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Conspectus

Calprotectin (CP) is a versatile player in the metal-withholding innate immune response, a process 

termed “nutritional immunity.” CP is a heterooligomer of the polypeptides S100A8 and S100A9, 

and it houses two transition-metal-binding sites at its S100A8/S100A9 heterodimer interface. 

During infection, CP is released from host cells and sequesters “bioavailable” transition metal ions 

in the extracellular space, thereby preventing microbial acquisition of these essential nutrients. For 

many years, the role of CP in nutritional immunity was interpreted in the contexts of Mn(II) and 

Zn(II) limitation, but recent work has broadened our understanding of its contributions to this 

process. We uncovered that CP provides a form of nutritional immunity that has previously 

received little attention: the battle between host and microbe for ferrous iron (Fe(II)). In this 

Account, we present our current understanding of Fe(II) coordination by CP and its role in Fe(II) 

withholding, as well as considerations for future discovery.

Nutritional immunity was first described in the context of host-microbe competition for ferric iron 

(Fe(III)). The battle for Fe(II) has received comparably little attention because the abundance of 

Fe(II) at infection sites and the importance of Fe(II) acquisition for microbial pathogenesis was 

recognized only recently. Several years ago, we discovered that human CP sequesters Fe(II) at its 

His6 site with sub-picomolar affinity, and thus hypothesized that it provides a means for Fe(II) 

limitation by the host during microbial infection. Fe(II) coordination by CP is unprecedented in 

biology because of its novel hexahistidine coordination sphere and its high-affinity binding which 

surpasses that of other known Fe(II)-binding proteins. CP is also capable of shifting the Fe redox 

equilibrium by stabilizing Fe(II) in aerobic solution, and can thereby sequester Fe in both reducing 

and non-reducing environments. These coordination chemistry studies allowed us to hypothesize 

that CP provides a means for Fe(II) limitation by the host during microbial infection. While 

investigating this putative Fe(II)-sequestering function, we discovered that CP withholds Fe from 

diverse bacterial pathogens. Recent studies by our lab and others of the bacterial pathogens 

Pseudomonas aeruginosa and Acinetobacter baumannii have shown that, by preventing sufficient 

Fe acquisition, CP induces Fe starvation responses in these organisms. As a result, CP affects 

bacterial virulence and metabolism. We also elucidated a complex interplay between CP and 

secondary metabolites produced by P. aeruginosa during the competition for Fe. Our work 

provides a foundation for understanding how CP affects Fe homeostasis during microbial 

infection. We believe that understanding how bacterial physiology is altered when challenged with 
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Fe(II) withholding by CP will likely reveal crucial determinants of bacterial survival within the 

host.

Graphical Abstract

Introduction

Calprotectin (CP) is known for its role in the metal-withholding innate immune response, a 

process termed “nutritional immunity.”1-2 This protein was first identified because of its 

abundance in the tissues of patients afflicted with inflammatory disorders.3-7 The name CP 

comes from two defining characteristics that were revealed during initial studies: its ability 

to bind calcium and antimicrobial acitivity.8-9 Early on, researchers found that the 

antimicrobial activity of CP was attenuated with the addition of Zn(II), providing the first 

clue to its contributions to the biology of transition metal ions.10 Subsequently, two seminal 

studies — the crystallographic structural evaluation of the Ca(II)-bound protein11 and a 

compelling report that CP sequesters Mn(II) at infection sites12 — motivated our lab to 

investigate its biological coordination chemistry. As a result of our studies and those of 

others, we now appreciate that CP is a remarkable and functionally versatile component of 

nutritional immunity.

