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Abstract

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even 

though ILD provide rich information, they also bring other data analytic challenges. One of these 

is the increased occurrence of missingness with increased study length, possibly under non-

ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating 

several imputed data sets, and pooling the estimation results across imputed data sets to yield final 

estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R 
package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible 

functions for estimating and visualizing the results from fitting linear and nonlinear dynamic 

systems models in discrete as well as continuous time. By integrating the estimation functions in 

dynr and the MI procedures available from the R package, Multivariate Imputation by Chained 
Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness 

in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, 

with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector 

autoregressive model, the relationships among individuals’ ambulatory physiological measures, 

and self-report affect valence and arousal. The results from MI were compared to those from 
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listwise deletion of entries with missingness in the covariates. When we determined the number of 

iterations based on the convergence diagnostics available from dynr.mi(), differences in the 

statistical significance of the covariate parameters were observed between the listwise deletion and 

MI approaches. These results underscore the importance of considering diagnostic information in 

the implementation of MI procedures.
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I. Introduction

THE past decade has seen growing interest in collecting and analyzing intensive longitudinal 

data (ILD) to study everyday life human dynamics in the social and behavioral sciences [1], 

[2]. Under an intensive longitudinal design, researchers often record participants’ 

physiological data and self-report data over an extended period of time using web- or 

smartphone based applications, and/or unobtrusively using wearable devices, smartphones, 

and other mobile devices. Self-report data that serve to capture the participants’ states in the 
moment, and in naturalistic ecological settings are often referred to as ecological momentary 

assessment (EMA) data [3], [4]. These various forms of ILD bring both new opportunities 

and challenges. They afford opportunities for researchers to study participants’ behaviors in 

more naturalistic settings, as oppose to in a traditional laboratory setting. However, data 

collection issues, such as device failures and noncompliance of the participants, also make 

missing observations common in such data sets. Unfortunately, most software’s missing data 

handling functions, even when they are present, are not designed to capitalize on 

fundamental features of ILD. In this paper, we present dynr.mi(), a function in the R 
package, Dynamic Modeling in R (dynr) [5], that implements ILD-inspired multiple 

imputation (MI) procedures in parallel with the fitting of dynamic systems models.

A. Missing Data and Multiple Imputation

Missingness in ILD, similar to any other data format, can be described by three major 

missing data mechanisms, namely, missing completely at random (MCAR), missing at 

random (MAR), and not missing at random (NMAR). According to Rubin’s classification 

[6], MCAR refers to the cases in which the missingness mechanism — specifically, the 

probability of whether a variable is missing at any particular time point for a participant — 

does not depend on any variables. In contrast, if the data are MAR, the probability of having 

a missing record depends on some observed variables. When predictors of the missing 

observation are unobserved, then the data are said to be NMAR. In the context of ILD with 

both physiological and EMA data, an example of MCAR could be the random failure of the 

wearable devices we use to collect physiological data. Persistent missing records early in the 

mornings are likely a case of MAR because such missingness depends on the time of the 

day. Finally, in the study of emotions, participants may choose not to report their current 

emotions when they are feeling especially upset. This kind of missing data is NMAR 

because the missingness mechanism depends on information that is unobserved in the data, 

the participants’ current emotions.
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Previous research has shown that most contemporary missing data handling techniques, 

including listwise deletion, interpolation, pattern mixture models, may not work for ILD [7]. 

MI, however, has sufficient flexibility in dealing with missingness in ILD when 

implemented appropriately. Handling missing data using MI methods involves three steps 

[8]. First, missing observations in the data set are filled in with imputed values, namely, 

possible data values generated based on a pre-specified missing data model, resulting in 

multiple imputed data sets. These imputed data sets are then used in the model fitting 

procedures in the second step as if they were observed data sets without missing 

observations. As the final step, multiple sets of parameter estimation results from the model 

fitting procedure are pooled to obtain a set of final consolidated parameter point estimates 

and standard error estimates by the pooling rules proposed by Rubin [8].

One way to perform the imputation procedure for multivariate missing data is through fully 

conditional specification (FCS). With this method, possible values for missing observations 

in each variable are imputed iteratively as conditional on observed and imputed values in a 

particular data set by Markov Chain Monte Carlo (MCMC) techniques [9]. This method can 

be carried out with an R package: Multivariate Imputation by Chained Equations (MICE) 
[10], which performs imputation on a variable-by-variable basis using a series of chained 

equations [11], with imputation of the current variable performed as conditional on the 

subset of variables that have been imputed prior to the current imputation. To implement this 

method with ILD, an important adaptation is to include the preceding or following 

observation of the missing values in the imputation model to inform the imputation process. 

