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ComBATing aging—does increased brown adipose tissue
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Abstract Brown and its related beige adipose tissue
(BAT) play a definitive role in maintaining body tem-
perature by producing heat through uncoupling protein
1 (UCP1), which acts by dissociating oxidative phos-
phorylation from ATP production, resulting in the re-
lease of heat. Therefore, in order to maintain high ther-
mogenic capacity, BAT must act as a metabolic sink by
taking up vast amounts of circulating glucose and lipids
for oxidation. This, along with the rediscovery of BAT
in adult humans, has fueled the study of BAT as a
putative therapeutic approach to manage the growing
rates of obesity and metabolic syndromes. Notably,
many of the beneficial consequences of BAT activity
overlap with metabolic biomarkers of extended lifespan
and healthspan. In this review, we provide background
about BAT including the thermogenic program, BAT’s
role as a secretory organ, and differences between BAT
in mice and humans. We also provide details on BAT
during aging, and perspectives on the potential of
targeting BAT to promote lifespan and healthspan.
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Introduction

An unfortunate reality of modern medicine is that
lifespan has increased more rapidly than healthspan
(i.e., the period of life an individual is free of frailty
and disease). This discrepancy has important geopoliti-
cal and economic ramifications since age-related dis-
eases including type 2 diabetes, dementias, and cancers
are responsible for the majority of healthcare costs in
developed nations (Goldman et al. 2013; Kirkland
2016). Recently, there has been a shift towards focusing
research efforts towards extending healthspan because
of (i) the high maintenance cost of age-related diseases,
(ii) the cost of finding a cure for one specific disease
which in many cases only marginally would extend
lifespan, and (iii) the fact that people do not want to live
a third of their lives frail with diseases. Because of this,
the “Geroscience Hypothesis” has been proposed
(Austad 2016). The basis of this hypothesis is that it is
cheaper and more efficient to target the fundamental
processes of aging, thereby affecting many age-related
diseases simultaneously, than to narrowly focus on one
disease at a time.

Interestingly, one could propose a similar hypothesis
for obesity and poor glycemic control since both are
predictors of age-related diseases such as type 2 diabe-
tes, cancers, dementias, cardiovascular diseases, and
neuromuscular diseases, as well as others. Indeed, it is
well-recognized that obesity and poor glycemic control
over a period of time mimics an aged phenotype. Un-
fortunately, both obesity and metabolic syndromes are
increased worldwide. Therefore, any therapeutic option
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that can target aging, obesity, and metabolic dysfunction
is in high demand.

Since the rediscovery of BAT in adult humans
(Cypess et al. 2009; Nedergaard et al. 2007; van
Marken Lichtenbelt et al. 2009; Virtanen et al. 2009),
many laboratories have attempted to utilize BAT to
combat obesity and improve glycemic control. Al-
though BAT is a small tissue, its metabolic effects on
the body cannot be understated. For instance, in a cold-
acclimated mouse, over 50% of consumed lipids and
glucose are oxidized in BAT (Cannon and Nedergaard
2011; Golozoubova et al. 2004). Impressively, BAT has
also been reported to have such a high rate of insulin-
independent glucose uptake that cold acclimation can
normalize glycemia in streptozotocin-treated rats
(Takano et al. 1987). Interestingly, several studies have
described improved BAT activity in long-lived animals
(Darcy et al. 2016; Li et al. 2003;Ma et al. 2014; Ortega-
Molina et al. 2012; Shabalina et al. 2017; Vatner et al.
2018), and diminished BAT activity in short-lived ani-
mals (Li et al. 2003; Wang et al. 2018), raising the
possibility that BAT not only is integral to metabolism,
but the aging process as well. This review is aimed to
describe the function and physiology of BAT, and its
role in aging.