CP is a heterooligomer of two S100 polypeptides: S100A8 and S100A9. Each polypeptide 

possesses two EF-hand Ca(II)-binding domains. In addition, two transition-metal-binding 

sites form at the S100A8/S100A9 heterodimer interface: a His3Asp motif and a His6 motif 

(Figure 1).13 In human CP, the His3Asp site is composed of H83 and H87 of S100A8 and 

H20 and D30 of S100A9. The His6 site is formed by H17 and H27 of S100A8 and H91, 

H95, H103 and H105 of S100A9. The His3Asp site is selective for Zn(II), whereas the His6 

site sequesters Mn(II), Fe(II), Ni(II), and Zn(II) with high affinity (Figure 1).13 CP also 

sequesters Cu, but further coordination chemistry studies are required to define the relevant 

site(s) and whether the protein preferentially binds Cu(II) or Cu(I).14 Various types of white 

blood cells and epithelial cells produce CP, and the protein is particularly abundant in 

neutrophils where it is reported to constitute ≥40% of total cytoplasmic protein.3, 15-16 In the 

current working model, which focuses the sequestration of nutrient metal ions in the 

extracellular space, CP is stored in the cytoplasm, which has low levels of Ca(II) (i.e. 

nanomolar) under resting conditions. Upon release into the extracellular space, CP 

encounters high levels of Ca (≈2 mM),17 binds Ca(II) at the EF-hand domains, and 

undergoes an oligomeric change from a heterodimer to a heterotetramer.18 In its Ca(II)-
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bound heterotetrameric form, CP exhibits greater antimicrobial activity attributable to the 

enhanced transition-metal affinities at both binding sites.13

In this Account, we focus on recent studies that uncovered the Fe(II)-withholding function 

of CP. We present our current understanding of Fe(II) coordination by CP and how CP 

impacts microbial Fe homeostasis. Our early investigations revealed that CP sequesters 

Fe(II) with high affinity at its biologically-unique His6 site 21 and shifts the redox 

equilibrium of Fe from Fe(III) to Fe(II) in solution.22 Moreover, contributions from our lab 

and others have provided compelling evidence that CP (i) inhibits microbial Fe acquisition,
21, 23-25 (ii) induces Fe starvation responses in bacterial pathogens,23-24 and (iii) affects 

pathways that are important for survival and virulence as a consequence of Fe limitation.
23-24 Our work also revealed that microbial metabolites modulate the Fe(II)-sequestering 

ability of CP.22-23 Taken together, our investigations of CP and Fe provide a foundation for 

future studies directed at elucidating the effect of this host-defense protein on Fe 

homeostasis in diverse microbial pathogens.

Discovery of Fe(II) sequestration by CP

Initially, the contributions of CP to nutritional immunity were only considered in the 

contexts of Mn(II) and Zn(II) withholding.13 Although several reports indicated that CP 

neither binds Fe nor contributes to Fe homeostasis,12, 26 and thus did not link CP to an Fe-

withholding innate immune response, two lines of thought motivated our exploration of its 

Fe-sequestering properties.21 First, based on seminal studies of Mn(II) and Zn(II) 

sequestration at the His6 site, and the coordination chemistry principles defined by Irving-

Williams series, we reasoned that CP coordinates divalent metal ions that fall between 

Mn(II) and Zn(II) on the periodic table at this site.21, 27 Second, from the perspective of 

microbial metabolism, CP possesses antibacterial activity against both Mn-centric or Fe-

centric bacteria,26-28 which provided a clue that CP may inhibit the growth of Fe-centric 

microbes by withholding Fe.

We first conducted an unbiased evaluation of metal binding by determining which metals 

CP20 depletes from bacterial growth medium. This assay revealed that CP depletes medium 

of Fe, Ni, and Cu in addition to Mn and Zn.21 Moreover, enhanced Fe depletion occurred in 

the presence of an exogenous reducing agent, suggesting that CP prefers to bind Fe under 

reducing conditions that favor the +2 oxidation state (Figure 2a). By examining CP variants 

that have the coordinating residues of either metal-binding site mutated to alanine, we 

determined that the His6 site was responsible for Fe depletion. These observations motivated 

our biophysical investigations of how CP coordinates Fe and whether this property has 

implications for microbial physiology.21, 23

Fe(II) coordination by CP

Both the ferric [Fe(III)] and ferrous [Fe(II)] oxidation states of Fe are common in biology. 