In a simulation study, two variations of the MI procedure were proposed and examined, 

namely full MI and partial MI [7]. The full MI approach requires imputation of all missing 

observations in the dependent variables as well as the covariates before any model fitting 

procedures. With the partial MI approach, however, only missingness in covariates is 

imputed, whereas Full Information Maximum Likelihood method (FIML [12]) is used to 

handle missingness in the dependent variables by using only the available observations to 

compute the log-likelihood function for parameter and standard error estimation purposes. 

Previous simulation results showed that with vector autoregressive (VAR) models, adopting 

the partial MI approach in handling missingness in longitudinal data produced best 

estimation results for parameters that appear in the dynamic model (see (2)) under 

conditions with low to moderate stability at the dynamic level, regardless of missing data 

mechanisms (i.e. MCAR, MAR, NMAR) [7].

B. Affect Arousal and Valence

Emotional experience in daily life can be captured as variations in individuals’ “core affect” 

[13], a neurophysiological state that is changing over the course of the day due to internal 

(e.g., hormonal fluctuations) and external influences (e.g., social interactions). Core affect 

can be conceptualized as an integral blend of momentary levels of valence (how pleasant vs. 

unpleasant one feels), and arousal (how active vs. lethargic one feels). Characteristics of the 

core affect have been found to be indicative of a person’s health and well-being [14], [15]. 

Core affect is consciously accessible, therefore we can ask people to provide self-reports on 

their core affect states to reflect variations in their emotional states [16]. However, core 

affect self-reports are prone to missingness, as for example participants might not be 
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motivated to report their current arousal levels when they are feeling lethargic. Ignoring this 

kind of potentially NMAR data would lead to biases in the estimation process.

C. Psychophysiological Markers of Affect

As a result of technological progress in wearable health monitors, we can collect high-

quality, multi-stream biomarker data in a relatively unobtrusive way. These markers can be 

used to infer psychological states and include measures of the sympathetic and 

parasympathetic nervous system activities, such as skin conductance and heart rate. 

Emotional or physical stressors tend to produce sympathetic arousal responses that are 

measurable via electrical changes on the skin surface. This electrodermal activity (EDA) has 

been linked to emotional arousal [17]. Parasympathetic activation helps the body achieve a 

relaxed state by slowing down the heart rate. At the same time, heart rate variability has been 

found to be indicative of stress [18]. Thus, EDA and heart rate are used in the present study 

to explain individuals’ self-report valence and arousal levels.

Physical activity levels might also influence affect — being physically active is generally 

associated with people feeling more pleasant and active. Some studies showed positive links 

between physical activity and both valence and arousal [19], with participants reporting 

increased positive affect and energy [20]. However, other studies [21] also reported the 

opposite patterns. In terms of directionality of the effect, [22] and [23] showed that feeling 

more positive predicted more subsequent physical activity.

II. Dynamic Modeling Framework in Dynr

The utility function described in the present study resides within an R package, dynr [5], that 

provides fast and accessible functions for estimating and visualizing the results from fitting 

linear and nonlinear dynamic models with regime-switching properties. The model fitting 

procedures in dynr can accommodate both longitudinal panel data (i.e., data with a large 

number of participants and relatively few time points), and ILD (i.e. single or multiple-

subject data with a large number of time points). The modeling framework includes cross-

sectional continuous data as a special case [24], but this special case does not fully utilize 

the key strengths of dynr. The dynr.mi() function described in this article is a utility function 

for performing MI concurrently with estimation of a subclass of models within dynr, 
namely, discrete-time state-space or different equation models. All computations within dynr 
are performed in C, but a series of user-accessible functions are provided in R. The MI 

approach is performed through repeated internal calls to another R package, MICE, as 

described in Section I, through incorporation of specially constructed lagged and related 

variables that, based on our experience [7], enhance the recovery of dynamics in ILD. The 

utility function serves to automate the procedures for handling missingness in the dependent 

variables and/or covariates through MI, thereby removing some of the barriers to dynamic 

modeling in the presence of missing data.

A. General Modeling Framework

At a basic level, the general modeling framework is composed of a dynamic model which 

describes how the latent variables change over time, and a measurement model which relates 
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the observed variables to latent variables at a specific time. Currently, dynr.mi() has been 

tested only with linear discrete-time models. As such, we present only the broader model 

that can be viewed as a special case of the more general dynr modeling framework.

For discrete-time processes, the dynamic model exists in state-space form [25] as

ηi ti, j + 1 = f ηi ti, j , ti, j, xi ti, j + 1 + wi ti, j + 1 , (1)

where i indexes the smallest independent unit of analysis, ti,j (j = 1, 2, Ti) indicates a series 

of discrete-valued time points indexed by sequential positive integers. The term f(.) is a 

vector of dynamic functions that describe ηi(ti,j+1), an r × 1 vector of latent variables at time 

(ti,j+1) for unit i on occasion j + 1 as they relate to ηi(ti,j) from the previous occasion, time 

(ti,j), and xi(ti,j+1), a vector of covariates at time (ti,j+1). Here, wi(ti,j) denotes a vector of 

Gaussian distributed process noises with covariance matrix, Q.

