Skip to main content
. 2019 Aug 14;10:1682. doi: 10.3389/fpsyg.2019.01682

TABLE 3.

Model parameters and summaries of linear and polynomial regression analyses of Sentence ID predicting SLS-Berlin sentence characteristics.

Model parameters
Model summary
Estimate SE t-value p-value adj. R2 F-value p-value
Number of characters
  Linear 2.27 0.57 4.01 <0.001
  Squared –0.06 0.02 –3.82 <0.001
  Cubic 0.0006 0.0001 4.33 <0.001 0.65 47.77 <0.001
Number of syllables
  Linear 0.55 0.19 2.82 0.006
  Squared –0.01 0.006 –2.57 0.010
  Cubic 0.0001 0.00005 3.0 0.004 0.59 36.99 <0.001
Number of words
  Linear 0.41 0.12 3.15 0.002
  Squared –0.01 0.004 –3.26 0.002
  Cubic 0.0001 0.00003 3.51 <0.001 0.27 10.46 <0.001
Number of long wordsa (>6 letters)
  Linear 0.03 0.006 4.79 <0.001 0.23 22.99 <0.001
  Squared
  Cubic
Number of nouns
  Linear 0.02 0.004 4.59 <0.001 0.21 21.05 <0.001
  Squared
  Cubic
Number of punctuation marks
  Linear <1 n.s.
  Squared
  Cubic
Fleschb
  Linear –0.52 0.14 –3.72 <0.001 0.15 13.81 <0.001
  Squared
  Cubic
Complexity rating*
  Linear 0.06 0.019 3.44 <0.001
  Squared –0.002 0.0006 –3.34 0.001
  Cubic 0.00002 0.000005 3.71 <0.001 0.51 27.35 <0.001
Point of decision*c
  Linear <1 n.s.
  Squared
  Cubic

*In a prestudy 19 participants (different from the norm sample) rated the complexity (on a five-point scale ranging from one to five) and marked the point of semantic decision for all 77 sentences. aBest model fit after excluding influential cases (i.e., sentence 77) due to large residuals (< ± 3). bBest model fit after excluding influential cases (i.e., sentences 8 and 28) due to large residuals (< ± 3). cBest model fit after excluding influential cases (i.e., sentences 10 and 33) due to large residuals (< ± 3).