Building upon our initial metal-depletion studies, we investigated the binding preference of 

CP for Fe(III) vs. Fe(II), and found that CP binds Fe(II) but has negligible affinity for Fe(III) 

under conditions of low Ca(II).21, 29 In collaboration with the Krebs laboratory, we 
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employed Mössbauer spectroscopy to study the Fe(II)-binding characteristics of CP and 

ΔHis3Asp. This study demonstrated that both proteins bind high-spin Fe(II) in an octahedral 

coordination sphere with essentially identical isomer shifts, indicating that the His6 site is 

the major Fe(II)-binding site in CP (Figure 2b).21 We note that the Mössbauer spectroscopy 

samples contained ~0.8 equiv of Fe(II) per heterodimer and excess Ca(II), which resulted in 

only the His6 site of CP being populated with Fe(II). Subsequent analyses using magnetic 

circular dichroism (MCD) spectroscopy, performed in collaboration with the Neidig 

laboratory, further supported the Fe(II)-His6 coordination motif.30 This Fe(II) coordination 

sphere expands the known coordination motifs of nonheme Fe proteins.21, 30 Moreover, we 

extended the MCD spectroscopy studies to samples prepared with varying Ca(II) and Fe(II) 

concentrations. This effort revealed that the His3Asp site binds Fe(II) in a distorted five-

coordinate Fe(II) geometry. Both the Fe(II)-binding titrations monitored by MCD 

spectroscopy (Figure 2c)30 and the initial metal-depletion assays21 indicated that the 

His3Asp site has a lower Fe(II) affinity than the His6 site, and we currently have no evidence 

supporting a role for the His3Asp site in Fe(II) withholding.

The Fe(II)-binding affinity of the His6 site was evaluated by competing CP against ZP1, a 

metal-ion sensor with an apparent Kd,Fe(II) = 2.2 ± 0.3 pM for Fe(II) at pH 7.0.21 These 

competition titrations demonstrated that CP was unable to compete with ZP1 in the absence 

of Ca(II) and that CP outcompeted the sensor in the presence of excess Ca(II). These results 

showed that Ca(II) enhances the affinity of CP for Fe(II), and indicated that the His6 site of 

CP binds Fe(II) with sub-picomolar affinity.21 Relative to other characterized Fe(II)-binding 

proteins, which generally exhibit Kd values in the high nanomolar to low micromolar range,
31 the affinity of the His6 site for Fe(II) is remarkably high. The high affinity of this site for 

Fe(II) and other divalent metal ions is at least partially attributable to the ability of the site to 

effectively “trap” divalent metal ions via the flexible S100A9 C-terminal tail, which 

encapsulates the bound metal ion and shields it from solvent.30, 32 Indeed, MCD 

spectroscopic analyses of CP variants lacking the coordinating histidines of the S100A9 C-

terminal tail (H103A and H105A variants) revealed a six-coordinate Fe(II) center with a 

bound hydroxide or water molecule in place of the missing histidine ligand.30 Furthermore, 

ZP1 competition experiments indicated that H103 and H105 are necessary for high-affinity 

Fe(II) binding at the His6 site.

Multiple nutrient metal ions can be found at infection sites, and the His6 site of CP also 

sequesters Mn(II), Ni(II), and Zn(II). To determine the thermodynamic preference of CP for 

binding one metal ion over another, we performed metal substitution experiments. We found 

that the His6 site exhibits a thermodynamic preference of Kd, Mn(II) > Kd, Fe(II) > Kd, Zn(II) > 

Kd, Ni(II).19, 21 Nevertheless, these experiments also indicated slow exchange at the His6 site, 

suggesting that it may serve as a kinetic trap, binding whichever metal ion it first encounters 

and preventing its dissociation. In this case, the most abundant metal ions would be 

preferentially bound at the His6 site. The relative contributions of thermodynamics and 

kinetics to metal sequestration by CP under a variety of conditions is an important avenue 

for future investigation.
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CP affects Fe redox equilibrium