A linear special case of (1) can be obtained as:

ηi ti, j + 1 = α + Fηi ti, j + Bxi ti, j + 1 + wi ti, j + 1 , (2)

where α is an r×1 vector of intercepts, F is an r × r transition matrix that links ηi(ti,j+1) to 

ηi(ti,j); and B is a matrix of regression weights relating the covariates in xi(ti,j+1) to ηi(ti,j+1).

Due to the dependencies of ηi(ti,j+1) on ηi(ti,j) in (1) and (2), the initial conditions for the 

dynamic processes have to be “started up” at the first unit-specific observed time point, ti,1. 

Here, we specify these initial conditions for the vector of latent variables, denoted as ηi(ti,1), 

to be normally distributed with means μη1 and covariance matrix, Ση1 as

ηi ti, 1 N μη1
, Ση1

. (3)

Complementing the dynamic model in (1) is a discrete-time measurement model in which 

ηi(ti,j) at time point ti,j is indicated by a p × 1 vector of manifest observations, yi(ti,j). 
Missing data are accommodated automatically by specifying missing entries as NA, the R 
default for a missing value. The vector of manifest observations is linked to the latent 

variables as

yi ti, j = τ
Si ti, j

+ Λ
Si ti, j

ηi ti, j + A
Si ti, j

xi ti, j + ϵi ti, j ,

ϵi ti, j N(0, R),

(4)
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where τ is a p × 1 vector of intercepts, A
Si ti, j

 is a matrix of regression weights relating the 

covariates to the observed variables, Λ
Si ti, j

 is a p × r factor loading matrix relating the 

observed variables to the latent variables, and ϵi(ti,j) is a p × 1 vector of measurement errors 

assumed to be serially uncorrelated over time and normally distributed with zero means and 

covariance matrix, R.

B. Estimation Procedures

The estimation procedures underlying dynr for fitting the model shown in (1)–(4) are 

described in detail in [5] and [26]. Here, we provide a shortened description of the key 

procedures.

Broadly speaking, the estimation procedures implemented in dynr are extensions of the 

Kalman filter (KF)[27], and its various continuous-time, nonlinear, and regime-switching 

counterparts. In the case of the linear discrete-time model shown in (1)—(4), the extended 

KF is applied to obtain the estimates of latent variable values and other by-products for 

parameter optimization. Assuming that the measurement and process noise components are 

normally distributed and that the measurement equation is linear as in (4), the prediction 

errors, yi(ti,j)−E (yi(ti,j)|Yi(ti,j)), where Yi(ti,j) = {yi(ti,k), k = 1, … , j}, are multivariate 

normally distributed. Capitalizing on this normality assumption, a log-likelihood function 

known as the prediction error decomposition function [24], [28]–[30] can be computed 

based on the by-products of the KF. By optimizing the prediction error decomposition 

function, we obtain the maximum-likelihood estimates of all time-invariant parameters as 

well as information criterion (IC) measures [29], [31] (e.g., Akaike Information Criterion 

(AIC) [32] and Bayesian Information Criterion (BIC) [33]). By taking the square root of the 

diagonal elements of the inverse of the negative numerical Hessian matrix of the prediction 

error decomposition function at the point of convergence, we obtain the standard errors of 

the parameter estimates.

C. Steps for Preparing and “Cooking” a Model

The package name “dynr” is pronounced the same as “dinner”. Consonant with the name of 

the package, we name the core functions and methods in dynr based on various processes 

surrounding the preparation of dinner, such as gathering ingredients (data in our case), 

preparing recipes (submodels), cooking (namely, applying recipes to ingredients), and 

serving the finished product.

The general procedure for using the dynr package can be grouped under five steps. The MI 

procedure, as we will describe in this article, constitutes an optional sixth step. First, the data 

(ingredients) are declared with the dynr.data() function.

Second, the recipes — namely, submodels corresponding to various components of (1)–(4) 

— are prepared. This is declared as a series of prep.*() functions to yield an object of class 

dynrRecipe. These recipe functions are shown below.
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1. The prep.measurement() function defines elements of the measurement model as 

shown in (4), except for the structure of R.

2. The dynamic model is defined using one of two possible functions: 

prep.matrixDynamics() is used to defined elements of (2) in the linear special 

case by specifying α, F and B; prep.formulaDynamics() provides more 

flexibility in defining any nonlinear dynamic functions that adhere to the form of 

(1).

3. The prep.initial() function defines the initial conditions for the dynamic 

processes as shown in (3), specifically, the structures of μη1 and Ση1.