Brown adipose tissue

Brown adipose tissue overview

In the classical view, adipose tissue is divided into two
main categories, energy-storing white adipose tissue
(WAT), and energy-expending BAT. However, this view
is oversimplified as we now know there exists at least a
third type of adipose tissue (termed beige/brite adipose
tissue), and that there is tremendous heterogeneity not
only within an adipose depot, but between different
depots (e.g., subcutaneous and visceral WAT). Since
WAT’s role in aging and adipose tissue heterogeneity
are not the focus of this review, interested readers are
directed to several relevant reviews that cover these
topics in more detail (Lynes and Tseng 2018;
Martyniak and Masternak 2017; Schosserer et al.
2018; Stout et al. 2017).

Developmentally, in mice, BAT comes from a meso-
derm lineage that is paired box 7 (PAX7) (Lepper and
Fan 2010) and myogenic factor 5 (MYF5) (Seale et al.
2008) positive. This lineage gives rise to both brown

adipocyte precursors and myocyte precursors, and is
separate from the MYF5-negative lineage that white
adipocyte precursors arise from (Seale et al. 2008).
Adipose tissue precursors are referred to as
preadipocytes. It is worth noting that preadipocytes are
replicative, whereas adipocytes are postmitotic. As with
white preadipocytes, brown preadipocytes differentiate
into mature adipocytes through the coordinated regula-
tion of peroxisome proliferator-activated receptor gam-
ma (PPARγ), and various isoforms of CCAAT/
enhancer-binding proteins (C/EBPs) (Farmer 2006).
Specific to brown adipocytes is the transcriptional con-
trol of the thermogenic program which is regulated by
peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha (PGC-1α) (Puigserver et al. 1998) and
PR domain containing 16 (PRDM16) (Seale et al.
2007). The control of the thermogenic gene program
extends beyond PGC-1α and PRDM16 and includes
other transcription factors, as well as input from nuclear
receptors such as the thyroid hormone receptor
(Cassard-Doulcier et al. 1994) and retinoic acid receptor
(Alvarez et al. 1995). Although brown preadipocytes
and adipocytes constitute the majority of BAT, other cell
types such as immune cells, endothelial cells, and he-
matopoietic cells are also present in the tissue microen-
vironment (as reviewed in Lynes and Tseng 2018).

BAT is characterized by dense mitochondria along
with a high degree of innervation and vascularization.
Moreover, BAT contains multilocular lipid droplets,
compared with the single, large unilocular lipid droplet
present in WAT. Teleologically, these traits are straight-
forward given the need for high vascularization to bring
nutrients to BAT and to dissipate heat throughout the
body, innervation to trigger the thermogenic program
(detailed below), and smaller lipid droplets that have an
increased surface area in order to be mobilized for fuel
more readily. The last, and arguably most defining char-
acteristic of BAT is the presence of uncoupling protein 1
(UCP1) which is described in greater detail below.

The thermogenic program

The production of ATP is necessary for all cells to
survive. While some ATP is formed through the catab-
olism ofmacromolecules, the overwhelmingmajority of
ATP is derived from the electron transport chain (ETC).
Here, H+ is displaced in the inner mitochondrial mem-
brane space against chemical (acidic pH) and electrical
(positive charge) gradients. The protons are able to
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move back to the mitochondrial matrix through complex
V of the ETC, which harnesses the released energy to
form ATP through the fusion of ADP and Pi. UCP1 is
the essential protein in non-shivering thermogenesis
because it “uncouples” the ETC by providing a means
for protons to move down the electrochemical gradient
without producing ATP (hence “uncoupling” oxidative
phosphorylation from ATP production). The flow of
protons through UCP1 still releases chemical energy,
although the end product is heat rather than ATP. Be-
cause UCP1 disrupts the production of ATP, its expres-
sion is tightly regulated in brown and beige adipocytes,
and thus, UCP1 serves as the defining marker for the
thermogenic adipocytes. The expression of UCP1 is
tightly regulated, combining epigenetic factors
(JMJD1a and HDAC3) (Abe et al. 2015; Emmett et al.
2017), coordinated transcriptional machinery (PPARγ
and PGC-1α) (Puigserver et al. 1998; Sears et al. 1996),
and hormonal queues (thyroid hormone) (Cassard-
Doulcier et al. 1994). The detailed mechanism by which
UCP1 is transcriptionally regulated has been reviewed
thoroughly in other reviews (Cannon and Nedergaard
2004; Lynes and Tseng 2015; Sambeat et al. 2017;
Villarroya et al. 2017b).