Whereas Fe(II) is highly susceptible to oxidation to Fe(III) in aerobic and oxidative 

environments, it can persist in anaerobic and reducing environments.33 Our initial Fe-

binding studies indicated that CP would sequester Fe(II) in environments where Fe(II) is 

expected to be abundant, such as an anaerobic niche within the human host.21 Nonetheless, 

we also found that CP slowly depleted Fe from microbial growth medium under aerobic 

conditions in the absence of an exogenous reductant (Figure 3a).21-22 This observation 

motivated us to study the effect of CP on Fe redox speciation, which revealed that CP can 

shift the Fe redox equilibrium from Fe(III) to Fe(II) under aerobic conditions. For instance, 

when CP is added to an aerobic buffered solution of ferric citrate, the Fe redox speciation 

changes over time such that Fe(II) becomes the dominant redox state in solution (Figure 3b).
22 A variant of CP lacking residues of the His3Asp and His6 sites (ΔΔ) did not affect the 

[Fe(II])/[Fe(III)] ratio over time, suggesting that Fe(II) sequestration allows for Fe(II) to 

accumulate (Figure 3c). Thus, CP is able to shift the Fe redox equilibrium by binding and 

stabilizing Fe(II) in aerobic non-reducing conditions. This result led us to speculate that CP 

may withhold Fe(II) in a range of oxygen availabilities and redox environments.

CP inhibits microbial Fe uptake

We first evaluated the ability of CP to block Fe uptake by two Fe-centric bacterial species, 

Escherichia coli and Pseudomonas aeruginosa, under reducing conditions where Fe(II) is the 

dominant oxidation state.21 Using an 55Fe-uptake assay, we found that CP inhibits Fe 

acquisition by both organisms.21 Recently, an independent report also presented CP-

mediated inhibition of Fe uptake by E. coli under reducing conditions.25 After observing 

that CP shifts the Fe redox equilibrium from Fe(III) to Fe(II) under aerobic conditions, we 

reasoned that CP may be capable of inhibiting bacterial Fe uptake during aerobic culture. 

Indeed, we observed that CP can inhibit Fe uptake by P. aeruginosa, E. coli, Salmonella 
enterica serovar Typhimurium, Klebsiella pneumoniae, A. baumannii, and Staphylococcus 
aureus during aerobic culture and in the absence of an exogenous reductant (Figure 4).23 We 

also observed that CP-mediated inhibition of Fe-uptake is medium-dependent, especially for 

S. aureus. Our work indicated that CP inhibits Fe uptake by S. aureus during growth in LB 

medium, but not in Tris:TSB medium. Previous independent investigations also found that 

that CP does not inhibit Fe uptake by S. aureus in Tris:TSB-based medium.34-35 The 

reported effect of CP on Fe acquisition by A. baumannii has also varied,23-24, 36 which may 

also result from different media conditions.37 Although previous work indicated that CP 

does not inhibit Fe uptake by A. baumannii in RPMI-based media,36 it was recently reported 

that CP reduces Fe-uptake by ~75% in an LB-based medium,24 in agreement with our metal-

uptake data.23 Taken together, these studies establish the ability of CP to inhibit Fe uptake 

by microbes in vitro, and whether this activity occurs in vivo during infection warrants 

thorough examination.

CP induces bacterial Fe starvation

Fe is critical for the viability and virulence of many microbial pathogens, and the roles of Fe 

in P. aeruginosa biology and pathogenesis have been particularly well studied. P. aeruginosa 
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is adept at overcoming host-mediated Fe deprivation and expresses several machineries for 

acquiring Fe(II) and Fe(III) ions as well as heme during infection.38-39 Fe starvation induces 

the production of PrrF small regulatory RNAs by P. aeruginosa, which reduce the metabolic 

requirement of P. aeruginosa for Fe when this nutrient is scarce.40 This process, referred to 

as the Fe-sparing response,41 is central to P. aeruginosa survival during Fe starvation and is 

therefore required for successful infection.42

Our work, in collaboration with the Oglesby-Sherrouse laboratory, demonstrated that CP 

promotes Fe starvation responses in P. aeruginosa.23 We selected P. aeruginosa to study the 

effect of CP on bacterial Fe homeostasis due to its clinical relevance, its co-localization with 

