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SUMMARY

During autophagy, phagophores grow into doublemembrane vesicles called autophagosomes, but 

the underlying mechanism remains unclear. Here, we show a critical role of Atg2A in phagophore 

expansion. Atg2A translocates to the phagophore at the mitochondria-associated ER membrane 

(MAM) through a C-terminal 45-amino acid domain that we have termed the MAM localization 

domain (MLD). Proteomic analysis identifies the outer mitochondrial membrane protein TOM40 

as a MLD-interacting partner. The Atg2A-TOM40 interaction is responsible for MAM localization 

of Atg2A and requires the TOM receptor protein TOM70. In addition, Atg2A interacts with 

Atg9A by a region within its N terminus. Inhibition of either Atg2A-TOM40 or Atg2A-Atg9A 

interactions impairs phagophore expansion and accumulates Atg9A-vesicles in the vicinity of 

autophagic structures. Collectively, we propose a model that the TOM70-TOM40 complex recruits 

Atg2A to the MAM for vesicular and/or nonvesicular lipid transport into the expanding 

phagophore to grow the size of autophagosomes for efficient autophagic flux.

In Brief

Tang et al. show that human Atg2 is a key regulator for phagophore expansion. TOM40/70 directs 

Atg2A to MAM to mediate phagophore expansion. On the MAM, Atg2A facilitates Atg9-vesicle 

delivery and retrograde trafficking to promote phagophore expansion and efficient autophagic flux.
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INTRODUCTION

Macroautophagy (hereafter autophagy) is an evolutionarily conserved intracellular 

degradation process that plays a vital role in the maintenance of cellular and tissue 

homeostasis (Mizushima et al., 2008). Dysregulation of autophagy has been implicated in 

the pathogenesis of various human diseases, including cancer, neurodegenerative disease, 

and vascular disease (Choi et al., 2013). Moreover, at the cellular level, autophagosomal 

membranes have been reported to function as signaling platforms for cell death and survival, 

including apoptosis, necroptosis, and mitogen-activated protein (MAP)-kinase pathways 

(Goodall et al., 2016; Martinez-Lopez et al., 2013; Tang et al., 2017). Thus, understanding 

the molecular mechanism of autophagosome biogenesis is pivotal for the development of 

future autophagy-targeting therapeutics.

The process of autophagy begins with the formation of the phagophore, which undergoes 

membrane expansion and eventually seals to form a double-membrane vesicle, known as the 

autophagosome (Mizushima et al., 2011). The autophagosome is then fused with endosomes 

and lysosomes to deliver the sequestered materials for hydrolytic degradation and nutrient 

recycling. Although the molecular mechanism of autophagosome biogenesis remains far 

from clear, yeast genetic screens have identified over 30 autophagy-related (ATG) genes that 

are important for autophagy (Klionsky, 2004; Nakatogawa et al., 2009). Several upstream 

ATG proteins, including components of the class III phosphatidylinositol 3-kinase complex, 

translocate to the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) 
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for autophagosome formation (Hamasaki et al., 2013). Among these ATG proteins, the 

Atg8/LC3 family of proteins is one of the most studied molecules involved in 

autophagosome formation. During autophagy, cytosolic LC3-I is conjugated to the lipid 

phosphatidylethanolamine (PE) to generate LC3-II on the phagophore. The LC3-PE 

conjugation occurs during phagophore expansion and serves to recruit ubiquitinated cargo 

through direct interaction with cargo adaptors, such as p62/sequestosome-1. Upon 

phagophore closure, LC3-II on the outer autophagosomal membrane (OAM) is delipidated 

and recycled to the cytosol prior to lysosomal fusion, while LC3-II on the inner 

autophagosomal membrane (IAM) is degraded upon autophagosome-lysosome fusion 

(Kabeya et al., 2000; Mizushima et al., 2001; Tanida et al., 2005). Therefore, LC3-II serves 

as a widely used marker for autophagy (Klionsky et al., 2016).

Although the lipidation of LC3 is associated with phagophore expansion, the mechanism 

and membrane source for such process remains unknown. Atg9 is the sole transmembrane 

ATG protein that is required for autophagosome formation (Webber et al., 2007). Although 

Atg9 basally resides in the trans-Golgi network (TGN) and recycling endosomes known as 

the Atg9 reservoir, vesicles containing Atg9 bud off from the reservoir in response to 

autophagic stimuli and traffic to the autophagosome formation site (Orsi et al., 2012; 

Takahashi et al., 2011; Takahashi et al., 2016; Yamamoto et al., 2012). Here, Atg9 only 

transiently associates with autophagosomal membranes and is rapidly recycled back to the 

reservoir for reuse (Orsi et al., 2012; Webber et al., 2007). As Atg9 shuttling between the 

reservoir and phagophore is important for controlling the number and size of 

autophagosomes (Imai et al., 2016; Yamamoto et al., 2012), Atg9 (legend continued on next 

page) vesicles are proposed to deliver membrane and other components for phagophore 

expansion.

In yeast, Atg2 interacts with Atg9 to promote autophagy and regulate Atg9 retrieval from the 

pre-autophagosomal structure (PAS) (Feng et al., 2014; Gó mez-Sánchez et al., 2018). Atg2 

is one of the least understood ATG proteins required for autophagy (Gómez-Sánchez et al., 

2018; Suzuki et al., 2013; Velikkakath et al., 2012). Previous studies in yeast have shown 

that Atg2 can be recruited to PAS through the interaction with the phosphatidylinositol 3-

phosphate (PI3P)-binding protein Atg18 (Obara et al., 2008; Suzuki et al., 2007). In 

mammalian cells, two Atg2 orthologs (Atg2A/B) and four Atg18 orthologs (WIPI1–4) have 

been identified (Proikas-Cezanne et al., 2015; Velikkakath et al., 2012). Although Atg2A 

and Atg2B are functionally redundant to promote autophagic degradation (Velikkakath et al., 

2012), WIPI proteins appear to be functionally non-redundant (Proikas-Cezanne et al., 

2015). Among WIPIs, WIPI4 exhibits the strongest physical interaction with mammalian 

Atg2 and has been reported to be involved in omegasome maturation and autophagosome 

formation (Lu et al., 2011; Zheng et al., 2017). Although the physiological significance of 

mammalian Atg2-WIPI4 interaction remains unknown, the loss of Atg2 accumulates 

cytoplasmic punctate structures containing Atg9/ Atg9A, Atg1/ULK1, Atg14, and Atg16/

Atg16L1 in both yeast and human cells(Tang et al., 2017; Velikkakath et al., 2012), 

suggesting the importance of Atg2 proteins in autophagosome biogenesis.

Here, we demonstrate that the loss of mammalian Atg2A/B significantly impairs autophagy 

at the phagophore expansion step. During autophagy, Atg2A translocates to the 
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autophagosome formation site at the ER-mitochondria contact site by a C-terminal MAM 

localization domain (MLD). Although inhibition of Atg2A recruitment to the MAM impairs 

phagophore expansion and autophagic flux, the MAM targeting of Atg2A occurs 

independent of its binding to WIPI4 but requires the TOM70-TOM40 complex. 

Furthermore, we demonstrate that Atg2A directly interacts with Atg9A at the MAM to 

promote phagophore growth. These results implicate mammalian Atg2A as a critical 

regulator of Atg9A vesicle delivery and phagophore expansion during autophagosome 

biogenesis at the MAM.

RESULTS

Atg2 Is Required for Autophagosomal Membrane Expansion

Mammalian Atg2A/B proteins are functionally redundant and have been reported to be 

indispensable for basal and starvation-induced autophagic flux in THP-1 and HeLa cells 

(Tang et al., 2017; Velikkakath et al., 2012). Consistently, we found that the loss of Atg2A/B 

impaired lysosomal turnover of LC3-II and p62 in U-2 OS cells under both basal and starved 

conditions (Figures S1A and S1B). To clarify the role of Atg2A/B in autophagosome 

biogenesis, we next took the advantage of the HaloTagLC3 (HT-LC3) autophagosome 

completion assay. Briefly, this assay is able to distinguish expanding phagophores from 

nascent autophagosomes and mature autophagosomes or autolysosomes by sequentially 

labeling cytosol-accessible and autophagosome-sequestered HT-LC3 by using fluorescently 

tagged membrane-impermeable (MIL) and membrane-permeable (MPL) HaloTag ligands, 

respectively (Takahashi et al., 2018). As expected, phagophores (MIL+MPL−), 

autophagosomes (MIL+MPL+), and mature autophagic structures (MILMPL+) appeared in 

the cytoplasmic region of starved wild-type (WT) cells (Figures 1A a–c). Interestingly, all 

three autophagic structures (MIL+MPL−, MIL+MPL+, and MIL−MPL+ HT-LC3 foci) were 

also detected in Atg2A/B double knockout (CrAtg2A/B) cells (Figure 1A, d–j). Moreover, 

the addition of the lysosomal V-ATPase inhibitor Bafilomycin A1 (Baf-A1) slightly but 

significantly increased MPL signals in CrAtg2A/B cells (Figure 1C), indicating that 

autophagosomes still can form and mature into autolysosomes in the absence of Atg2A/B. 