Seminal studies have been published in recent years
that highlight UCP1-independent forms of thermogene-
sis. These include the creatine-based substrate cycle
present in both brown and beige adipocytes (Bertholet
et al. 2017; Kazak et al. 2015, 2017), and the ATP-
dependent calcium cycling present in beige adipocytes
(Ikeda et al. 2017). These studies begin to explain the
discrepancies found between UCP1-null mice and BAT-
deficient mice (Cohen et al. 2014; Enerback et al. 1997;
Feldmann et al. 2009; Ohno et al. 2013), and underscore
just how much potentially remains unknown about ther-
mogenic adipose tissue.

As for the thermogenic circuit itself, signaling at the
tissue level begins with the release of norepinephrine
(NE) from the sympathetic nervous system which inter-
acts with β3-adrenergic receptors on brown adipocytes.
Because of this, adrenergic stimulants have been sought
after to activate BAT in humans; however, β-adrenergic
agonists have unwanted side effects such as tachycardia
and hypertension. Therefore, drugs that stimulate BAT
without these unwanted side effects are in demand. The
β3-adrenergic receptors are associated with a G protein-
coupled receptor (GPCR) of the Gs subtype
(Granneman 1988; Marette and Bukowiecki 1991),
which activates adenylate cyclase, in turn raising

cytosolic cAMP levels and activating protein kinase A
(PKA) (Thonberg et al. 2001). PKA has several func-
tions in the thermogenic pathway including activating
mitogen-activated protein kinase (MAPK) p38 (Cao
et al. 2001), and raising the cellular level of free fatty
acids (FFAs). The rise in FFAs comes about through
PKA-mediated phosphorylation of perilipin (Chaudhry
and Granneman 1999), which causes the release of
comparative gene identification-58 (CGI-58) that can
in turn activate adipose triglyceride lipase (ATGL)
(Granneman et al. 2007, 2009). ATGL is the major
lipase responsible for the breakdown of triglycerides
into diglycerides in BAT (Zimmermann et al. 2004).
The breakdown of triglycerides into free fatty acids
(FFAs) serves two main functions: the first function of
FFAs in the thermogenic program is to be shuttled into
the mitochondrial matrix to undergo β-oxidation with
the resulting acetyl-CoA being shuttled into the tricar-
boxylic acid (TCA) cycle. Both β-oxidation of fatty
acids and the TCA cycle generate ATP, but also provide
a continuous flow of reduced electron carriers for the
ETC (Cannon and Nedergaard 2004). The second func-
tion of FFAs is to act as activators of UCP1 (Shabalina
et al. 2004). Specifically, UCP1 acts as a H+/long-chain
fatty acid symporter (Fedorenko et al. 2012), meaning
fatty acids are needed for UCP1 activity. Conversely to
FFAs, purinergic nucleotides bind and inhibit UCP1
action (Shabalina et al. 2004).

Secretory function of BAT

Much of the current literature on BAT focuses on its
beneficial effects on energy dissipation and fuel utiliza-
tion due to its ability to act as a metabolic sink. An
emerging area of BAT research, however, is on BAT as
an endocrine organ. These BAT-secreted mediators, or
“batokines,” can be protein peptides, metabolites, or
miRNAs (Villarroya et al. 2017a). Many of the BAT-
secreted factors that act in an autocrine/paracrine fashion
also aid in modeling the BAT microenvironment for
optimal function. For example, vascular endothelial
growth factor A (VEGFa) and nitric oxide (NO) pro-
mote vascularization and increased blood flow (Asano
et al. 1999; Nisoli et al. 1997), while fibroblast growth
factor 2 (FGF2) and nerve growth factor (NGF) increase
the sympathetic tone and preadipocyte recruitment in
BAT (Nechad et al. 1994; Nisoli et al. 1996; Yamashita
et al. 1994), all of which are necessary during thermo-
genic activation of BAT. Recently, our laboratory has
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identified the lipid mediator 12,13-diHOME which is
secreted from BAT, and has cold and exercise mimetic
properties by activating BAT in an autocrine fashion.
12,13-diHOME acts on BAT and skeletal muscle by
stimulating fatty acid uptake by increasing translocation
of CD36 and FATP1 to the cell membrane (Lynes et al.
2017; Stanford et al. 2018).