CP in the cystic fibrosis lung,43 and its aforementioned responses to Fe starvation. When P. 
aeruginosa intracellular Fe is low, repression of genes encoding Fe acquisition systems and 

the PrrF sRNAs by the ferric uptake regulator (Fur) is relieved. PrrF negatively regulates 

antR, which encodes a regulatory protein that controls the degradation of the metabolite 

anthranilate. In turn, anthranilate serves as a precursor for a class of P. aeruginosa 
metabolites called alkyl-quiniolones that are important for signaling and virulence.44-45 We 

found that CP inhibits the translation of antR, indicating that P. aeruginosa initiates an Fe-

sparing response in the presence of CP (Figure 5).23 Repression of transcription ofpvdS, 
which encodes a sigma factor needed for production of the siderophore pyoverdine, is also 

relieved when intracellular Fe is low. We observed that CP induces the transcription of pvdS 
and production of pyoverdine, supporting a Fur-mediated Fe starvation response in P. 
aeruginosa (Figure 5).23

The altered production of AntR and pyoverdine is indicative of an Fe-starvation response, 

and may have far-reaching consequences for P. aeruginosa survival and virulence in the 

human host. The levels of AntR and pyoverdine indirectly regulate the biosynthesis of 

several P. aeruginosa virulence factors, including endoprotease PrpL, exotoxin A, and alkyl-

quinolones45-46 Moreover, CP inhibits production of phenazines, redox-cycling secondary 

metabolites that are important for P. aeruginosa virulence.23, 43 We also found that Fe 

depletion, but not Mn or Zn depletion, inhibits phenazine production in P. aeruginosa, 
indicating that CP inhibits phenazine production via Fe(II) sequestration. This analysis 

revised a prior explanation of how CP inhibits the production of phenazines, which was 

based on its Mn(II)- and Zn(II)-sequestering properties.43 The mechanism by which Fe 

limitation results in reduced phenazine production is currently unknown and warrants further 

investigation. Overall, by inducing an Fe-starvation response in P. aeruginosa, CP affects 

several pathways that are implicated in its virulence and may thus affect the ability of this 

organism to cause disease in the host.

Recent independent work demonstrated that CP also induces an Fe-starvation response in A. 
baumannii.24 RNAseq analysis of A. baumannii exposed to CP indicated increased 

transcriptional levels of genes involved in the global Fe-starvation response. Genes that were 

upregulated in the presence of CP included those encoding the ferrous iron uptake system 

(feoAB) and proteins involved in the biosynthesis, utilization, and uptake of the siderophore 

acinetobactin. Higher levels of acinetobactin were also detected in supernatants of CP-

treated cultures. Analysis of the cellular proteome upon CP exposure showed that CP 

decreases production of Fe-utilizing proteins including the [4Fe-4S] cluster protein fumarase 
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and proteins involved in Fe-S cluster biogenesis, indicative of an Fe-sparing response. This 

study also revealed that challenge of A. baumannii with CP inhibits flavin biosynthesis, 

which may result from CP-mediated Fe limitation given the well documented metabolic 

crosstalk between Fe and riboflavin in both eukaryotes and prokaryotes.47 Taken together, 

these independent studies of P. aeruginosa and A. baumannii by two research groups indicate 

that CP elicits Fe-starvation responses in two bacterial pathogens that cause human disease 

and affects pathways that are central to cellular metabolism and virulence by limiting Fe.

Bacterial metabolites affect Fe(II) sequestration by CP

At sites of infection, CP is released into the complex chemical milieu of the extracellular 

space that includes multiple host and microbial factors that affect Fe speciation by 

coordinating the ion or altering its redox state. Microbes secrete siderophores to scavenge 

Fe(III) and compete with host Fe(III)-binding proteins lactoferrin and transferrin.48 

Siderophores inhibit Fe(II)-sequestration by CP in solution, presumably by coordinating 

Fe(III) with high affinity, stabilizing the Fe(III) oxidation state, and making the metal ion 

unavailable (Figure 6).22-23 Thus, we expect that siderophores that CP encounters at a site of 

infection will attenuate its antimicrobial activity when Fe(III) is the dominant redox state.