Strikingly, however, we found that the MIL/MPL ratio in the presence of Baf-A1 in 

CrAtg2A/B cells was significantly higher than that in WT cells to indicate the accumulation 

of phagophores and/or autophagosomes (Figure 1D). Moreover, MIL signals were 

significantly increased in CrAtg2A/B cells even under non-starved conditions (Figures 1B), 

suggesting that Atg2A/B loss delays autophagosome completion under both basal and 

induced conditions.

Notably, the sizes of HT-LC3 puncta in CrAtg2A/B U-2 OS cells were significantly smaller 

than those in WT cells (Figure 1E). To verify this phenotype, we performed transmission 

electron microscopy (TEM). Consistently, although autophagosomeand autolysosome-like 

structures were observed in both WT and CrAtg2A/B cells (Figure 1F), these autophagic 

structures were significantly smaller in Atg2A/B-deficient cells (Figure 1G). Taken together, 

these results indicate that mammalian Atg2A/B functions at the membrane expansion step 

during autophagosome biogenesis.
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It has recently been reported that Atg2A/B deficiency in HeLa cells fails to form typical 

phagophores and autophagosomes and results in the accumulation of LC3 signals on small, 

single-membrane vesicle-like structures (Tamura et al., 2017). We, thus, next performed 

correlative light and electron microscopy (CLEM) and confirmed that HT-LC3-positive foci 

in CrAtg2A/B U-2 OS cells indeed represented autophagosome- and autolysosome-like 

structures (Figure 1H). To determine if the discrepancy is due to the difference in cell types, 

we generated Atg2A/B-deficient HeLa and HEK293T cells (Figures S1C and S1G) and 

analyzed autophagic structures by the HT-LC3 assay and electron microscopy. Consistent 

with the phenotype observed in U-2 OS cells, small autophagic structures were detected in 

Atg2A/B-deficient HEK293T and HeLa cells (Figures S2C–S2I), further supporting the role 

of mammalian Atg2A/B in phagophore expansion rather than formation.

Atg2A Localizes to ER-Mitochondria Contact Sites

To understand the mechanism behind the regulation of phagophore expansion by Atg2, we 

first determined the precise intracellular location of Atg2 by immunoelectron microscopy by 

using CrAtg2A/B cells stably expressing single guide RNA (sgRNA)-resistant EGFP-

Atg2A. Interestingly, upon nutrient starvation, EGFP-Atg2A signals were detected at ER-

mitochondria contact sites, also known as the MAM (Figure 2A). The localization of Atg2A 

was further determined by confocal microscopy. Consistent with a previous report 

(Velikkakath et al., 2012), EGFP-Atg2A signals were detected throughout the cytoplasmic 

region as well as in small foci structures under fed conditions (Figure 2B). The fluorescence 

intensity as well as the number of EGFPAtg2A puncta was significantly increased by 

starvation (Figures 2B–2D), suggesting the translocation of Atg2A during autophagy. 

Notably, although nearly all Atg2A puncta were found to be associated with the ER 

regardless of the nutrient status, a portion of the ER-associated Atg2A signals was also 

positive for a mitochondrial marker under fed conditiosn (Figures 2B and 2E). However, the 

percentage of Atg2A puncta associated with both ER and mitochondrial markers was 

significantly increased by starvation (Figures 2B and 2E), indicating the accumulation of 

Atg2A at MAM during autophagy.

Most recently, the membrane-tethering function of Atg2 has been demonstrated in vitro 
using liposomes (Neubert et al., 2019; Osawa et al., 2019; Valverde et al., 2019). Because 

Atg2A translocates to the MAM during starvation, we next examined if Atg2A/B is 

important for the formation of ER-mitochondrial contact sites. Electron microscopy showed 

that the number of MAM in CrAtg2A/B cells was comparable to that in WT cells (Figures 

S2A and S2B), indicating that the reduction of autophagosomal membrane size by Atg2A/B 

depletion is not due to the impairment of MAM formation.

Atg2A-WIPI4 Interaction Is Dispensable for Atg2A Function in Phagophore Expansion

It has been reported that knock down of Atg2A/B accumulates GFP-WIPI1-positive LC3 

foci (Velikkakath et al., 2012). Consistently, we observed an accumulation of the PI3P 

marker mRFP-FYVE on GFP-ULK1-positive early autophagic structures in CrAtg2A/B 

cells in a manner that is dependent on the activation of the PI3-kinase (Figures S2C–S2E). 

Because the PI3Peffector Atg18 is required for the PAS recruitment of Atg2 in yeast (Obara 

et al., 2008), we next examined if WIPI4, a mammalian Atg18 ortholog, is crucial for Atg2A 
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MAM localization and the function of Atg2A in phagophore expansion. Instead of WIPI4 

knockout, which will disrupt multiple cellular functions of WIPI4, we used an Atg2A(YFS-

AAA) mutant that abolishes Atg2A-WIPI4 interaction (Figures S3A and S3B), as previously 

reported (Zheng et al., 2017). To our surprise, the mutations in the YFS motif did not block 

the starvation-induced colocalization of EGFP-Atg2A with dsRed-ER and TOM20 (Figure 

S3C). Moreover, similar to EGFP-Atg2A(WT), EGFP-Atg2A(YFS-AAA) rescued the 

defects in phagophore expansion and autophagic degradation (Figures S3D–S3G) in 

CrAtg2A/B cells. Collectively, these results indicate that the Atg2A-WIPI4 interaction is 

dispensable for Atg2A translocation to the MAM and the phagophore expansion function of 

Atg2A.

TOM40 Is an Interacting Partner of Atg2A That Binds to the MLD

To determine the minimal region of Atg2A that is required for MAM localization, we next 

generated a series of Atg2 deletion mutants (Figure S4A). We found that a 45-amino acid 

sequence near the C-terminal end of Atg2A (amino acid 1776–1820) and located within the 

previously characterized autophagosome and lipid droplet localization region (Velikkakath 

et al., 2012) is sufficient for Atg2A localization to ER-mitochondria contacting sites and, 

thus, named this region the MLD. Notably, expression of EGFP-Atg2A(1776–1820) (EGFP-

MLD) in CrAtg2A/B cells results in MAM localization regardless of nutrient status (Figures 

S4B and S4C).

To understand the mechanism underlying the MAM localization of Atg2A, we next took a 

proteomic approach to identify proteins that associate with the MLD. As Atg2A was 

previously suggested to only transiently associate with LC3-positive foci (Velikkakath et al., 

2012), we took the advantage of photo-amino acid UV-crosslinking coupled with affinity 

purification and proteomics. To minimize the contamination of non-labeled bait proteins and 

the induction of apoptosis that is observed upon prolonged overexpression of EGFP-MLD 

(Figures S4D and S4E), we generated doxycycline-inducible EGFP-empty or EGFP-MLD-

expressing CrAtg2A/B cells. The resultant cells were incubated with doxycycline together 

with photo-leucine and photo-methionine followed by UV-crosslinking, GFPTrap, and mass 

spectrometry. We recovered a total of 750 preys, and by employing EGFP-empty as a 

normalization control and a 5-fold increase threshold, 75 potential MLD interacting partners 

were identified and categorized according to their subcellular localization (Table S1). 

Consistent with the MAM localization of the MLD, over 55% of the potential interacting 

partners are either mitochondria- or ER-related proteins (Table S1), and these were selected 

for further analyses.