Beyond autocrine/paracrine action, BAT has been
demonstrated to elicit endocrine actions as well. A direct
way to identify secretion of batokines is through BAT
transplantation studies. For example, BAT transplanta-
tion has been shown to improve glycemia in models of
type 1 diabetes (both streptozotocin (STZ)-induced and
autoimmune-mediated) (Gunawardana and Piston 2012,
2015). In models of type 2 diabetes (both high-fat diet–
induced and ob/ob), mice receiving BAT transplantation
have increased energy expenditure and improved glucose
tolerance (Liu et al. 2013, 2015; Stanford et al. 2013; Zhu
et al. 2014). It appears that BAT can also impact the
central nervous system as one study reported that BAT
transplantation increased the sympathetic tone to the
endogenous BAT, WAT, heart, and muscle of recipient
mice (Zhu et al. 2014). Other endocrine factors secreted
from BAT include insulin-like growth factor-binding
protein 2 (IGFBP2) and WNT10b which stimulate bone
formation (Rahman et al. 2013). It would be particularly
interesting to know if increased BAT function in post-
menopausal women is able to slow the progression of
osteoporosis by secretingWNT10b.Moreover, it appears
that miRNAs are secreted from BAT. For example, mice
with cold-stimulated BATshowed a decrease in miR-92a
compared to mice housed at room temperature (Chen
et al. 2016). Interestingly, humans showed an inverse
relationship between BAT activity and serum levels of
miR-92a, suggesting that miR-92a may serve as a bio-
marker of BAT activity.

One particularly important endocrine target of BAT is
the liver. While the liver is the main site of production of
FGF21 (Markan et al. 2014), BAT is capable of contrib-
uting significantly to the circulating levels of FGF21
under adrenergic stimulation (Hondares et al. 2011).
Moreover, cold exposure not only causes an increase in
the secretion of Fgf21 from BAT, but it represses hepatic
Fgf21 expression. More recently, the use of the adipose
tissue-specific Dicer knockout mouse model (ADicer
KO) has demonstrated that BAT secretes at least one
miRNA that acts on the liver and regulates Fgf21 expres-
sion. For example, ADicer KO mice have reduced levels
of miR-99b in circulating exosomes, which can be

rescued by transplanting BAT from wild-type mice
(Thomou et al. 2017). Moreover, treatment of ADicer
KO mice with exosomes containing miR-99b dramati-
cally lowered hepatic Fgf21 levels, suggesting that BAT-
secreted miR-99b is a regulator of hepatic Fgf21.

Interestingly, there appears to be endocrine crosstalk
between BAT and the female reproductive tract. The
classical example of this is observed in ovariectomized
mice that develop obesity, which appears to be at least
partially mediated through loss of BAT activity
(Bartness and Wade 1984; Pedersen et al. 2001). This
effect may be related to the estrogen receptors present in
BAT (Wade and Gray 1978). In another example, BAT
transplantation in a rat model of polycystic ovary syn-
d r om e r e v e r s e d p o l y c y s t i c o v a r i e s a n d
hyperandrogenism, as well as improved fertility by re-
versing anovulation (Yuan et al. 2016). Recently, re-
searchers were investigating ways to lower the well-
documented postmenopausal increase in circulating the
follicle-stimulating hormone (FSH) when they discov-
ered that inhibiting FSH action through the use of an
antibody specific to the β-subunit of FSH caused an
increase in BAT activity (Liu et al. 2017). This study
demonstrated that the postmenopausal increase in circu-
lating FSH not only plays a role in alterations in adipos-
ity and bone density, but also plays a role in the observed
decrease in metabolic rate and BAT function during this
stage of life. For decades, the so-called trade-offs be-
tween reproduction and longevity have been studied (for
review please see Bartke et al. 2013). Although BAT’s
function in metabolism and as an endocrine organ may
play an important role in longevity, it is possible that
BAT plays a yet undetermined role in the trade-off
between longevity and reproduction.