In some contexts, microbes depend on Fe(II) during infection and produce specialized 

machinery to acquire this metal ion. In particular, P. aeruginosa is capable of promoting 

Fe(II) availability by secreting phenazines to reduce Fe(III) to Fe(II) in the extracellular 

space.49 P. aeruginosa thereby provides Fe(II) for uptake via its Fe(II) uptake (Feo) ATP-

binding cassette transporter.50 However, our recent work indicated that the redox-cycling 

capacity of phenazines may aid the host innate immune response by promoting Fe(II) 

sequestration by CP. The phenazine pyocyanin enhanced Fe depletion from microbial 

growth medium by CP (Figure 6).22-23 In aerobic culture, the phenazines produced by P. 
aeruginosa also enhanced Fe withholding by CP.23 Moreover, CP did not inhibit Fe uptake 

by a P. aeruginosa mutant defective in phenazine production (PA14 Δphz).23 CP-mediated 

inhibition of antR expression was reduced in the Δphz strain, suggesting that CP is less able 

to induce an Fe-starvation response in this non-phenazine producing strain.23 CP remained 

capable of inducing pyoverdine production in the Δphz strain, but to a lesser extent than that 

observed in its parent PA14 strain. Taken together, these studies indicate that phenazines 

facilitate Fe(II) sequestration by CP, and thus may enhance the efficacy of the innate 

immune response toward P. aeruginosa by aiding Fe(II) withholding by this innate immune 

protein. We note that aiding the innate immune response is unlikely to be an evolved role of 

phenazines; these molecules have several important functions including contributing to 

virulence and antibiotic resistance in the human host, and promoting nutrient acquisition for 

soil-dwelling pseudomonads.51-53

Broadly, these studies highlight that microbial metabolites that modulate metal speciation in 

the extracellular environment likely also alter the functional capacity innate immune factors, 

in this case by attenuating (siderophores) or promoting (phenazines) Fe(II) sequestration by 

CP. Such complex interplay between host factors and microbial metabolites will 

undoubtedly vary with the unique chemical composition of each infection site and metabolic 

profile of each microbe, requiring further elucidation on a case-by-case basis.
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Conclusions and perspectives

Here, we provide an account of our current understanding of Fe(II) sequestration by CP and 

its effects on microbial Fe homeostasis. Our work demonstrates high-affinity Fe(II) 

coordination by CP at its His6 site, the capacity of this site to shift the redox equilibrium of 

Fe to favor Fe(II) under aerobic conditions, and CP-mediated withholding of Fe from 

microbes. Furthermore, our studies and those of others establish that CP induces Fe 

starvation responses in P. aeruginosa and A. baumannii, two bacterial pathogens of 

significant clinical concern, and affects several pathways that are important for survival and 

virulence in these organisms as a result of Fe limitation. Moving forward, we believe that 

studying microbial responses to Fe limitation by CP will provide valuable insight into their 

survival and virulence strategies when confronted by Fe(II) withholding by the host.

To the best of our knowledge, the discovery that CP withholds Fe(II) from a variety of 

bacterial pathogens provides the first evidence of a metal-sequestering innate immune 

protein that can contribute to an Fe(II)-withholding response. Fe(III) withholding is the 

paradigm for nutritional immunity.1, 54 In contrast to Fe(III), the competition for Fe(II) 

between host and pathogen was unappreciated for many years, likely due to uncertainty 

about the relevance of Fe(II) at infection sites, which are generally considered to be 

oxidative environments. However, recent studies provide a compelling picture for the 

importance of Fe(II) during infection.55-57 For instance, several murine models of infection 

have indicated the essentiality of Fe(II) uptake via the Feo system.56, 58 Additionally, two 

recent analyses of Fe levels revealed that Fe(II) is a significant component of Fe at infection 

sites.55, 57 The importance of Fe(II) for microbial pathogenesis in oxygen-limited niches of 

the host suggests that CP may limit the ability of microbes to colonize in these 

environments.