After validation by co-immunoprecipitation in the absence of photo-amino acid labeling and 

UV photo-crosslinking, we identified TOM40, the central component of the translocase of 

the outer mitochondrial membrane (TOM) complex (Dekker et al., 1998), as a MLD-binding 

protein (Figures 3A and 3B). The interaction of TOM40 with full-length Atg2A was 

confirmed by co-immunoprecipitation using anti-TOM40 antibodies or ectopic expression of 

EGFP-Atg2A followed by GFP-Trap (Figures S5A and 3C). To confirm that MLD mediates 

the interaction between full-length Atg2A and TOM40, we generated an EGFP-Atg2A 

mutant lacking the MLD (Figure 3A) and examined its interaction with TOM40. As 
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expected, TOM40 interaction was abolished in the absence of MLD (Figure 3D), indicating 

that Atg2A interacts with TOM40 through the MLD. Importantly, the interaction of Atg2A 

with TOM40 was enhanced by starvation (Figures S4A and S4B), suggesting a role of 

TOM40 in the MAM translocation of Atg2A during autophagy. In contrast, the depletion of 

upstream ATGs including Atg13 and Atg9A had little effect on the interaction of Atg2A 

with TOM40 (Figures S5C and S5D). Collectively, these results identify TOM40 as an 

interacting partner of Atg2A that binds by its N-terminal MLD.

MLD Harbors Two Putative α Helices That Are Essential for TOM40 Interaction

To determine the residues of the MLD that are responsible for binding to TOM40, we first 

aligned the human Atg2A MLD protein sequence with its orthologs. We found that the MLD 

region and especially several positively charged and hydrophobic residues within this 

domain are highly conserved among all higher eukaryotes analyzed (Figure S6A). We next 

predicted the secondary and tertiary structure of the human MLD of Atg2A (Figures S6B 

and S6C) (Xu and Zhang, 2012, 2013). We found that the 45 amino acids of MLD comprise 

two α helices that are linked by a short coil (Figure S6C). Notably, three highly conserved 

arginine residues in the N-terminal helix of MLD are oriented on the same side (Figures 3E, 

3F, and S6C), suggesting that these residues may mediate membrane binding (Li et al., 2013; 

Schwieger and Blume, 2009). Indeed, we observed that the arginine substitution to alanine 

(Figure 3F) reduced the foci formation of the MLD (Figure S6D). We next determined if the 

arginine residues are also important for the interaction with TOM40. We found that the 

MLD and TOM40 interaction was greatly suppressed by the arginine to alanine mutations 

(Figure 3G), suggesting that the arginine residues on the N-terminal helix of MLD are 

important not only for membrane recognition but also for the interaction of Atg2A with 

TOM40.

Photo-leucine and photo-methionine are used for the photoamino acid UV-crosslinking 

assay because protein-protein interactions frequently require the adaptation of hydrophobic 

residues into hydrophobic pockets of its interacting partner, such as p21-PCNA and BH3-

mediated interactions of Bcl-2 family proteins (Gulbis et al., 1996; Shamas-Din et al., 2013). 

To determine if the conserved hydrophobic leucine residues on the C-terminal helix of MLD 

(Figure S6A) are required for interaction with TOM40, we generated a MLD mutant 

harboring leucine to alanine mutations (Figures 3E and 3F). Notably, both foci formation 

(Figure S6D) and TOM40 interaction (Figure 3G) were abolished by the leucine to alanine 

substitutions in the MLD. To confirm the importance of both helical regions of the MLD in 

the interaction of Atg2A with TOM40, we generated a full-length Atg2A mutant harboring 

both arginine and leucine to alanine substitutions in the MLD. Consistently, mutation of the 

conserved residues abolished the interaction of Atg2A with TOM40 (Figure 3H). Notably, 

Atg2A(L/R-A) maintains its interaction with WIPI4, whereas the WIPI4 interaction-

defective Atg2A(YFS-AAA) mutant interacts with TOM40, indicating that the WIPI4 and 

TOM40 interactions of Atg2A are achieved by two independent domains (Figure S6E). 

Taken together, these data indicate that the MLD of Atg2A harbors two putative α helices 

that are essential for TOM40 interaction.
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The MAM Localization of Atg2A Is Required for Phagophore Expansion and Autophagic 
Flux

To investigate whether TOM40 interaction of Atg2A is required for its MAM localization, 

we first analyzed the intracellular localization of the TOM40 interaction-defective 

Atg2A(MLD) and Atg2A(L/R-A) mutants. We found that neither EGFPAtg2A(ΔDMLD) 

nor EGFP-Atg2A(L/R-A) formed puncta or localized to MAM in response to nutrient 

starvation (Figures 4A and 4B), suggesting the importance of the Atg2A-TOM40 interaction 

in the membrane localization of Atg2A. We next investigated whether the MAM localization 

of Atg2A is crucial for the expansion of phagophores. In contrast to EGFP-Atg2A(WT), 

neither EGFP-Atg2A(L/R-A) nor EGFPAtg2A(ΔMLD) rescued the phagophore expansion 

defect in Atg2A/B-deficient cells (Figures 4C and 4D), indicating that MAM localization is 

a prerequisite for Atg2A to exert its biological function for proper membrane expansion. 

Furthermore, only EGFP-Atg2A(WT), but not EGFP-Atg2A(L/R-A) nor EGFP-

Atg2A(ΔMLD), restored the impaired autophagic flux in CrAtg2A/B cells (Figures 4E–4J). 

Taken together, these data indicate that Atg2A exerts pro-autophagic function at the ER-

mitochondria contacting sites by promoting phagophore expansion for efficient autophagic 

degradation.

TOM70 Mediates the Atg2A-TOM40 Interaction for Phagophore Expansion

Several additional TOM components, including TOM70, were detected in our proteomics 

analysis but failed to reach the five-fold enrichment threshold (Figure 5A). TOM70 and 

TOM20 are two of the major TOM receptors that transiently associate with the core TOM 

complex to deliver targeted proteins to TOM40 (Rapaport, 2002). Interestingly, a recent 

study has shown that TOM70, but not TOM20, clusters at MAM to recruit inositol 

trisphosphate receptor calcium transfer (Filadi et al., 2018). To determine if the TOM70-

dependent delivery process is required for the Atg2A-TOM40 complex formation, TOM70-

deficient U-2 OS cells were generated (Figure 5B) and subjected to co-immunoprecipitation 

analysis. Our data showed that the interaction of Atg2A with TOM40 was impaired by the 

loss of TOM70 (Figure 5C), suggesting a role of the TOM70 pathway in the recruitment of 

Atg2A to MAM during autophagy. To examine the importance of TOM70-dependent 

recruitment of Atg2A in phagophore expansion, we used the rapamycininduced FKBP 

(FK506-binding protein)/FRB (FKBP-rapamycin binding domain) dimerization system 

(Inobe and Nukina, 2016). To artificially induce the recruitment of Atg2A to MAM and the 

outer mitochondrial membrane (OMM) or the OMM alone, FRB-GFP-Atg2A(ΔMLD) was 

co-transduced to CrAtg2A/B cells with TOM70-mRFP-FKBP or TOM20-mRFP-FKBP, 

respectively. Rapamycin-induced dimerization of FRB-GFP-Atg2A (ΔMLD) and TOM70-

mRFP-FKBP, but not TOM20-mRFPFKBP, restored the size of LC3 puncta in CrAtg2A/B 

cells (Figures 5D and 5E), indicating that TOM70-dependent recruitment of Atg2A to MAM 

is sufficient to induce phagophore growth upon the induction of autophagy. Notably, 

however, dimerization of FRB-GFP-Atg2A(ΔMLD) and TOM70-mRFP-FKBP occasionally 

generated abnormally enlarged LC3-positive structures (Figures 5E), and autophagic flux 

remained impaired in these cells (Figure 5F). These observations suggest that the 

dissociation of Atg2A from MAM may be required for functional autolysosome formation.
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Atg2A Interacts with Atg9A and Promotes Atg9A Vesicle Delivery for Phagophore 
Expansion

In yeast, Atg2 has been shown to interact with Atg9 to promote autophagy (Gómez-Sánchez 

et al., 2018). Consistently, we observed the interaction between Atg2A and Atg9A in 

mammalian cells (Figures 6A and S7B). Because Atg9 vesicles have been suggested to be a 

membrane source for phagophore growth (Webber et al., 2007), we next examined whether 

mammalian Atg9A is required for proper phagophore expansion. Similar to the loss of 

Atg2A/B, autophagic flux is impaired and LC3B puncta diameter is significantly reduced in 

Atg9A-deficient cells (Figures 6B–6D), supporting the importance of Atg9 vesicles in 

phagophore expansion. We next determined if mammalian Atg2 proteins are involved in 

Atg9A trafficking during autophagy. Consistent with previous studies (Orsi et al., 2012; 

Takahashi et al., 2011), Atg9A signals in starved WT cells were dispersed throughout the 

cytoplasmic region with only a small portion of the signals colocalizing with LC3 (Figures 

6E and 6F). In contrast, the loss of Atg2A/B resulted in the accumulation of Atg9A signals 

on LC3-positive structures (Figure 6E). Using CLEM, we confirmed that the LC3 and 

Atg9A-positive structures in CrAtg2A/B cells represent autophagic structures (Figure 6G). 