Brown adipose tissue: of mice and men

In attempting to harness the function of BAT as a ther-
apy, it is important to briefly discuss the similarities and
differences of BAT between mice and humans. In mice,
the largest depot of BAT resides in the interscapular
region; however, BAT is also present in the cervical,
axillary, paraaortic, cardiac, and perirenal regions
(Lynes and Tseng 2018). BAT in humans is largely
present in the supraclavicular region, but is also present
in the cervical, axillary, paraaortic, paravertebral, and
perirenal regions (Lynes and Tseng 2018; Ravussin and
Galgani 2011; Sacks and Symonds 2013). Interestingly,
a supraclavicular BAT depot has recently been described
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in mice (Mo et al. 2017). Interscapular BAT is present in
human babies; however, this depot disappears during
adolescence. In humans, the gold standard for measur-
ing BAT location and activity is the use of positron
emission tomography coupled with computed tomogra-
phy (PET/CT) during the infusion of radiolabeled 18-
fluorodeoxyglucose (18FDG), which takes advantage of
the high rate of glucose uptake in BAT following stim-
ulation with a “cold vest” or a β3-agonist such as
mirabegron (Carpentier et al. 2018; Cypess et al.
2015). However, glucose uptake does not necessarily
reflect thermogenic activity of BAT, and the use of
18FDG to estimate total volume of BAT has led to vastly
different estimates of BAT volume in humans ranging
from grams to kilograms (reviewed in Carpentier et al.
2018). Therefore, more accurate methodologies for de-
tecting BAT activity in humans are highly sought after.
In addition to additional imaging methods, such as
magnetic resonance imaging (MRI), single photon
emission-computed tomography (SPECT), ultrasound,
and infrared imaging (Cypess et al. 2014), finding cir-
culating biomarkers that reflect the activity level BAT
provides cost-effective and easily accessible ways for
both clinical and research purposes. Despite technolog-
ical shortcomings, we do know that BAT is present in
humans, and can significantly contribute to their metab-
olism. For example, spending several hours a day over a
10-day period at 15 °C has been shown to dramatically
increase the glucose infusion rate (GIR) during a
euglycemic clamp study of patients with type 2 diabetes
(Hanssen et al. 2015).

Brown adipose tissue and aging

Changes in brown adipose tissue during aging

Themost easily observed alteration in BAT during aging
in both humans and mice is a loss of both tissue mass
and activity, and a decrease in white fat browning
(Cypess et al. 2009; Goncalves et al. 2017). The loss
of thermogenic adipose tissue can be attributed to sev-
eral external and internal factors. For example, forkhead
box protein A3 (FOXA3) expression is increased in
visceral fat during aging, and is reported to reduce
BAT mass and beiging capacity of WAT (Ma et al.
2014). FOXA3 KO mice are long-lived and have in-
creased BAT activity late into life, and are protected
from age-related insulin resistance and high-fat diet–

induced increases in visceral adiposity (Ma et al.
2014). Because adipocytes are postmitotic, having a
large pool of preadipocytes is necessary to maintain
tissue mass. Although most work with replicative senes-
cence has been performed inWAT, there is evidence that
replicative capacity and UCP1 expression is also greatly
reduced during aging (Florez-Duquet et al. 1998). Sev-
eral long-lived mouse models have less senescence and
greater preadipocyte differentiation capacity in their
WAT (Stout et al. 2014). It is of interest to know if this
phenotype extends to BAT as well.

