Sixty-three patients left the ED before treatment was 
completed and were therefore excluded. Another four 
patients who were admitted were lost to follow-up and 
consequently removed from the sample. Table  2 displays 
the demographics of the patients included in the analysis.

This resulted in an overall sample of 1420 patients. Of 
these, 563 (39.6%) were initially admitted. At 6 months, 
435 (30.6%) had been readmitted and 80 (5.6%) had 
died. The median GAPS was 16 (95% CI 15 to 17). 
Figure 1 is a flow chart illustrating this.

The Cox proportional hazards analysis of inpatient length 
of stay demonstrated a HR for reaching the endpoint of 
hospital discharge of 0.955 (95% CI 0.945 to 0.965). This 
can be interpreted as a 4.3% (95% CI 3.2% to 5.3%) reduc-
tion in the probability of being discharged from hospital at 
any time for every one-point increase in GAPS. It is perhaps 
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Figure 1  Flow chart showing distribution of measured 
outcomes. Flow chart displaying the measure outcomes of 
admission, discharge, readmission and mortality.

Figure 2  Kaplan-Meier curve for inpatient length of stay. 
The data are split into three equal quantiles of low, medium 
and high GAPS shown by the three separate curves. An 
increase in GAPS is associated with a longer inpatient length 
of stay. The logrank test p value indicates that the difference 
in survival between the quantiles is statistically significant. 
GAPS, Glasgow Admission Prediction Score.

Figure 3  Kaplan-Meier curve for 6-month readmission. The 
data are split into three equal quantiles of low, medium and 
high GAPS shown by the three separate curves. An increase 
in GAPS is associated with a higher chance of 6-month 
hospital readmission. The logrank test p value indicates that 
the difference in survival between the quantiles is statistically 
significant. GAPS, Glasgow Admission Prediction Score.

more illustrative to say that for every 15-point increase in 
GAPS, the chance of being discharged at any one time 
decreased by half. Figure 2 displays the Kaplan-Meier curve 
for inpatient length of stay in each of the three GAPS quan-
tiles. The median length of stay for those admitted in the 
low GAPS quantile was 1.1 days (95% CI 0.9 to 1.6 days) 
compared with 2.0 days (1.6 to 2.3 days) in the middle quan-
tile and 4.6 days (3.6 to 5.0 days) in the highest quantile.

The Cox proportional hazards analysis of 6-month 
hospital readmission demonstrated a HR of 1.092 (95% 
CI 1.073 to 1.111). This means that for every one-point 
increase in GAPS there was a 9.2% (95% CI 7.3% to 
11.1%) increase in the risk of hospital readmission at 
any one time during the 6-month follow-up. This can be 
represented as saying that for every eight-point increase 
in GAPS the hazard of hospital readmission doubled. The 
difference was also statistically significant at 30 days of 
follow-up, with a HR of 1.048 (1.032 to 1.065). Figure 3 
displays the Kaplan-Meier curve for 6-month hospital 
readmission.

Finally, the Cox proportional hazards analysis of 
6-month mortality showed a HR of 1.090 (95% CI 1.069 to 
1.112), so that for every one-point increase in GAPS there 
was a 9.0% (95% CI 6.9% to 11.2%) increase in the risk of 
mortality at any one point during the 6-month follow-up. 
Equivalently, for every eight-point increase in GAPS the 
risk of mortality doubled. Figure 4 displays the Kaplan-
Meier curve for 6-month mortality.

Discussion
The results show that higher GAPS, as measured at the 
point of triage, is associated with increased inpatient 
length of stay, increased risk of 6-month hospital read-
mission and increased all-cause mortality, in addition to 
its established association with increased probability of 
immediate hospital admission.

These findings suggest that GAPS could be used to 
help inform clinicians and patients themselves of likely 
outcomes at an early stage in their hospital visit. GAPS 
could be utilised to improve flow in the ED, for example, 
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Figure 4  Kaplan-Meier curve for 6-month mortality. The 
data are split into three equal quantiles of low, medium 
and high GAPS shown by the three separate curves. An 
increase in GAPS is associated with a higher chance of 
6-month mortality. The logrank test p value indicates that the 
difference in survival between the quantiles is statistically 
significant. GAPS, Glasgow Admission Prediction Score.

by directing low-risk patients to an ambulatory emergency 
care facility or urgent clinic, by giving junior clinicians a 
clearer idea of prognosis to support discharge decisions 
or by directing senior clinicians to the patients to whose 
care they are most likely to add the most value.28–30

Beyond the ED, those patients likely to have a short 
length of stay could receive early senior input to aid in 
faster discharges. Higher GAPS could act as a flag for 
patients who may benefit from more thorough discharge 
planning, with prompt outpatient follow-up, to mitigate 
the risks of early readmission.

GAPS may also have a role in indicating hospital bed 
and other resource usage at an earlier stage. A hospital 
whose ED can estimate the probability that its patients 
will be admitted, and how long they are likely to require 
in hospital, has advance notice of its resource needs.

It could also be utilised on a larger scale, as a way to 
control for patient differences between departments 
when measuring hospital performance or to control for 
differences through time at a single site embarking on 
service development or performance benchmarking.

The simplicity of GAPS differentiates it from other 
already available scoring tools associated with patient 
outcomes. GAPS does not require the use of historical data 
or aggregation of electronic health records to identify a 
score, which may be a barrier to adoption. In addition, 
GAPS can be calculated for both medical and surgical 
patients. Significantly, it is not a disease-specific tool and 
could be applied in international health systems.20–27

Future research on this topic would involve trialling 
GAPS in other UK centres outside of Sheffield and 
Glasgow. Also, further external validation internationally 

would be required to demonstrate widespread applica-
bility. In addition, the practicality of utilising GAPS in real 
time in an ED and how these insights impact patient flow 
is yet to be formally evaluated.

This study has a number of limitations that must be 
highlighted. First, the original derivation of GAPS was 
carried out at a single geographical centre. Although 
the current study was conducted at two geographically 
different regions in the UK, both EDs were tertiary units 
with similar resources. Sampling was carried out during 
a single time period at each centre, running the risk of 
confounding by seasonal variations in attendances and 
presenting complaints. The simplicity of GAPS may limit 
its accuracy when compared with complex computer-
ised methods, although the simplicity does help widen 
its portability. The fact that NEWS and the Manchester 
triaging system are parameters included in GAPS may 
limit its application outside of the UK.

Lastly, although this study shows a strong relation-
ship between GAPS and the three outcome measures of 
interest, the predictive models developed have not been 
tested prospectively and may vary according to the popu-
lations to which they are applied.

Conclusion
This prospective multicentre observational study has 
shown that higher GAPS are associated with increased 
inpatient length of stay, increased risk of hospital read-
mission and increased mortality. These are in addition 
to previous findings showing GAPS to be an accurate 
predictor of patient disposition.
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