The studies described in this Account set the stage for investigating the effect of CP on 

bacterial Fe homeostasis in vivo, including work that leverages murine models of infection. 

Recent biochemical and functional evaluation of murine CP (mCP) demonstrated that it 

depletes Fe from microbial growth medium and is capable of stabilizing Fe(II).59-60 Thus, 

we reason that mCP may affect bacterial Fe homeostasis in a manner similar to human CP, a 

possibility that should certainly be further explored. To the best of our knowledge, reported 

murine model studies have given little consideration to the possibility of CP contributing to 

Fe(II) withholding and Fe homeostasis. This scenario is understandable because the 

prevailing notion in the field for many years was that CP sequesters only Mn(II) and Zn(II), 

which shaped study design and data interpretation.12, 36, 43, 61-62 We also note that, despite 

extensive work, the metal-sequestering function of CP has been examined in only a limited 

number of murine infection models compared to the array of possibilities that exist.
12, 36, 43, 61-62 To date, these studies have focused on acute infection models where Fe(II) 

may be a less relevant player than Fe(III). In contrast, many chronic infections are 

characterized by the formation of biofilms, which exhibit steep oxygen gradients and 

increased dependency on Fe(II).55, 63-65 Specific to studies of P. aeruginosa infection, we 

expect that maximal Fe(II) withholding by CP will be observed during chronic infection due 

to (i) high phenazine levels and low pyoverdine levels, both of which favor Fe(II) 

sequestration by CP,23 and (ii) lower oxygen levels in biofilms that are characteristic of 
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chronic P. aeruginosa infection.63-65 One caveat when comparing human and murine metal-

withholding is that the repertoire of host-defense factors found in these two mammals 

differs. For instance, S100A12, an abundant metal-sequestering protein deployed by human 

neutrophils, is not produced by mice. Thus, it is possible that metal sequestration by CP is 

modulated differently in humans and other mammals depending on the composition and 

interplay of the arsenal of metal-sequestering proteins.66 Taken together, we believe that 

prior murine model studies do not preclude a role for Fe(II) sequestration by CP in vivo, and 

that a thorough analysis of Fe(II) withholding by CP in vivo is highly warranted.

Our work has also illuminated a complex interplay between microbial and host metal-

chelating factors. By stabilizing Fe(III) in solution, microbial siderophores prevent Fe(II) 

sequestration by CP. Conversely, P. aeruginosa-produced phenazines are capable of 

promoting Fe(II) sequestration by CP by reducing Fe(III) to Fe(II) in solution. Together, 

these results indicate that the efficacy of CP in starving an organism of Fe in vivo will 

depend on the metabolic profile of the organism. Further studies with other metabolites 

involved in metal homeostasis will expand our understanding of how these molecules affect 

metal sequestration by CP.

In closing, we believe that our investigations of Fe(II) sequestration by CP are informative 

for multiple sub-disciplines. These contributions set the stage for evaluating the implications 

of Fe(II) withholding for a diversity of microbial pathogens, as well as in vivo evaluation of 

Fe(II) withholding by CP. This work has expanded our understanding of CP beyond Mn(II) 

and Zn(II) sequestration, and further investigations are necessary to elucidate (i) how CP 

impacts Fe homeostasis in a diversity of microbial pathogens, (ii) the interplay between CP 

and various nutrient metal ions in vivo, and (iii) how specific environmental conditions 

affect its function.13, 67-68 We very much look forward to future explorations of the 

contribution of Fe(II) sequestration by CP to the mammalian innate immune response and 

microbial pathogenesis.
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Figure 1. 
Crystal structure of Ni(II)-, Ca(II), and Na(I)-bound CP-Ser (PDB 5WIF).19 CP-Ser is 

composed of the S100A8(C42S) and S100A9(C3S) subunits. This variant has been 

employed for many metal-binding and microbiology studies.20 A heterodimer unit is taken 

from the structure of the heterotetramer. S100A8 is shown in green; S100A9 is shown in 

blue; Ni(II)-binding residues are shown in orange; Ni(II) is shown in teal; Ca(II) is shown in 

yellow; Na(I) is shown in purple. The N- and C-termini of S100A8 and S100A9 are labeled. 