Interestingly, the autophagic structures in CrAtg2A/B cells were surrounded by 30- to 50-nm 

Atg9A-GFP-positive vesicles (Figure 6G). Collectively, these results suggest that 

mammalian Atg2 proteins are dispensable for the anterograde trafficking of Atg9A but may 

mediate Atg9A vesicle delivery for phagophore expansion.

To better understand the function of mammalian Atg2 proteins at MAM, we next examined 

if the Atg2-Atg9 interaction is crucial for phagophore expansion and autophagic 

degradation. Using a series of deletion mutants (Figure S7A), we identified that amino acids 

237–431 in the N terminus of Atg2A are essential for the interaction of Atg2A with Atg9A 

(Figures 7A, 7B, and S7B). As both EGFP-Atg2A and EGFP-Atg2A(Δ237–431) harbor 

intact MLD, similar TOM40 interactions were detected (Figure S7B), suggesting that the 

Atg2A-Atg9A interaction is achieved independently from the MLD-mediated TOM40 

interaction. Consistently, the starvation-induced MAM localization of EGFP-Atg2A(Δ237–

431) remains unaffected (Figure S7C). Taken together, these data indicate that EGFP-

Atg2A(Δ237–431) localizes to MAM through interaction with TOM40 in response to 

autophagic stimuli; however, its interaction with Atg9A is abolished.

We next examined whether the Atg2A-Atg9A interaction at the MAM is required for the 

phagophore expansion functions of Atg2A. Although both Atg2A(WT) and Atg2A(Δ237–

431) localize to MAM upon nutrient starvation (Figure S7C), the defects in phagophore 

expansion (Figures 7C and 7D) and autophagic degradation (Figures 7E and 7F) in 

CrAtg2A/B cells were only rescued by the restoration of EGFP-Atg2A(WT) but not the 

EGFP-Atg2A(Δ237–431) mutant. Moreover, unlike full-length Atg2A, which restored the 

defective Atg9A trafficking in CrAtg2A/B cells, the accumulation of Atg9A puncta adjacent 

to LC3-positive foci remained upon the expression of EGFPAtg2A(Δ237–431) (Figure 

S7D), indicating the importance of the Atg2A-Atg9A interaction in Atg9A vesicle delivery 

and subsequent retrograde trafficking. Collectively, these data indicate that Atg2A recruited 

to the MAM by a C-terminal MLD domain interacts with Atg9A at its N terminus to 

regulate phagophore expansion.
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DISCUSSION

It has been proposed that the phagophore forms and grows at ER-mitochondria contact sites 

(Hamasaki et al., 2013), but the underlying molecular mechanisms have not been fully 

elucidated. In this study, we demonstrate the importance of the MAM localization of Atg2A 

in phagophore expansion. We found that the starvation-induced MAM localization of Atg2A 

is mediated through the interaction of OMM protein TOM70 and TOM40 and that Atg2A-

MAM localization is required for proper Atg9A trafficking and autophagosomal membrane 

expansion. These results provide a mechanistic insight into phagophore growth and further 

support the importance of MAM in autophagosome biogenesis.

The observation that Atg2A/B depletion accumulates small immature autophagosomal 

membranes is consistent with previous reports (Tang et al., 2017; Velikkakath et al., 2012). 

However, although these studies initially suggested a role of Atg2A/B in phagophore 

closure, our data show that small phagophores in CrAtg2A/B cells still can undergo 

membrane closure to form autophagosomes that mature into autolysosomes. Because the 

size of autophagic structures in CrAtg2A/B cells is much smaller than that in WT cells, we 

propose that the failure of membrane expansion limits efficient membrane closure to 

accumulate immature autophagosomal membranes. Importantly, the observations that 

Atg2A/B deficiency significantly reduces the lysosomal turnover of LC3-II and impairs p62 

degradation are consistent with the conclusion that Atg2 is required for efficient autophagic 

flux. Most recently, the involvement of endosomal sorting complex required for transport-III 

(ESCRT-III)-mediated membrane fission in phagophore closure has been demonstrated 

(Takahashi et al., 2018). Interestingly, although the sizes of phagophores were minimally 

affected by the depletion of ESCRT-III CHMP2A, Atg2A accumulated on p62- and Atg9-

positive immature autophagic structures in CHMP2A-depleted cells (Takahashi et al., 2018). 

As the mechanism leading to ESCRT-III recruitment to phagophores is unknown, it will be 

of interest to determine whether Atg2A-mediated membrane expansion is a prerequisite for 

efficient recruitment of the ESCRT machinery.

During autophagosome biogenesis, many ATG proteins, including ATG14, DFCP1, ATG16, 

Beclin1, and VPS34, translocate to the autophagosome formation sites at MAMs (Hamasaki 

et al., 2013). In this study, we find that Atg2 also accumulates at MAMs during starvation. 

Interestingly, the MAM localization of Atg2 occurs independent of its ability to bind WIPI4, 

as the WIPI4 interaction-defective Atg2(YFS-AAA) mutant localizes to the MAM and 

rescues the defects in phagophore expansion and autophagic degradation in CrAtg2A/B 

cells. These results are unexpected, as yeast Atg18 has been suggested to dictate the PAS 

localization of Atg2 through the binding of PI3P (Kobayashi et al., 2012; Obara et al., 2008). 

Instead, we find that Atg2A localizes to MAM through a 45-amino acid domain located 

within the previously characterized autophagosome and lipid droplet localization region at 

the C terminus (Velikkakath et al., 2012). Notably, this domain is highly conserved and 

contains several essential arginine and leucine residues. As it is the minimal domain required 

for MAM localization and localizes to the MAM regardless of nutrient status, we named this 

the MLD.
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Our proteomic analysis identifies the TOM component TOM40 as a MLD-interacting 

protein, and we have shown that TOM40 is responsible for the MAM localization of Atg2A 

through the TOM receptor TOM70. Despite restored phagophore expansion in CrAtg2A/B 

cells upon the artificial targeting of Atg2A(ΔMLD) to MAM by rapamycin-induced 

dimerization with TOM70, abnormally enlarged autophagic membranes can be observed and 

the defect in autophagic flux persists. As immature autophagic structures are reported to be 

detached from the ER in Atg2A/ B-depleted cells (Kishi-Itakura et al., 2014), the regulated 

assembly and disassembly of Atg2A-TOM40 interactions may be responsible for the 

establishment of phagophore-MAM contacting sites during phagophore expansion and the 

proper release of autophagosomes, but this remains to be studied. It also remains to be 

characterized how the MAM localization of Atg2 is controlled by nutrient status. Unlike 

full-length Atg2A, EGFPMLD strongly accumulates at MAM even under nutrient-rich 

culture conditions, suggesting that Atg2A may need to undergo conformational change or 

interact with an unknown co-factor in order to achieve MAM localization in response to 

autophagy induction.