As with all tissues in the body, resident immune cells
in BAT vary based on life stage. This is important be-
cause immune cells have been shown to play a large role
in the thermogenic activity of BAT. For example, sym-
pathetic neuron-associatedmacrophages (SAMs) are able
to chelate NE from brown adipocytes (Pirzgalska et al.
2017), thereby decreasing BATactivity. It is worth noting
that the immune cell function of BAT and WAT appears
to have some similarities (such as infiltration of classical-
ly activated macrophages during obesity and aging);
however, there are notable differences. For example,
during aging and obesity, WAT classically secretes IL-6
as a pro-inflammatory cytokine. BAT, however, secretes
IL-6 as an insulin sensitizer (Stanford et al. 2013) similar
to IL-6 secretion from skeletal muscle (Pal et al. 2014).
Moreover, BAT has the potential to secrete chemokines
such as CXCL14 to attract alternatively activated macro-
phages (Cereijo et al. 2018).

A final and important way that BAT function can be
diminished is through mitochondrial dysfunction. As
with other tissues, there is a clear decline in mitochon-
drial function in adipose tissue during aging and obesity
(Hallgren et al. 1989; Mennes et al. 2014). Moreover,
reactive oxygen species (ROS) that are produced in the
ETC can easily cause damage to the ETC components,
and can oxidize the mitochondrial membrane lipids
(causing a decrease in membrane potential), both of
which lead to decreased respiratory function. Regard-
less, it is interesting that BAT-specific mitochondrial
adaptations closely mirror those that are believed to be
a mechanism behind life extension following calorie
restriction (CR) (reviewed in Guarente 2008). For ex-
ample, the major sites of ROS production in the mito-
chondria are complexes I and III of the ETC due to
electron “stalling” (Barja 2007; Barros et al. 2004;
Kushnareva et al. 2002; Pamplona and Barja 2007). A
way that CR inadvertently reduces ROS is by increasing
the use of lipids as metabolic fuel. The increased
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oxidation of lipids is preferential in terms of ROS pro-
duction because oxidizing lipids produces a higher ratio
of reduced FADH to NADH, which bypasses complex I
of the ETC, and instead allows electrons to enter the
ETC through complex II (Guarente 2008). Moreover,
increased metabolic rate and mitochondrial uncoupling
in isolated mitochondria from myocytes have been pos-
itively associated with increased longevity (Speakman
et al. 2004), which aligns with the “Uncoupling to
Survive Hypothesis” (Brand 2000). Whether this spe-
cific phenomenon holds true in mitochondria isolated
from BAT of long-lived mice or humans remains to be
elucidated, though studies provided below suggest it
plausible. For completeness, it is worth mentioning that
the Uncoupling to Survive Hypothesis may only apply
to mammals since the opposing Free Radical Theory of
Aging (Harman 1956) still applies when examining
lower organisms such as flies (Farmer and Sohal
1987). Moreover, the use of an artificial mitochondrial
uncoupler (2,4-dinitrophenol, DNP) increased the met-
abolic rate in zebra finch, but did not extend longevity
(Stier et al. 2014). Despite this, it seems that mammals
do benefit from increased uncoupling, and evidence
suggests this may also extend to humans, since genetic
variation in the human UCP1 gene is associated with
longevity (Rose et al. 2011a, b).

Brown adipose tissue in long-lived mice

There is a dramatic falloff in BAT activity during aging
and obesity (Cypess et al. 2009; van Marken Lichtenbelt
et al. 2009; Virtanen et al. 2009). The intertwining aspects
of BAT, aging, and obesity is illustrated particularly well
in a study which used mouse models of progeria, extend-
ed longevity, and diet-induced obesity to show an overall
downregulation of BAT miRNA expression in progeria
and in obese animals, which was opposite to the upreg-
ulation of BAT miRNA in a longevity model (Oliverio
et al. 2016). A mouse model in which BAT aids in
extending longevity is the overexpression of Pten. The
authors of this study reported an increase in BAT activity
which presumably aided in the observed increases in
energy expenditure, decreased adiposity, and improved
glucose homeostasis of these animals (Ortega-Molina
et al. 2012). More recently, mice lacking the regulator
of G protein signaling 14 (RGS14) were found to be
long-lived, which was at least partially due to enhanced
BAT function (Vatner et al. 2018).