4. The prep.noise() function defines the covariance structures of the measurement 

noise covariance matrix (i.e., R in (4); denoted as “observed” within this 

function), and the dynamic (denoted as “latent”) noise covariance matrix (i.e., 

Q).

5. (Optional) The prep.regimes() function specifies the regime switching structure 

of the model in cases involving multiple unobserved regimes (or phases) 

characterized by different dynamics or measurement structures. The models 

considered in the present article are single-regime models and thus do not require 

the specification of this function.

Following the data and recipe declaration processes, the third step combines the data and 

recipes together via the dynr.model() function. Fourth, the model is cooked with dynr.cook() 

to estimate the free parameters and standard errors. Fifth and finally, results may be served 

using any of the summary and presentation functions within dynr, such as: summary() — for 

summarizing parameter and standard error estimates from dynr.cook(); printex() — for 

automating the generation of modeling equations and TEX code in LATEX format; 

plotFormula() — for plotting the key modeling equations in the plotting window; and 

various plotting functions including plot(), dynr.ggplot(), and autoplot() [5].

In the next section, we describe a newly added function within the dynr package, dynr.mi(). 

This function constitutes an optional sixth step in the model cooking procedure, namely, to 

perform MI to handle missingness in the covariates, xi(ti,j+1), and optionally, the manifest 

variables in yi(ti,j+1).

III. Dynr.mi()

The dynr.mi() function is designed to handle ignorable and possibly non-ignorable 

missingness in the dependent variables and/or covariates in a user-specified dynamic 

systems model of the form shown in (1)–(4). dynr.mi() accomplishes this by integrating the 

estimation functions in dynr package and the MI functions in the MICE package. The 

dynr.mi() function is described in Fig. 1, with a summary of the list of arguments in Table I.

In the following subsections, we explicate the major steps underlying a call to dynr.mi(). 

These steps begin with (A) the extraction of modeling and additional MI information from a 

dynrModel object, followed by: (B) creation of variables thought to be especially helpful in 

MI of ILD; (C) execution of MI; (D) inspection of convergence diagnostics; (E) cooking and 

Li et al. Page 7

World Acad Sci Eng Technol. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pooling of dynr.cook() results following evaluation of convergence diagnostics. We describe 

each of these steps in turn, and elaborate within each step pertinent arguments from the 

overall dynr.mi() function.

A. Extract Information from dynrModel Object

As described in Section II, data and recipes should be prepared and mixed together into a 

dynrModel object. Therefore the first step in dynr.mi() is to extract information needed in 

the MI and parameter estimation procedure from a dynrModel object, including data, names 

of the observed variables and covariates, as well as other modeling details.

In the call to dynr.mi() above, the argument which.aux allows users to specify auxiliary 

variables that can be included in the imputation model. Auxiliary variables are variables that 

do not appear in the dynamic systems models, but are related to the missing data 

mechanism. Thus, including these variables in the imputation model provides imputed 

values that conform approximately to the MAR condition, thereby improving the parameter 

estimates relevant to the variables of interest [7], [34]. The argument which.aux can be 

supplied either as a single string, or a vector of strings corresponding to a list of auxiliary 

variables to be included in the imputation model. The strings provided to which.aux have to 

be consistent with the column names in the data set. The default value is NULL, meaning no 

auxiliary variables are included in the imputation model.

B. Create Lagged and/or Leading Variables

Dynamic systems often show dependencies of the current value of the system at time ti,j on 

its own previous (lagged; e.g., at times ti,j−1, ti,j−2, and so on) and future (leading; e.g., at 

times ti,j+1, ti,j+2, and so on) values. As such, these lagged and/or leading values become 

relevant variables that are important to be included in the imputation model [7], [35]. This 

step prepares the lagged and/or leading variables to be included in the imputation model. 

Arguments that are pertinent to the set-up of this particular step include:

• which.lag: A single string or a vector of strings indicating a list of variables 

whose lagged values are to be included in the imputation model. The strings have 

to match the column names in the data set. The default value is NULL, meaning 

no lagged variables are included in the imputation model.

• lag: An integer specifying the maximum number of lags of variables when 

creating lagged variables. The default value is 0, meaning no lagged variables are 

included in the imputation model.

• which.lead: A single string or a vector of strings indicating a list of variables 

whose leading values are to be included in the imputation model. The strings 

have to match the column names in the data set. The default value is NULL, 

meaning no leading variables are included in the imputation model.

• lead: An integer specifying the maximum number of leads when creating leading 

variables. The default value is 0, meaning no leading variables are included in 

the imputation model.
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C. Implement Imputations via Automated Call to MICE

The imputations of missing data are implemented using the default imputation methods in 

the mice() function in MICE package. For instance, numerical variables are imputed using 

the predictive mean matching method, and binary variables are imputed using the logistic 

regression method [10]. In this step, users have to make further decisions on the 

specification of the imputation model. For instance, users need to specify number of 

imputations and number of MCMC iterations in each imputation. dynr.mi() also allows users 

to choose whether to use full MI or partial MI approach by specifying the value of imp.obs. 