During the revision of this manuscript, in vitro membrane tethering and lipid transfer 

activities have been demonstrated to reside within the N-terminal region of Atg2 (Neubert et 

al., 2019; Osawa et al., 2019; Valverde et al., 2019). As mitochondria have been shown to 

supply lipids including PE for the biogenesis of autophagosomes (Hailey et al., 2010), it is 

of future interest to investigate if Atg2A also mediates non-vesicular lipid transport at the 

MAM for phagophore expansion. Furthermore, the membrane source for the formation 

and/or expansion of the phagophore may also be supplied by vesicular trafficking (Longatti 

and Tooze, 2009). In this study, we observed that Atg2A/B deficiency accumulates Atg9A 

signals around LC3-positive autophagic structures. Although this observation is consistent 

with the notion that Atg2 regulates Atg9 retrieval from the PAS in yeast (Feng et al., 2014), 

we find that Atg9A vesicle-like structures are accumulated around autophagic structures at 

MAM in CrAtg2A/B cells to suggest that the membranes fail to be delivered to the 

expanding phagophore. Moreover, the Atg9-bindingdefective Atg2A(Δ237–431) mutant is 

capable of localizing to the MAM upon nutrient starvation but cannot restore phagophore 

expansion in CrAtg2A/B cells; thus, Atg2 at the MAM may function to tether or properly 

orient Atg9-containing vesicles for lipid delivery during phagophore expansion.

Collectively, we identify a minimal 45-amino acid MLD domain within the C terminus of 

Atg2A that is required for the TOM70/ TOM40-mediated translocation of Atg2A to the 

autophagosome formation site at the MAM for phagophore expansion. Although we show 

that an N-terminal domain of Atg2A supports Atg9mediated vesicular lipid transport for 

efficient autophagic flux, additional membrane tethering functions and/or lipid transfer 

activities of Atg2A at the MAM is an intriguing area for future study.

STAR⋆METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, HongGang Wang (hwang3@pennstatehealth.psu.edu). This 

study did not generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

U-2 OS (female), HeLa (female), and HEK293T (female) cells and indicated transfectants/

transductants were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) 

supplemented with 10% FBS (VWR, 97068–091) and 1 × Antibiotic-Antimycotic solution 

(Corning, 30–004-CI). Cells were incubated at 37°C and 5% CO2.

METHOD DETAILS

Transfection and transduction—HEK293T cells were transfected using Calcium 

Phosphate method. Briefly, for 10 cm culture dish HEK293T cells, plasmid DNA (up to 15 

μg) was diluted in 500 μL of 250 mM CaCl2 solution. 500 μL of 2 × HEPES-buffered saline 

(140 mM NaCl, 1.5mM Na2HPO4-2H2O, 50mM HEPES, pH 7.05) was added to DNA-

CaCl2 mixture dropwise while vortex and incubated for 10 minutes at room temperature 

before adding to cells. Plasmid DNA and siRNA transfection in U-2 OS and HEK293T cells 

were performed using Nucleofector Kit V (Lonza, VCA-1003), jetPRIME (Polypus, 114–

01) or FuGENE HD Transfection Reagent (Promega, E2311) per manufacturer’s 

instructions. Lentivirus production and transduction were performed as described previously 

(Young et al., 2012).

CRISPR/Cas9 genomic editing—CRISPR/Cas9-mediated knockout was performed as 

described previously (Tang et al., 2017). Briefly, sgRNAs targeting human TOM70, Atg2A, 

and Atg2B were sub-cloned into Lenti-sgRNA-EFS-GFP (TOM70), pLenti-CRISPR-V2 

(Atg2A), and pLX-sgRNA (Atg2B) vectors, respectively. CrAtg2A/B U-2 OS, HEK293T, 

and HeLa cells were generated by infecting cells with pLenti-CRISPR-V2-sghAtg2A 

lentivirus followed by 7 days of puromycin selection. Cells were then subjected to 

transduction with pLXsgAtg2B lentivirus and blasticidin selection for 10 days. CrTOM70 

HEK293T cells were generated by infecting cells with lentiCas9-Blast virus followed by 10 

days of blasticidin selection. Cells were then subjected to transduction with Lenti-

sgTOM70-EFS-GFP for 2 days and followed by GFP-positive FACS sorting. To generate 

Atg9A knockout cells, U-2 OS cells were transiently transfected with sgAtg9A-Cas9-P2A-

GFP plasmid (Santa Cruz sc-408011) and followed by GFP-positive FACS sorting. Single 

clones were isolated, expanded, and screened for complete knockout by immunoblotting.

Autophagic flux assay—Cells were treated as described in the text prior to 

immunoblotting. The intensity of p62 and loading control was quantified using LI-COR 

Biosciences Image Studio software, and p62 levels were normalized to loading control. 

Basal autophagic flux (1) and starvation-induced autophagic flux (2) were calculated using 

the following formulas (Tooze et al., 2015): (1) [(complete media with BafA1 – complete 

media)/(complete media with BafA1)] × 100; (2) [(starvation media with BafA1 – starvation 

media)/(starvation media with BafA1)] × 100. All data were normalized to WT.

FACS cell death analysis—Cells were treated as described in the text. Cells were 

harvested by trypsinization and washed once in PBS prior to 5% Annexin-V and 7-AAD 

staining for 15 mins on ice. Cells were then washed once in Annexin-V binding buffer prior 

to FACS analysis.
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HaloTag-LC3 autophagosome completion assay—The assay was performed as 

previously described (Takahashi et al., 2018). Briefly, cells were incubated at 37°C with 

AlexaFluor488-MIL in permeabilization buffer (3 nM XF-PMP in 1 × MAS buffer (220 mM 

mannitol, 70 mM sucrose, 10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA)) 

for 15 minutes. Equal volume of 2 × fixative (8% PFA and 400 mM sucrose in 1 × PBS) was 

added to cells and incubated at room temperature for 7 minutes. Cells were then washed 

with PBS and incubated with tetramethylrhodamine (TMR)-MPL in PBS at room 

temperature for 30 minutes. Finally, cells were washed with PSB before confocal 

microscopy.

Immunoblotting—Cells were collected on ice by scraping and washed with ice-cold PBS 

and then resuspended and incubated in RIPA buffer (25 mM Tris-HCl pH 8.0, 150mM NaCl, 

1mM EDTA, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail) 

for 30 minutes on ice. Cell lysate supernatant was collected after 15 minutes 20,000 × g 

centrifugation. Protein concentrations were determined using BCA assay. Equal amount 

protein from each sample was denatured using 2 × laemmli buffer (4% SDS, 20% glycerol, 

120 mM Tris- HCL pH 6.8, 0.02% bromophenol blue, 10% 2-mercaptoethanol). Samples 

were then heated (100°C, except 70°C for Atg9A) for 10 minutes before electrophoresis. 

Proteins were then transferred to PVDF membrane overnight followed by blocking and 

antibody incubation. Membranes were imaged using Li-Cor Odyssey CLx Infrared Imaging 

System.

Co-immunoprecipitation—Co-IP using transfected HEK293T cells was performed as 

described previously with minor optimization (Tang and Takahashi, 2018). For TOM40 co-

IP, cells were lysed in NP-40 lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM 

EDTA, 0.5% NP-40). For Atg9A-GFP co-IP, cells were lysed in TX-100 lysis buffer (50 

mM Tris-HCl pH 7.4, 75 mM NaCl, 0.8% TX-100). For Atg9A co-IP, cells were 

homogenized in PBS by going through 27.5-gauge needle 20 times. Triton X-100 was then 

added to cell homogenate (0.01% final concentration). For WIPI4 co-IP, lysis buffer recipe 

was obtained from previous publication (Zheng et al., 2017). Cells were lysed for 30 

minutes at 4°C while rotating. Cell lysates were then centrifuged for 15 minutes (20,000 × g, 

except 4000 × g for Atg9A) and supernatants were collected and subjected to BCA assay. 

500 μg protein lysate from each sample was incubated with 25 μL post-washing GFP-

Trap_MA beads for 3 hours at 4C while rotating. Beads were then washed 3 times with 

washing buffer (lysis buffer with 10% original detergent concentration) before 

immunoblotting analysis. For TOM40-Atg2A endogenous co-IP, magnetic protein-G beads 

(Bio-Rad, 1614021) were incubated with 10 μg TOM40 antibody (Santa Cruz) or normal 

mouse IgG in diluted (50% original detergent concentration) NP-40 lysis buffer for 2 hours 

at room temperature. Antibody-protein-G bead conjugates were washed 3 times in washing 

buffer prior to incubation with cell lysates (NP-40 lysis buffer) for 2 hours at room 

temperature. Beads were then washed 3 times with washing buffer (lysis buffer with 10% 

original detergent concentration) before immunoblotting analysis.