Particularly useful mammalian models for dissecting
mechanisms of extended lifespan and healthspan are
those that have alterations in the somatotropic axis
(growth hormone and IGF-1). This includes the long-
lived Ames dwarfs (Brown-Borg et al. 1996) and
growth hormone receptor knockout (GHRKO) mice
(Coschigano et al. 2000), and the short-lived bovine
growth hormone (bGH) transgenic mice that overex-
press growth hormone (Bartke 2003; Kopchick et al.
2014). Although improved glucose homeostasis has
been a major focus of these animals, recent years have
suggested that alterations in energy metabolism (e.g.,
increased energy expenditure) may also play a pivotal
role in their longevity (Bartke and Darcy 2017). In the
early 2000s, it was reported that GHRKO mice have an
enlarged interscapular BAT depot and increased expres-
sion of Ucp1, as well as increased expression of Fgf21
(Li et al. 2003). Interestingly, Ucp1 expression is lower
in bGH mice, suggesting that there is a negative rela-
tionship between circulating growth hormone and Ucp1
expression. Interestingly, microarray data fromGHRKO
mice at 6 months of age showed an increase in genes
related to the mitochondria and metabolism, and a de-
crease in genes expressed by dendritic cells and macro-
phages (Stout et al. 2015).

The Ames dwarf mouse is long-lived due to a
recessively-inherited Prop1 loss-of-function mutation
that results in severe hormonal deficiencies (Brown-
Borg et al. 1996). These animals lack production of
growth hormone, T4, and prolactin from the anterior
pituitary; therefore, Ames dwarf mice are also deficient
in circulating IGF-1 and T3. Despite severe hypothy-
roidism, Ames dwarf mice have highly active BAT
compared to their littermates as observed through de-
pleted lipid stores, increased BAT tissue weight, in-
creased expression of genes related to thermogenesis
and lipid metabolism, and increased oxygen consump-
tion and energy expenditure (Darcy et al. 2016, 2018;
Westbrook et al. 2009). Surgical removal of BAT in
Ames dwarf mice normalizes their oxygen consumption
to that of control mice, while housing dwarf mice at
thermoneutrality normalizes their lipid stores, genes
expression, and oxygen consumption to that of control
mice (Darcy et al . 2016, 2018) . Moreover,
thermoneutral housing and surgically removing BAT
cause a mild decrease in insulin sensitivity in Ames
dwarf mice, suggesting their BAT plays a role in insulin
sensitivity which is thought to be a major contributor to
their extended longevity.
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Conclusions and perspectives

When maximally stimulated, BAT turns on the anabo-
lism and catabolism of macromolecules. The reason for
this is that BAT uniquely dissociates oxidative phos-
phorylation and ATP production in order to produce
heat. Because of BAT’s unique metabolic phenotype to
act as a metabolic sink, researchers have turned to BAT
to combat the growing obesity and diabetes epidemics
plaguing the developed world. Of course, the overlap
with obesity and aging is not lost, and so there has also
been interest in BAT’s role in delaying the underlying
processes of aging (summarized in Fig. 1). Particularly,
activating BATappears to be a possible means to reverse
the postmenopause and post-andropause decline in met-
abolic rate that is accompanied by increased visceral
adiposity. While a direct link between increased BAT
activity and longevity can be appreciated (and has been
demonstrated in several studies), it is important to not
forget the endocrine function of BAT. This review
highlighted some of the known factors secreted from
BAT; however, more have been described in the litera-
ture and many more unknown factors exist. Alterations
in the secretory function of BAT during aging have been
severely understudied, and are often unmentioned from
studies that perform BAT removal surgeries which result
in worsened metabolic phenotypes and shortened lon-
gevity. Given that BAT secretes multiple factors from

miRNAs to peptide and lipid metabolites, it is plausible
to hypothesize that secreted factors from activated BAT
could influence both lifespan and healthspan. Regard-
less, when evaluating metabolic phenotypes of longev-
ity, it is crucial to evaluate BATactivity as it is likely that
BAT impacts longevity in a multifaceted manner.
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