After this step, m imputed data sets are generated for further use in the estimation process. 

Pertinent arguments concerning this step include:

• seed: An integer providing the random number seed to be used in the MI 

procedure. The default value is NA, meaning no explicit random number seed is 

specified.

• m: An integer indicating the total number of imputations in the MI procedure. 

The default value is 5.

• iter: An integer indicating the total number of MCMC iterations in each 

imputation in the MI procedure. The default value is 5.

• imp.exo: A logical value indicating whether missingness in the covariates is to be 

handled via MI. The default value is TRUE.

• imp.obs: A logical value indicating whether missingness in the dependent 

variables is to be handled via MI. The default value is FALSE, meaning that a 

partial MI approach is requested. If the value is TRUE, dynr.mi() will implement 

the full MI approach.

D. Conduct Convergence Diagnostic Check

The dynr.mi() function allows users to check the convergence of the MCMC process in the 

MI procedure by automating the output generated by the mice() function in MICE package, 

supplemented with R plots added by us. The R statistic assesses the convergence of 

computations across multiple MCMC chains by comparing the within-chain variance to the 

variance of the pooled draws across multiple chains [36]. Brooks and Gelman used R < 1.2
as a guideline for convergence [37]. The more stringent criterion can be R < 1.1, which is 

used as the default criterion in dynr.mi(). The R plots allow users to check the values of R
statistic given numbers of MCMC iterations, thus facilitating the decision making on the 

number of MCMC iterations to specify in the MI procedure. Pertinent arguments that arise 

in this step include:

• diag: A logical value indicating whether convergence diagnostics are to be output 

to help monitor the convergence of the MCMC process in the MI procedure. The 

default value is TRUE. If the value is FALSE, dynr.mi() will not print the 

convergence diagnostic results.

• Rhat: A numeric value of the R statistic. The default is to use 1.1 as the threshold 

for flagging potential convergence issues in the R plots.
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E. Cooking and Pooling of Estimation Results

The final step in dynr.mi() is to perform model estimation separately for each of the m 
imputed data sets, and pool m sets of parameter and standard error estimates into one set of 

estimates following Rubin’s procedure [8]. m sets of parameter and standard error estimates 

are obtained via automated internal calls to the dynr.cook() function using each of the m 
imputed data sets. Output from this step includes parameter and standard error estimates, 

values of the t statistics, confidence intervals, and p values. Pertinent arguments that arise in 

this step include:

• verbose: A logical value indicating whether intermediate output for the 

estimation process is to be printed. The default value is TRUE.

• conf.level: A cumulative proportion indicating the level of desired confidence 

intervals for the final parameter estimates. The default value is 0.95.

IV. Empirical Study

We use data collected in a 4-week long EMA study at The Pennsylvania State University to 

illustrate the analysis of data with missingness via dynr.mi(). All participant interactions 

were overseen by the University’s Institutional Review Board. The data consisted of 25 

participants’ physiological measures and self-report emotional states and psychological 

well-being. The age of the participants ranged from 19 to 65, and 67% of them were female.

Physiological measures were collected via participants wearing Empatica’s E4’s wristbands 

[38]. The E4 is a research-grade wearable health monitor which has four types of sensors: 

(1) A pair of tonic EDA sensors measuring skin conductance response at a 4 Hz sampling 

rate; (2) a photoplethysmographic sensor monitoring blood volume pulse (BVP) at 64 Hz 

sampling rate; (3) a 3-axis accelerometer recording motion at 32 Hz sampling rate; and (4) 

an infrared thermopile recording skin temperature at 4 Hz sampling rate. In terms of 

physiological measures used in the data analysis, EDA was obtained from EDA sensors; 

heart rate was calculated based on BVP; root mean squared acceleration was calculated from 

the 3 data streams of the accelerometer.

Participants were asked to report six times daily on their emotional states and psychological 

well-being, such as their levels of valence, arousal, relaxedness, and feelings of love. Each 

time they received a text message on their smartphones with a link to a web survey, 

prompting them to click on the link and complete the survey right away. The text messages 

arrived on a semi-random schedule: participants’ regular awake time was divided into six 

equal intervals and a random prompt was scheduled to each. In terms of self-report measures 

used in the data analysis, core affect was obtained from self-reports on how pleasant and 

active the participants felt at the moment; relaxadness was measured by asking how relaxed 

they felt at the moment; feelings of love was measured by asking how much they felt love at 

the moment. Answers were provided on a digital sliding scale ranging from 0 (not at all) to 

100 (extremely).
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A. Data Preparation

Missingness in self-reports might have occurred on occasions where it was inconvenient for 

participants to respond to the survey prompts (e.g., they felt really down) or when they 

simply missed the survey prompts. Missingness in the physiological measures might have 

occurred when participants recharged the E4 and uploaded data every other night or on 

occasions that they did not use the devices correctly. However, it is also possible that 

although the participants were not wearing the wristband (e.g., they took it off for shower), it 

was still recording data. We filtered out such data based on skin temperature and heart rate 

readings. For instance, if the skin temperature and heart rate did not fall into the liberal range 

one would expect from human participants (between 30 and 43 Celsius degrees for skin 

temperature and between 30 and 200 beats per minute for heart rate), all physiological data 

obtained from the wearable device at that time would be regarded as invalid and set to NA. 