Fluorescence microscopy—Cells were seeded on 8-well chamber slides (Fisher 

Scientific, 12–565-1) overnight and subjected to indicated treatments. For TOM20 and 
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Atg9A immunostaining, cells were fixed in 4% paraformaldehyde-PBS for 20 minutes in 

dark at room temperature and then subjected to 0.15% Triton X-100-PBS for 20 minutes or 

100 μg/ml digitonin-PBS for 10 minutes at room temperature. Cells were rinsed with PBS 3 

times and then incubated with 10% normal goat serum-PBS for 1h at room temperature 

before overnight incubation of indicated primary antibodies in 1% normal goat serum-PBS 

at 4°C. Cells were washed 3 time with PBS and then incubated with indicated secondary 

antibodies for 1 hour in dark at room temperature. Cells were rinsed 3 time with PBS before 

confocal microscopy. For endogenous LC3B immunostaining, cells were fixed in 4% 

paraformaldehyde-PBS briefly at room temperature (approximately 15–30 s) and then 

incubated with ice-cold methanol for 10 mins at −20°C. Cells were rinsed with PBS 3 times 

before 1.5 hours incubation with anti-LC3B antibody in 1% BSA-0.1% TWEEN-20-PBS. 

Cells were then rinsed with 0.1% TWEEN-20-PBS 3 times and subjected to incubation with 

indicated secondary antibodies and confocal microscopy. For HaloTag-LC3 MPL staining, 

cells were incubated with MPL in PBS for 1 hour and then washed 3 times with PBS. Leica 

AOBS SP8 with 63 × water-immersion lens or 63 × oil-immersion lens was used to analyze 

samples. Fluorescent images were then deconvolved, processed, and quantified using 

Huygens (Scientific Volume Imaging), IMARIS (Oxford Instruments), and Volocity 

(PerkinElmer) software, respectively.

Transmission electron microscopy, immuno-gold electron microscopy, and 
correlative light electron microscopy—TEM, immuno-TEM, and CLEM were 

performed as described previously (Takahashi et al., 2018). Briefly, for TEM, cells were 

seeded on plastic coverslip (Thermo Scientific 174950) in 24-well plate overnight. Cells 

were then treated with indicated conditions followed by 1 hour fixation in dark at room 

temperature (2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 

7.3). Samples were then incubated with osmium fixation buffer (1% osmium tetroxide with 

or without 1.5% potassium ferrocyanide in 0.1 M sodium cacodylate, pH 7.3) for 1 hour 

followed by serial ethanol dehydration and resin embedding (Electron Microscopy Sciences, 

14120). 70 nm sample sections were mounted on mesh copper grids followed by uranyl 

acetate and lead citrate staining before analyzed using JEOL JEM 1400 transmission 

electron microscope. For immuno-TEM, cells were seeded on plastic coverslip in 24-well 

plate overnight and treated with indicated conditions followed by 2 hours fixation (4% 

paraformaldehyde in phosphate buffer (PB), pH 7.4) in dark at room temperature. Samples 

were incubated in permeabilization buffer (0.25% saponin in PB) for 30 minutes followed 

by 1 hour incubation with blocking buffer (10% BSA, 10% normal goat serum, 0.1% cold 

water fish gelatin, 0.1% saponin in PB). Samples were incubated with the primary antibody 

at 4°C overnight and incubated with the gold-conjugated secondary antibody at room 

temperature for 1 hour followed by 10 minutes fixation (1% glutaraldehyde in PB), 15 

minutes washing (50 mM glycine in PBS), and signal intensification using GoldEnhance 

EM for 5 minutes. Samples were then processed as described above. For CLEM, cells were 

seeded on Gridded Glass Bottom Dish (MatTek, P35G-1/5–14-C-GRID) overnight. Cells 

were then treated with indicated conditions and subjected to HaloTag-LC3 autophagosome 

completion assay or solely MPL(TMR) staining. Samples were analyzed by confocal 

microscopy and cells of interest were then processed for TEM, identified by grid number.
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Photo-amino acid, UV crosslinking, and proteomic analysis—HEK293T cells 

were transduced with pCDH1-tet-on-EGFP or pCDH1-tet-on-EGFP-MLD lentivirus. Cells 

were then selected with 2 μg/ml puromycin for 4 days. 9 × 106 cells were seeded on 10 cm 

dish overnight and medium was replaced with 10 mL photoleucine and photo-methionine 

containing medium in the presence of 2 μg/ml doxycycline hyclate for 24 hours. Cells were 

then placed 2 cm under a 20 W 365 nm UV bench lamp (Blak-Ray XX-20BLB) and 

irradiated for 20 minutes. Cells were harvested and lysed on ice using NP-40 co-IP lysis 

buffer. Protein concentrations were determined using BCA assay. 500 μg lysate from each 

sample was incubated with 25 μL of post-washed GFP-Trap_MA beads for 3 hours at 4°C 

while rotating. Beads were then washed for 10 times and proteins were eluted with 25 μL 2 

× laemmli buffer and 100°C heating for 10 minutes. Samples were then submitted for 

proteomic analysis at the Rutgers University Biological Mass Spectrometry Facility.

Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins
—U-2 OS cells were transduced with lentivirus encoding FRB-EGFP-Atg2A(ΔMLD) 

followed by TOM20-mRFP-FKBP or TOM70-smRFP-FKBP prior to EGFP and mRFP 

double positive FACS sorting. Cells were treated with DMSO or 150 nM rapamycin for 8 

hours prior to immunostaining and confocal microscopy.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fluorescence microscopy quantifications were performed using Velocity and IMARIS 

software. Immunoblotting quantifications were performed using Image Studio software.

Statistical significance was determined using Graph Pad Prism 7.0. Statistical computation, 

threshold for significance, and n numbers were indicated on each figure.

DATA AND CODE AVAILABILITY

Original proteomics data for Figure 5A and Table S1 in the paper is available at Mendeley 

Data https://doi.org/10.17632/tn4p7g48hm.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human Atg2 functions at the phagophore expansion step

• Atg2A translocates to MAM during autophagy

• TOM40/70 complex recruits Atg2A to MAM

• Atg2A regulates Atg9-vesicle delivery for phagophore expansion at MAM
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Figure 1. Atg2A/B Is Required for Autophagosomal Membrane Expansion
(A) HaloTag-LC3 (HT-LC3)-expressing wild-type (WT) and Atg2A/B double knockout 

(CrAtg2A/B) U-2 OS cells were incubated in complete media (CM) or starvation media 

(SM) in the presence or absence of 100 nM Baf-A1 for 2 h and subjected to the HT-LC3 

autophagosome completion assay followed by confocal microscopy. Magnified images of 

the boxed (i–iii) and arrow-indicated areas (a–j) are shown in the middle and right panels, 

respectively. Schematic illustration of phagophore (MIL+MPL−), nascent autophagosome 

(MIL+MPL+), and mature autophagosome (MIL−MPL+) are shown on the upper right panel. 

Scale bars represent 20 μm and 1 μm in the magnified images.
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(B and C) The cytoplasmic fluorescence intensities of MIL (B) and MPL (C) in each cell 

under indicated conditions were quantified and normalized to the respective mean 

fluorescence intensities of WT cells starved in the presence of Baf-A1 (n = 50).

(D) MIL/MPL ratio for each cell incubated in CM or SM in the presence of Baf-A1 was 

calculated and normalized to the mean of fluorescence intensities of WT cells (n = 50).

(E) The diameters of HT-LC3 foci randomly selected from the starved WT and CrAtg2A/B 

were quantified using the Velocity software (n = 100).

(F) WT and CrAtg2A/B U-2 OS cells were starved for 2 h and subjected for TEM. 

Representative autophagosome-like and autolysosome-like structures are shown on the 

upper and lower panels, respectively. Scale bars represent 200 nm.

(G) The diameter of each autophagic structure randomly selected from the electron 

micrographs was quantified (n = 20).

(H) HT-LC3-expressing CrAtg2A/B U-2 OS cells were starved for 2 h, stained for with MIL 

and MPL, and subjected to CLEM. Magnified images of the boxed areas are shown on the 

right panels.

