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Sepsis is a global health priority of staggering impact, resulting in at least 6 million deaths 

worldwide each year and contributing to as many one half of all hospital deaths in the USA.
1–4 Sepsis is also tremendously costly, as reflected in total healthcare expenditures,56 short-

term and long-term morbidity and mortality7–9 and the heavy burden placed on caregivers 

and society.1011 Large-scale efforts, including those of the WHO and the Global Sepsis 

Alliance, have helped to elevate sepsis to a highly prominent concern visible to ‘the public, 

political leaders and leaders of healthcare systems’.112 Emerging public awareness 

campaigns—for example, the Sepsis Alliance’s ‘It’s About TIME’ motto emphasises 

Temperature, Infection, Mental decline and Extreme illness as concerning patient 

symptoms13—further drive home the need for timely and aggressive patient screening, 

identification and treatment. Together, these clarion calls highlight the need to leverage all 

available tools and modalities to enhance the earlier identification and treatment of patients 

to combat sepsis.

Not surprisingly, over the last decade, we have witnessed a rapid expansion in the number of 

electronic sepsis alert tools in development or use, particularly in locales that have also seen 

widespread deployment of modern electronic health record (EHR) systems.14 In some cases, 

simpler rule-based sepsis screening or prognostication tools, built around the systemic 

inflammatory response syndrome (SIRS) or quick Sepsis-related Organ Failure Assessment 

(qSOFA) criteria,15–18 have been electronically implemented as sepsis ‘sniffers’ that offload 

the burden of sepsis detection in patients who already meet relevant clinical criteria.14 In 

other cases, the role of these simpler ‘predictive’ models has been questioned alongside the 

rise of machine learning (ML)-driven sepsis predictive models.19–24 Numerous ML-based 

sepsis predictive models have already demonstrated excellent predictive performance with 

still many others being designed and tested today.20–25

ML algorithms are particularly useful in sifting through large, complex and heterogeneous 

data in order to maximise the signal within the noise of messy EHR data.2627 By rapidly 

peering through vast swaths of data, these algorithms can bolster model discrimination—

most often quantified as c-statistic values—and improve model calibration.2829 Although 

many existing studies trumpet modest increases in c-statistics, improving the positive 
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predictive value (PPV) is also critical because it describes the likelihood that a patient 

triggering an alert will actually have the outcome of interest. Thus, it can be used to estimate 

the clinical burden associated with predictive model alerts when embedded in practice. In 

some cases, partly because of poor PPV performance, reports reveal that sepsis alerting tools 

have already been shut off.30

Understanding the impact of predictive model performance in the context of clinical 

workflow is essential because these tools do not exist in a vacuum. Instead, predictive 

models must be paired with effective interventions in a prediction-action or afferent-efferent 

dyad.3132 The term ‘precision delivery’ was recently coined to reflect the need for risk tools 

to be embedded within clinical delivery systems to facilitate targeted and person-alised care.
33 Decisions on what actions should follow a predictive model alert can be highly variable. 

When faced with a predictive model of given characteristics, operational leaders must make 

decisions related to the tool’s use in the areas of alert delivery modalities and thresholds, 

end-user staffing and interfaces, clinical decision support, workflow changes and/or 

educational programming. For sepsis, multifaceted interventions that coordinate 

improvements across several clinical domains have become the norm and, in nearly all cases, 

have already proven highly effective for improving mortality.34–37

Against this background, what is the evidence showing that electronic sepsis alert tools 

benefit patients? Several prior studies suggest that their use is associated with incredible 

benefits in outcomes. For example, when embedded within clinical workflow redesign, a 

system incorporating electronic surveil-lance criteria resulted in a stunning 53% reduction in 

sepsis mortality.38 A more complex ML-driven sepsis predictive model similarly resulted in 

a 58% reduction in hospital mortality, with no associated increase in adverse events.39 In a 

condition as deadly as sepsis and with purported effects of this magnitude, it comes as no 

surprise that many hospitals and health systems are racing towards implementation of 

electronic alerts and predictive models. However, not all studies have shown such promising 

results.1440–42

In this issue, an important study by Downing and others43 helps to enrich our understanding 

of the potential utility of electronic sepsis alert tools. The authors modified a previously 

developed severe sepsis identification algorithm44 based on SIRS, suspected infection and 

organ dysfunction criteria, to enhance PPV. They implemented this EHR-based alert for 

patients in medical, surgical and stepdown units, excluding those in intensive care units or 

on comfort care. In coordination with hospital leadership, they carefully developed a 

standardised workflow following the alerts and educated the relevant clinical teams. When 

alert criteria were met, a circulating ‘crisis’ nurse, and in some cases the patient’s treating 

physician, would receive a pager alert with the intended goal of having clinicians assess the 

patient at the bedside and implement appropriate orders within an order set. Overall, their 

work reflects the type of careful approach needed to implement an effective and sustainable 

prediction-action dyad.

What makes this study particularly valuable is that the authors implemented the sepsis alerts 

in a randomised fashion. Among patients meeting alert criteria, some of their treating 

clinicians received a paged alert (intervention, n=595) whereas other patients had a ‘silent’ 
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alert invisible to their treating teams (control, n=528). As a result, the study findings should 

reflect the causal effect of the sepsis alert and workflow itself, rather than other exogenous 

or confounding factors that often impact more commonplace before-after studies.4546

Their randomisation process succeeded in achieving intervention and control groups that 

shared similar baseline characteristics. However, their sepsis alert did not significantly affect 

the primary outcome of a new antibiotic order placed within 3 hours of the alert (35.0% vs 

36.7%). Nor were there any significant differences between intervention and control patients 

in a diverse set of secondary care processes and outcomes including lactate orders, 

intravenous fluid administration, blood cultures, prolonged length of stay, intensive care 

transfer or hospital mortality. Even while this iteration of their tool had no significant effect 

on sepsis care processes or outcomes, ironically, the study was cut short by hospital 

leadership who requested that the alert be turned on for all users.

Many factors may have contributed to the lack of benefit seen with the intervention. For 

example, in both groups, two-thirds of patients were already being treated with antibiotics at 

the time of the alert. However, the study also did not demonstrate significant differences in 

intravenous fluid administration or lactate orders between groups. The alert was also 

designed primarily to improve detection of severe sepsis, rather than to predict onset, 

limiting the tool’s utility for pre-empting severe sepsis with clinical intervention. The 

authors found that alert-driven work-flows were inconsistently applied by clinicians and 

wisely conducted surveys to better understand their findings. Of physicians surveyed who 

had cared for a patient with sepsis, the majority felt that the alert did not flag an important 

change in a patient’s condition that required new action.

Sepsis is a deadly, prevalent and costly healthcare problem that demands urgent attention. 

Promising electronic alert tools are increasingly being implemented in the hopes that they 

can drive improved patient outcomes. However, as this study and others show, well-designed 

tools demonstrating excellent in silico performance are not guaranteed to improve care or 

outcomes. In real-world practice, some may even result in unintended consequences like 

alert fatigue,47 distraction48 and wasted resources. Given the tremendous heterogeneity in 

the electronic tools themselves as well as in the clinical settings in which they are 

implemented, we expect variability in reported benefits to persist. Rigorous study designs, as 

well as the confidence to publish ‘negative’ results, are essential for identifying effective and 

sustainable interventions that benefit our patients with sepsis.
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