This resulted in deleting around 6.3% of the records.

To pair physiological measures and self-report measures, for all measures, we aggregated 

them into four blocks (i.e., 12am-6am, 6am-12pm, 12pm-6pm, 6pm-12am) per day to 

represent the sleeping, morning, afternoon, and night periods. Therefore in our final data set, 

each participant had 28 × 4 records. The proportions of missingness for each participant 

ranged from 8% to 42% in terms of physiological data, and 9% to 32% in terms of self-

report data. For the overall missing rates, there were around 20% missingness in 

physiological data and 26% missingness in self-report data.

Finally, for each participant, both physiological measures and self-report measures were 

standardized to zero means and unit variances.

B. Data Analysis

In the analysis below we focus on the association between the two elements of core affect, 

valence and arousal, over time. Two physiological measures, acceleration and heart rate, 

were included in the model as covariates. We built a VAR model to examine the 

relationships among the participants’ physical activity (acceleration), heart rate, and self-

report core affect while handling the missingness via the full and partial MI approaches. The 

VAR model can be described as:

valit
arouit

=
a11 a12
a21 a22

vali, t − 1
aroui, t − 1

+
c1 d1
c2 d2

accit

hrit
+

u1it

u2it

u1it u2it
T N( 0 0 T,

σu1
2 σu1u2

σu1u2
σu2

2 )

(5)

where a11 and a22 are auto-regression parameters — i.e., the within-construct association 

between valence (arousal) at time t and time t − 1; a12 and a21 are cross-lagged regression 

parameters — i.e., the across-construct association between valence (arousal) at time t and 

arousal (valence) at time t – 1; c1 and c2 are the coefficients of acceleration — i.e., the 
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association between physical activity and core affect; d1 and d2 are the coefficients of heart 

rate — i.e., the association between heart rate and core affect. u1it and u2it are the 

measurement errors for valence and arousal at time t, which are assumed to be normally 

distributed and correlated.

Data analysis implemented in dynr is described below. The R codes can be found in the 

Appendix. First, the data set was structured to be a long format and passed to dynr.data(). In 

dynr.data(), we specified the names of the ID variable, TIME variable, observed variables, 

and covariates. Then we prepared all recipes needed in the model fitting procedure using 

prep.*() functions described in Section II. Finally, data and recipes were passed to 

dynr.model() to build a dynrModel object, which was then passed to dynr.mi(). The 

specification of arguments in dynr.mi() is shown in Fig. 2.

Specifically, EDA, feelings of love, and relaxedness were selected to be auxiliary variables 

given their possible associations with variations in the participants’ core affect, acceleration, 

and heart rate. In addition to auxiliary variables, we included lagged information for both 

valence and arousal up to the previous time point (i.e., lag of 1) in the imputation model. 

imp.obs was set as FALSE to request a partial MI approach. Results from the partial MI 

approach were then compared to those from the full MI approach and listwise deletion 

approach. With listwise deletion approach, only entries with missingness in covariates were 

deleted. We set the number of imputations as 5, which is the default number of imputations 

in the mice() function in MICE package. The number of MCMC iterations in each 

imputation was set as 30 based on the R plot shown in Fig. 3 to obtain stable imputation 

results. The R plot was obtained by setting iter as 50.

C. Results

The trajectories of core affect for two participants are shown in Fig. 4. From the plot we can 

see that valence and arousal were associated with each other over time. Parameter estimation 

results from the VAR model using the three approaches considered are shown in Table II. 

Here, we focus on describing results from the partial MI approach in detail. As we can see 

from Table II, there was significant within-construct stability over time. Specifically, 

participants’ levels of valence were positively associated with previous levels of valence (a11 

= 0.23, SE = 0.03, p < 0.05), indicating moderately high continuity in participants’ valence 

levels. High positive values of auto-regression parameters have been described as high 

inertia in the affect literature [14], [39], reflecting a construct’s relative resistance to change. 

In a similar vein, participants’ levels of arousal were positively associated with their 

previous levels of arousal (a22 = 0.09, SE = 0.03, p < 0.05).