Arrows and arrowheads indicate autophagosome-like and autolysosome-like structures, 

respectively. Scale bars represent 10 μm and 1 μm in the magnified image. Statistical 

significance was determined by one-way ANOVA followed by Dunn’s multiple comparisons 

test (B and C) or t test (D, E, and G). All values are mean ± SD; n.s., not significant; *p ≤ 

0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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Figure 2. Atg2A Localizes to MAM upon Autophagy Induction
(A) CrAtg2A/B U-2 OS cells were transduced with lentiviruses encoding sgRNA-resistant 

EGFP-Atg2A, starved for 2 h and subjected to immunoelectron microscopy using anti-GFP 

antibody. Scale bars represent 200 nm.

(B) EGFP-Atg2A- and dsRed-ER-expressing CrAtg2A/B U-2 OS cells were incubated in 

CM or SM for 2 h, stained for TOM20, and analyzed by confocal microscopy. Magnified 

images of the boxed areas are shown in the lower panels. Scale bars represent 10 μm and 2.5 

μm in the magnified images.

(C) The fluorescence intensity of EGFP-Atg2A in each cell under indicated conditions was 

quantified and normalized to the respective mean fluorescence intensity of cells incubated in 

CM (n = 40).

(D and E) Total EGFP-Atg2A puncta number per cell (D) and the percentage of EGFP-

Atg2A puncta localize to cytosol (ER−MITO−), ER (ER+MITO−), mitochondria (ER−MITO
−), or MAM (ER+MITO+) under CM or SM were quantified (n = 30) (E).
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Statistical significance was determined by t test (C and D) or one-way ANOVA followed by 

Dunn’s multiple comparisons test (E). All values are mean ± SD. *p ≤ 0.05; ****p ≤ 0.0001.
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Figure 3. The MLD of Atg2A Is Responsible for the Interaction with TOM40
(A) Schematic illustration of EGFP-Atg2A variants.

(B–D, G, and H) CrAtg2A/B HEK293T cells were transfected with the indicated EGFP-

Atg2A variants for 24 h and subjected to immunoprecipitation with GFPTrap beads followed 

by immunoblotting with the indicated antibodies. EV and WCL represent EGFP-empty 

vector and whole-cell lysate, respectively.

(E) Amino acid sequences of the MLD and its variants used in the study are shown. Red 

underlined characters indicate the point mutations introduced into the sequences.
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(F) Helical wheels of N-terminal (left) and C-terminal (right) α helices of MLD were plotted 

using HeliQuest. Red asterisks indicate amino acid residues substituted to alanine.
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Figure 4. MAM Localization of Atg2A Is Required for Its Biological Function in Autophagy
(A) CrAtg2A/B U-2 OS cells stably expressing the indicated EGFP-Atg2A variants and 

dsRed-ER were starved for 2 h, stained for TOM20, and analyzed by confocal microscopy. 

Magnified images in the boxed areas are shown in the lower panels. Scale bars represent 20 

μm and 5 μm in the magnified images.

(B) The fluorescence intensity in each cell expressing the indicated Atg2A variant was 

quantified and normalized to the respective mean fluorescence intensity of EGFP-

Atg2A(WT) cells (n = 38).
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(C and D) U-2 OS cells expressing the indicated EGFP-Atg2A variants were starved for 2 h, 

stained for LC3, and analyzed by confocal microscopy. In (C), LC3 is pseudo-colored green 

for visualization, and magnified images in the boxed areas are shown in the insets. Scale 

bars represent 20 μm and 5 μm in the insets. EV represents EGFP-empty vector. In (D), the 

diameters of LC3 foci were randomly selected and quantified using the Velocity software (n 

= 50).

(E–J) The indicated U-2 OS stable transductants were incubated in CM or SM for 2 h in the 

presence or absence of 100 nM Baf-A1 and subjected to immunoblotting with the indicated 

antibodies (E, G, and I). Basal and starvation-induced autophagic flux was quantified (F, H, 

and J; n = 3) as described in the STAR Methods. Statistical significance was determined by 

one-way ANOVA followed by Dunn’s multiple comparisons test. All values are mean ± SD; 

n.s., not significant; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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Figure 5. TOM70 Mediates the Atg2A-TOM40 Interaction and Atg2A-Dependent Phagophore 
Growth
(A) TOM components and their corresponding peptide numbers identified in the proteomic 

analysis using EGFP-MLD are listed.

(B) HEK293T cells were transduced with lentiviruses encoding Cas9 and sgRNAs targeting 

TOM70 (CrTOM70) and subjected to immunoblotting with the indicated antibodies.

(C) WT or CrTOM70 HEK293T cells were transfected with the EGFP (EV) or EGFP-

Atg2A (Atg2A) for 24 h and subjected to immunoprecipitation with GFP-Trap beads 

followed by immunoblotting with the indicated antibodies.

(D–F) The indicated CrAtg2A/B U-2 OS stable transductants were treated with DMSO or 

150 nM rapamycin in the presence or absence of 100 nM Bafilomycin A1 for 8 h and 

subjected to LC3 immunostaining and confocal microscopy (D) or immunoblotting with the 

indicated antibodies (F). In (E), the diameters of LC3 foci in (D) were randomly selected 

and quantified using the Velocity software (n = 60).

Statistical significance was determined by one-way ANOVA followed by Dunn’s multiple 

comparisons test. All values are mean ± SD; n.s., not significant; ****p ≤ 0.0001.
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Figure 6. Atg2A/B Deficiency Accumulates Atg9 Vesicles at the Autophagosome Formation Sites 
in the Close Proximity of the MAM
(A) GFP- or Atg9A-GFP-expressing CrAtg2A/B HEK293T cells were transfected with 

myc-Atg2A for 24 h and subjected to immunoprecipitation with GFP-Trap beads followed 

by immunoblotting with the indicated antibodies.

(B) WT and CrAtg9A U-2 OS cells were incubated in CM or SM in the presence or absence 

of 100 nM Baf-A1 and subjected to immunoblotting with the indicated antibodies.

(C) The indicated U-2 OS cells were starved for 2 h, stained for LC3, and analyzed by 

confocal microscopy. Magnified images in the boxed areas are shown in the insets. Scale 

bars represent 20 μm and 5 μm in the magnified images.

(D) The diameters of LC3 foci were randomly selected and quantified using the Velocity 

software (n = 100).

(E) HT-LC3-expressing WT and CrAtg2A/B U-2 OS cells were starved for 2 h, stained for 

Atg9A and MPL (TMR), and analyzed by confocal microscopy. Magnified images of the 

boxed areas are shown in the right panels (i and ii) and insets (iii). Scale bars represent 20 

μm, 2 μm in the magnified images, and 0.5 μm in the insets.
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(F) Colocalization coefficient of HT-LC3 with Atg9A per cell was quantified using the 

Velocity software and shown (n = 40).

(G) CrAtg2A/B U-2 OS cells stably expressing HT-LC3 and Atg9A-GFP were starved for 2 

h, stained for MPL (TMR), and subjected to CLEM. Scale bars represent 10 μm and 0.5 μm 

in the magnified images. Magnified images of the boxed areas are shown in the middle (i) 

and right panels (a and b). Red and blue arrowheads indicate Atg9A-GFP-positive vesicles 

and HT-LC3-positive autophagic structures, respectively.
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Figure 7. The Interaction of Atg2A with Atg9 Is Indispensable for Phagophore Expansion
(A) Schematic diagrams of EGFP-tagged WT and Atg9A binding-defective Atg2A variant.

(B) GFP- or Atg9A-GFP-expressing CrAtg2A/B HEK293T cells were transfected with myc-

Atg2A variants for 24 h and subjected to immunoprecipitation with GFP-Trap beads 

followed by immunoblotting with the indicated antibodies.

(C) U-2 OS cells expressing the indicated EGFP-Atg2A variants were starved for 2 h, 

stained for LC3, and analyzed by confocal microscopy. LC3 is pseudocolored green for 

visualization, and magnified images in the boxed areas are shown in the insets. Scale bars 

represent 20 μm and 5 μm in the magnified images. EV represents EGFP-empty vector.
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(D) The diameters of LC3 foci were randomly selected and quantified using the Velocity 

software (n = 120). EV, WT, and Δ represent EGFP-empty vector, EGFP-Atg2A(WT), and 

EGFP-Atg2A(Δ237–431), respectively.