The His3Asp site is shown expanded on the left of the dimer, and the His6 site is shown 

expanded on the right of the dimer.
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Figure 2. 
Fe(II) binding by CP.21, 30 (A) Depletion of Fe from Tris:TSB medium [62:38 20 mM Tris, 

100 mM NaCl, pH 7.5:Tryptic soy broth (TSB) medium] supplemented with ~3 mM β-

mercaptoethanol and ≈2 mM Ca(II) by CP-Ser.21 The mean and SDM are reported (n = 5). 

(B) The 4.2 K/53 mT Mössbauer spectrum for 57Fe(II)-bound CP-Ser prepared with excess 

Ca(II) and 0.83 equiv of 57Fe(II) sulfate per CP heterodimer is shown as black vertical parts.
21 The simulation of this spectrum as a single quadrupole doublet with an isomer shift (δ) of 

1.20 mm/s and a quadrupole splitting parameter (ΔEQ) of 1.78 mm/s is shown as the blue 

line. The Mössbauer spectrum of 57Fe(II) sulfate in 50 mM Tris, pH 7.5 is shown as the red 

line.21 (C) The 5 K, 7 T NIR MCD spectra for the titration of CP-Ser with Fe(II) in the 

presence of excess Ca(II).30 Panel C was reproduced with permission from ref. 30. 

Copyright 2017 the Royal Society of Chemistry.
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Figure 3. 
CP sequesters Fe(II) under aerobic conditions and shifts Fe redox equilibrium to favor 

Fe(II).22 (A) Depletion of Fe from Tris:TSB medium (62:38 20 mM Tris, 100 mM NaCl, pH 

7.5:TSB medium) supplemented with 2 mM Ca(II) by 10.5 μM CP-Ser in the absence or 

presence of ~3 mM β-mercaptoethanol (BME). The mean and SDM are reported (n = 3). (B 

& C) Fe(III) citrate (10 mM) was incubated with 10.5 μM (B) CP-Ser or (C) ΔΔ variant in 

the presence of 2 mM Ca(II) and the Fe redox speciation was monitored by the ferrozine 

assay (75 mM HEPES, 100 mM NaCl, pH 7.0 at 30 °C, 150 rpm).22 The mean and SDM are 

reported (n = 6). Panels B and C were reproduced with permission from ref. 22. Copyright 

2017 the Royal Society of Chemistry.
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Figure 4. 
Analysis of cell-associated Fe levels shows that CP inhibits Fe uptake by several bacterial 

pathogens during aerobic culture.23 Bacteria (P. aeruginosa PA14, E. coli UTI89, S. 
Typhimurium ATCC 14028, K. pneumoniae ATCC 13883, A. baumannii ATCC 17978, and 

S. aureus USA300 JE2) were grown in Tris:TSB or LB medium in the absence or presence 

of 10 μM CP-Ser (in Tris:TSB) or 20 μM CP-Ser (in LB) at 37°C for 8 h. Cell-associated Fe 

corresponds to the concentration of Fe in an OD600 = 10 cell suspension (n = 5, *P < 0.05; 

**P < 0.01). Reproduced with permission from ref. 23. Copyright 2019 the American 

Society for Biochemistry and Molecular Biology
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Figure 5. 
CP induces Fe starvation responses in P. aeruginosa.23 CP inhibits Fe uptake, and apo-Fur 

derepresses the transcription of prrF and pvdS. Subsequently produced PrrF sRNAs repress 

antR translation, and PvdS promotes pyoverdine biosynthesis. As a result, antR translation is 

inhibited by CP, and pyoverdine production is promoted by CP.
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Figure 6. 
Effect of siderophores and phenazines on P. aeruginosa Fe homeostasis and Fe(II) 

sequestration by CP. 23
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