There was significant across-construct stability over time. That is, participants’ levels of 

valence were positively associated with previous levels of arousal (a12 = 0.09, SE = 0.03, p < 
0.05), indicating that participants who felt more active might subsequently feel more 

pleasant. In addition, participants’ levels of arousal were positively associated with previous 

levels of valence (a21 = 0.12, SE = 0.03, p < 0.05), indicating that participants who were 

more pleasant would feel more active at the following measurement time point.

Li et al. Page 12

World Acad Sci Eng Technol. Author manuscript; available in PMC 2019 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, significant associations were found among the covariates and the dependent 

variables. Specifically, participants’ acceleration was found to be positively associated with 

levels of arousal (c2 = 0.14, SE = 0.03, p < 0.05), indicating that participants who reported 

higher levels of physical activity also felt more active. However, we did not find significant 

association between acceleration and valence. In addition, heart rate was found to be 

positively associated with both valence (d1 = 0.07, SE = 0.03, p < 0.05) and arousal (d2 = 

0.24, SE = 0.04, p < 0.05). The size of the regression coefficient was three times as large for 

arousal than for valence. Given that the dependent variables and covariates were both 

standardized, this suggested a much stronger link between arousal and heart rate than 

between valence and heart rate.

Results from the two MI approaches were similar to each other, but some differences were 

observed in comparison to results from the listwise deletion approach. Specifically, 

interpretations concerning the VAR dynamics of the dependent variables were similar across 

all approaches. However, some differences were observed with regard to the statistical 

significance of the covariates. Valence and heart rate were found to be significantly 

associated under the full MI and partial MI approaches, but this association was not 

statistically significant under the listwise deletion approach. Such divergence in results 

between the listwise deletion approach and the other MI approaches only emerged after we 

used 30 MCMC iterations to obtain each imputed data set based on the information from the 

diagnostic plot shown in Fig. 3. For instance, when we used 20 MCMC iterations in the MI 

procedure, the association between valence and heart rate was not statistically significant 

under both MI and listwise deletion approaches. This shows the importance of considering 

diagnostic information in determining details of the MI procedures.

V. Discussion and Conclusions

In the present study, we introduced dynr.mi(), a funtion in dynr package that implements MI 

with dynamic systems models, and demonstrated its use in handling missingness in both 

dependent variables and covariates in a VAR model.

The VAR model provided a platform for examining the relationships among individuals’ 

self-report core affect, acceleration, and heart rate. Auxillary variables used for imputation 

of missingness included EDA, relaxedness, and feelings of love. In line with previous 

studies, the present study showed that the psychophysiological markers were associated with 

the psychological states. For instance, heart rate was found to be positively associated with 

both valence and arousal levels, indicating that higher levels of heart rate might be 

associated with feeling more pleasant and active. In terms of the relationship between 

physical activity and self-report core affect, previous studies showed mixed results [20], 

[21]. Our analysis found that levels of physical activity were positively associated with 

arousal levels but not associated with valence levels, indicating that participants who have 

higher levels of physical activity might feel more active. The present study also found that 

participants’ current core affect could be predicted by their previous core affect.

Several features of dynr.mi() make it particularly valuable. First, currently dynr can only 

handle missingness in dependent variables via FIML but cannot handle missingness in 
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covariates [5], which limits the application of dynr in fitting more complex models. By 

incorporating MI approaches, the dynr.mi() function extends the dynr package so that dynr 
can be applied to fit a wider range of dynamic systems models. Second, MI approaches have 

advantages over other approaches in handling missing data. Compared to listwise deletion 

approach which directly removes records with missingness from the data set, MI approaches 

preserve these records in the data set and conduct imputation based on available information. 

Compared to FIML which cannot handle missingness in covariates, MI approaches are more 

flexible in terms of accommodating various types of variables. Such flexibility enables us to 

include more information in the imputation procedure such as auxiliary variables, leading 

and/or lagged variables. Third, dynr.mi() allows for checking of convergence based on the R

statistic. The R statistic provides information to facilitate making an informed decision on 

the appropriate number of MCMC iterations needed to evaluate convergence.

Although MI approaches can be relatively flexible, it is highly recommended that users 

exercise caution when specifying the imputation model. For instance, auxiliary variables 

may increase biases in the parameter estimates if they are not chosen appropriately, so 

sensitivity tests are highly recommended to examine the influence of auxiliary variables on 

the parameter estimation results [34]. The other critical step is the specification of number of 

imputations. In many cases, 5 imputations would be sufficient [8], but more imputations may 

be needed when it comes to higher missing rates, more complex models, smaller sample 

sizes, and longitudinal designs [40], [41]. Finally, previous studies did not sufficiently 

consider the number of MCMC iterations needed to obtain stable imputation results. Here, 

our results underscore the importance of careful consideration of diagnostic information 

such as that obtained through the R statistic.