(E and F) The indicated U-2 OS cells were incubated in CM or SM for 2 h in the presence or 

absence of 100 nM Baf-A1 and subjected to immunoblotting with the indicated antibodies 

(E). Basal and starvation-induced autophagic flux in the indicated U-2 OS stable 

transductants were quantified as described in the STAR Methods (n = 3) (F).

Statistical significance was determined by one-way ANOVA followed by Dunn’s multiple 

comparisons test. All values are mean ± SD; n.s., not significant; **p ≤ 0.01; ****p ≤ 

0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit polyclonal anti-Atg2A MBL International Cat# PD041; RRID: AB_2810871

rabbit polyclonal anti-Atg2B Proteintech Group Cat# 25155–1-AP; RRID: AB_2810874

rabbit monoclonal anti-Atg9A Cell Signaling Technology Cat# 13509; RRID: AB_2798241

mouse monoclonal anti-α-tubulin Sigma-Aldrich Cat# T5168; RRID: AB_477579

mouse monoclonal β-actin Sigma-Aldrich Cat# A5441; RRID: AB_476744

rabbit polyclonal anti-GFP Abcam Cat# ab6556; RRID: AB_305564

mouse monoclonal anti-GST Santa Cruz Biotechnology Cat# sc-138; RRID: AB_627677

rabbit monoclonal anti-HSP90 Cell Signaling Technology Cat# 4877; RRID: AB_2233307

rabbit monoclonal anti-LC3B Cell Signaling Technology Cat# 3868; RRID: AB_2137707

rabbit monoclonal anti-Atg13 Cell Signaling Technology Cat# 13273; RRID: AB_2798169

rabbit polyclonal anti-LC3 Novus Biologicals Cat# NB100–2220; RRID: AB_10003146

mouse monoclonal anti-mCherry Abcam Cat# ab125096; RRID: AB_11133266

mouse monoclonal anti-Myc-Tag Cell Signaling Technology Cat# 2276; RRID: AB_331783

normal mouse IgG Santa Cruz Biotechnology Cat# sc-2025; RRID: AB_737182

mouse monoclonal anti-TOM70 Santa Cruz Biotechnology Cat# sc-390545; RRID: AB_2714192

guinea pig polyclonal anti-p62 American Research Product Cat# 03-GP62-C; RRID: AB_1542690

mouse monoclonal anti-TOM20 Santa Cruz Biotechnology Cat# sc-17764; RRID: AB_628381

mouse monoclonal anti-TOM40 Santa Cruz Biotechnology Cat# sc-365467; RRID: AB_10847086

donkey anti-rabbit IgG IRDye 800CW LiCOr Cat# 925–32213; RRID: AB_2715510

donkey anti-rabbit IgG IRDye 680RD LiCOr Cat# 925–68073; RRID: AB_2716687

donkey anti-mouse IgG IRDye 800CW LiCOr Cat# 925–32212; RRID: AB_2716622

donkey anti-mouse IgG IRDye 680RD LiCOr Cat# 925–68072; RRID: AB_10953628

donkey anti-guinea pig IgG IRDye 680RD LiCOr Cat# 925–68077; RRID: AB_10956079

Nanogold-Fab goat anti-rabbit IgG Nanoprobes Cat# 2004; RRID: AB_2631182

goat anti-rabbit IgG Alexa Fluor 488 Life Technologies Cat# A-11008; RRID: AB_143165

goat anti-rabbit IgG Alexa Fluor 568 Life Technologies Cat# A-11031; RRID: AB_144696

goat anti-mouse IgG Alexa Fluor 647 Life Technologies Cat# A-21238; RRID: AB_2535807

GFP-Trap ChromoTek Cat# gtma-20; RRID: AB_2631406

myc-Trap ChromoTek Cat# ytma-20; RRID: AB_2631370

Protein G Magnetic Beads Bio-Rad Cat# 1614021; RRID: AB_2021282

Chemicals, Peptides, and Recombinant Proteins

Bafilomycin A1 LC Laboratories Cat# B-1080

7-AAD BioLegend Cat# 420404

APC Annexin V BioLegend Cat# 640941

Rapamycin LKT Laboratories Cat# R0161

3-Methyladenine Sigma-Aldrich Cat# M9281

XF Plasma Membrane Permeabilizer Seahorse Bioscience Cat# 102504–100
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REAGENT or RESOURCE SOURCE IDENTIFIER

HaloTag Alexa Fluor 488 Ligand Promega Cat# G1001

HaloTag TMR Ligand VWR Cat# PAG8251

16% Paraformaldehyde Aqueous Solution Electron Microscopy 
Sciences

Cat# 15710

GoldEnhance EM (original) Nanoprobes Cat# 2113

Doxycycline hyclate Sigma-Aldrich Cat# D9891

L-Photo-Methionine Thermo Fisher Scientific Cat# 22615

L-Photo-Leucine Thermo Fisher Scientific Cat# 22610

Protease Inhibitor Cocktail Sigma-Aldrich Cat# P8340–5ML

Critical Commercial Assays

BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23252

Deposited Data

Original proteomics dataset Mendeley https://data.mendeley.com/datasets/
tn4p7g48hm/draft?a=b57fc569–
4c2b-4012–9fee-f989309ebed2

Experimental Models: Cell Lines

U-2 OS ATCC HTB-96

HEK293T ATCC CRL-3216

HeLa ATCC CCL-2

Oligonucleotides

Atg13 ON-TARGETplus SMARTpool - Human Dharmacon Cat# L-020765–01-0005

TOM40 ON-TARGETplus SMARTpool - Human Dharmacon Cat# L-012732–00-0005

sgAtg2A 5′-CGCTGCCCTTGTACAGATCG-3′ Tang et al., 2017 N/A

sgAtg2B 5′-ATGGACTCCGAAAACGGCCA-3′ Tang et al., 2017 N/A

sgAtg9A Santa Cruz Biotechnology Cat# sc-408011

sgTOM70 5′-GGCGCGTATACAGCGGGCTA-35′-
TAGCCCGCTGTATACGCGCC-3

This paper N/A

Recombinant DNA

pCDH1-HTLC3 Takahashi et al., 2018 N/A

pCDH1-EGFP-Atg2A(WT) Tang et al., 2017 N/A

pEGFP-Atg2A(WT) This paper N/A

pEGFP-MLD This paper N/A

pCDH1-dsRed-ER This paper N/A

pCDH1-EGFP-Atg2A(ΔMLD) This paper N/A

pEGFP-Atg2A(ΔMLD) This paper N/A

pEGFP-MLD(R-A) This paper N/A

pEGFP-MLD(L-A) This paper N/A

pCDH1-EGFP-Atg2A(L/R-A) This paper N/A

pEGFP-Atg2A(L/R-A) This paper N/A

pCDH1-EGFP-Atg2A(YFS-AAA) This paper N/A

pEGFP-Atg2A(YFS-AAA) This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

pCDH1-FRB-EGFP-Atg2A(ΔMLD) This paper N/A

pCDH1-TOM20-mRFP-FKBP This paper N/A

pCDH1-TOM70-mRFP-FKBP This paper N/A

pCAG-GST-WIPI4 This paper N/A

pCDH1-Atg9A-GFP This paper N/A

pBW-myc-Atg2A(WT) This paper N/A

pCDH1-EGFP-Atg2A(Δ237–431) This paper N/A

pEGFP-Atg2A(Δ237–431) This paper N/A

pBW-myc-Atg2A(Δ237–431) This paper N/A

pCDH1-tet-on-EGFP-EF1-Puro-hUbC-rtTA This paper N/A

pCDH1-tet-on-EGFP-Atg2A(MLD)-EF1-PurohUbC-rtTA This paper N/A

pLenti-CRISPR-V2-sghAtg2A Tang et al., 2017 N/A

pLX-sghAtg2B Tang et al., 2017 N/A

LRG-sgTOM70 This paper N/A

Software and Algorithms

Prism 7 GraphPad https://www.graphpad.com

IMARIS Oxford Instruments https://imaris.oxinst.com

Velocity PerkinElmer https://www.perkinelmer.com/category/
imageanalysis-software

Huygens Professional Scientific Volume Imaging https://svi.nl/Huygens-Professional

Image Studio Lite Ver 5.2 Li-Cor https://www.licor.com/bio/image-studio-
lite/
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