The present study only examined the performance of dynr.mi() in an empirical study. Further 

studies are needed to examine the effectiveness of dynr.mi() under different missing data 

scenarios via Monte Carlo simulation studies. Previous simulation studies have found that 

the two MI approaches illustrated in the present article demonstated better performance than 

listwise deletion approach under all missing data mechanisms (i.e., MCAR, MAR, NMAR) 

[7], [42]. The partial MI approach was found to have better performance than the full MI 

approach, especially for point estimates of auto- and cross-regression parameters [7]. 

However, such results were obtained only from a specific model (VAR model) with relative 

low auto-regression parameters (i.e., low inertia). Further simulation studies are in order to 

more thoroughly investigate the performance of MI approaches in fitting other dynamic 

systems models and VAR models with greater stability over time.
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Appendix

An Example of Using dynr
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## The data are declared with the dynr.data() function

rawdata <- dynr.data(data, id=“PID”, time=“Time”,

                            observed=c(“val”,“arou”),

                            covariates=c(“acc”,“hr”))

## Define elements of the measurement model

meas <- prep.measurement(

  values.load=matrix(c(1,0,

                       0,1),ncol=2,byrow=T),

  params.load=matrix(rep(“fixed”,4),ncol=2),

  state.names=c(“val”,“arou”),

  obs.names=c(“val”,“arou”)

)

## Define elements of the dynamic model

formula =list(

  list(val ~ a_11*val + a_12*arou + c1*acc + d1*hr,

       arou ~ a_21*val + a_22*arou + c2*acc + d2*hr

  ))

dynm <- prep.formulaDynamics(formula=formula,

                                    startval=c(a_11 = .5, a_12 = .4,

                                               a_21 = .4, a_22= .5,

                                               c1 = .3, c2 =.3,

                                               d1 = .5, d2 = .5

                                    ), isContinuousTime=FALSE)

## Define the initial conditions of the model

initial <- prep.initial(

  values.inistate=c(0.6,0.6),

  params.inistate=c(’mu_val’, ’mu_arou’),

  values.inicov=matrix(c(3,0,

                         0,2),byrow=T,ncol=2),

  params.inicov=matrix(c(“v_11”,“c_12”,

                         “c_12”,“v_22”),byrow=T,ncol=2))

## Define the covariance structures of the measurement noise

covariance matrix and the dynamic noise covariance matrix
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mdcov <- prep.noise(

  values.latent=matrix(c(0.5,0.05,

                         0.05,0.5),byrow=T,ncol=2),

  params.latent=matrix(c(“v11”,“c12”,

                         “c12”,“v22”),byrow=T,ncol=2),

  values.observed=diag(rep(0,2)),

  params.observed=diag(c(’fixed’,’fixed’),2))

## Pass data and recipes into dynrModel object

model <- dynr.model(dynamics=dynm, measurement=meas,

                           noise=mdcov, initial=initial,

                           data=rawdata,

                           outfile=paste(“trial.c”,sep=“”))

## Implement MI and model fitting with dynr.mi() function

dynr.mi (model,

         which.aux = c(“eda”,“love”,“relax”),

         which.lag = c(“val”,“arou”),

         lag = 1,

         which.lead = NULL, lead = 0,

         m = 5, iter = 30,

         imp.obs = FALSE, imp.exo = TRUE,

         diag = TRUE, Rhat = 1.1,

         conf.level = 0.95,

         verbose = TRUE, seed = 12345)
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Fig. 1. 
The usage of dynr.mi()
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Fig. 2. 
An example of using the dynr.mi() function
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Fig. 3. 
Values of R statistics under iterations ranging from 2 to 50. The criterion of convergence was 

set as R < 1.1
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Fig. 4. 
Individual trajectories of core affect from two participants over 28 × 4 time points. Valence 

and arousal were assessed using self-reports of how pleasant and active they felt 

respectively, rated on a scale ranging from 0 (not at all) to 100 (extremely). The data were 

scaled to zero mean and unit variance
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TABLE I

List of Arguments in dynr.mi()

Parameter Type Meaning

dynrModel dynrModel Data and model setup

which.aux character Names of the auxiliary variables used in the imputation model

which.lag character Names of the variables to create lagged responses for imputation purposes

lag integer Number of lags of variables in the imputation model

which.lead character Names of the variables to create leading responses for imputation purposes

lead integer Number of leads of variables in the imputation model

seed integer Random number seed to be used in the MI procedure

m integer Number of multiple imputations

Iter integer Number of MCMC iterations in each imputation

imp.exo logical Flag to impute the exogenous variables

imp.obs logical Flag to impute the observed dependent variables

diag logical Flag to use convergence diagnostics

Rhat numeric Value of the R statistic used as the criterion in convergence diagnostics

verbose logical Flag to print the intermediate output during the estimation process

conf.level numeric Confidence level used to generate confidence intervals
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