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Abstract
Background  Randomised, double-blind, clinical trial methodology minimises bias in the measurement of treatment efficacy. 
However, most phase III trials in non-orphan diseases do not include individuals from the population to whom efficacy findings 
will be applied in the real world. Thus, a translation process must be used to infer effectiveness for these populations. Current 
conventional translation processes are not formalised and do not have a clear theoretical or practical base. There is a growing 
need for accurate translation, both for public health considerations and for supporting the shift towards personalised medicine.
Objective  Our objective was to assess the results of translation of efficacy data to population efficacy from two simulated 
clinical trials for two drugs in three populations, using conventional methods.
Methods  We simulated three populations, two drugs with different efficacies and two trials with different sampling protocols.
Results  With few exceptions, current translation methods do not result in accurate population effectiveness predictions. 
The reason for this failure is the non-linearity of the translation method. One of the consequences of this inaccuracy is that 
pharmacoeconomic and postmarketing surveillance studies based on direct use of clinical trial efficacy metrics are flawed.
Conclusion  There is a clear need to develop and validate functional and relevant translation approaches for the translation 
of clinical trial efficacy to the real-world setting.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4080​1-019-0159-z) contains 
supplementary material, which is available to authorized users.
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Key Points 

The efficacy of treatments can be assessed in ran-
domised, double-blind, clinical trials to minimise bias.

Most of these clinical trials do not include individuals 
from the population to whom efficacy findings will be 
applied in the real world, so the effectiveness of treat-
ments must be ‘translated’ to these populations.

We show that current translation methods do not provide 
accurate predictions for effectiveness, highlighting the 
need to develop and validate functional and relevant 
translation approaches for the translation of clinical trial 
efficacy to the real-world setting.

1  Introduction

Randomised, double-blind clinical trial methodology, if 
well-implemented, minimises bias in the measurement 
of  treatment efficacy and allows any difference in out-
comes to be attributed to the treatment effect. This pro-
vides an unbiased estimate of the size of the difference in 
outcome rates between patients in the treated and control 
groups. Clinical trials are designed to answer the question, 
‘is the tested treatment better than the control?’ and to 
establish a causal link between receiving the tested treat-
ment and the difference in outcome rates. The estimate of 
the size of this difference provides a quantitative estimate 
of how much better the treatment is for a group of patients 
or, even, a given patient [1, 2].

The patients in phase III clinical trials are included from 
the treatment target population using eligibility criteria, 
which often lead to a ‘selected’ trial population that is not 
always representative of the target population [3–10]. For 
example, various racial/ethnic populations, elderly people 
and women were shown to be underrepresented in 59 trials 
in heart failure [11]. In breast, colorectal, lung and pros-
tate cancer clinical trials sponsored by the National Cancer 
Institute, participation varied significantly across racial/
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ethnic and age groups, and in cardiovascular clinical trials 
funded by the National Heart, Lung, and Blood Institute, 
women were reported to be underrepresented [12, 13].

Attempts have been made to correct for this via specific 
trial designs, appropriate data analysis tools or using a 
pragmatic trial approach with more permissive eligibility 
criteria, but success has been limited [8, 14, 15]. There 
is heterogeneity between results from large, multicentre 
international trials assessing the same treatment, sug-
gesting that the trial populations differ. For example, in 
a systematic review of remifentanil compared with short-
acting opioids for general anaesthesia, the observed overall 
frequency of postoperative nausea in 11 fentanyl control 
groups (N = 3048) ranged from 14 to 81% [16]. In the 
two largest trials (N = 2437; N = 4787), the frequencies 
were statistically significantly different (25% and 32%, 
p = 0.0002), implying heterogeneity in the patients’ char-
acteristics or the practice of care. Another example is the 
reported heterogeneity of the absolute benefit (AB) esti-
mates from clinical trials assessing the same drug class 
[5, 17]. The results from 12 trials assessing the efficacy 
of β-blockers versus placebo or no β-blocker in reducing 
1-year mortality rate in post-myocardial infarction patients 
were published between 1975 and 1990 (Table 1) [18–31]. 
The AB ranged from 0.0155 (an increase in mortality) 
to − 0.0530 (a reduction), and the corresponding number 
needed to treat (NNT) ranged from − 421 to 60. If we con-
sider only the three trials with a p value < 0.05, the range 
for the AB is − 0.0167 to − 0.0530 and 19–60 for the NNT. 
A meta-analysis of these trials showed heterogeneity for 
AB but not for relative risk (RR) [17].

This heterogeneity makes it difficult to generalise these 
trial results to the whole population. Thus, a translation 

process must be used to extrapolate the efficacy for these 
populations. The goal of the translation process, which is 
sometimes termed the ‘transportability’ process, is to predict 
the impact of the tested treatment on the population of inter-
est in a real-world setting, using the clinical trial results [32]. 
This translation process is integrated in a broader framework 
known as health technology assessment, which assesses the 
impact, safety and cost of a treatment on the health status of 
the target population.

Generally, the endpoints in phase III clinical trials reflect 
clinical outcomes that are binary variables, such as death or 
occurrence of a cancer relapse. Thus, the efficacy estimate 
is calculated using the rate of outcomes observed in the con-
trol group (Rc) and in the experimental (treated) group (Rt). 
These are analysed using summary metrics (or statistics) of 
treatment efficacy, such as the odds ratio (OR), RR, relative 
benefit, AB and NNT. See the Electronic Supplementary 
Material (ESM) for more information.

The purpose of this article was to compare estimated pop-
ulation-level benefit, based on summary clinical trial data, 
as is usually done, with that based on the true efficacy in the 
population of interest, translated from the efficacy observed 
in clinical trials.

The process of translating clinical trial findings to a 
given population involves using the trial efficacy metrics to 
compute population benefit metrics. In this article, we have 
limited our assessment to NPEpop and NNTpop, which we 
think are the most relevant population benefit metrics, as 
shown in the ESM. We assessed whether these population 
metrics derived from the clinical trial efficacy metrics could 
accurately predict real-world effectiveness over a given time.

Table 1   Results from trials 
assessing β-blockers for the 
prevention of death (1-year 
mortality) in post-myocardial 
infarction patients (data 
standardised at 1 year of 
follow-up)

Bold numbers indicate statistically significant p values. Italic numbers indicate negative NNT
AB absolute benefit, NNT number needed to treat, OR odds ratio, Rc risk in control group, RR relative risk, 
Rt risk in treated group
a Event rates are presented as population size/number of events

Beta-blocker Treated group Control group p Efficacy metrics

Event ratea Rt Event ratea Rc RR OR AB NNT

Acebutolol [18] 17/298 0.06 34/309 0.11 0.027 0.52 0.49 − 0.0530 19
Alprenolol [19] 5/114 0.04 8/116 0.07 0.41 0.64 0.62 − 0.0251 40
Metoprolol [20] 65/1195 0.05 62/1200 0.05 0.76 1.05 1.06 0.0027 − 367
Metoprolol [21] 25/154 0.16 31/147 0.21 0.28 0.77 0.73 − 0.0485 21
Oxprenolol [22] 57/858 0.07 45/883 0.05 0.17 1.30 1.33 0.0155 − 65
Pindolol [23] 36/263 0.14 33/266 0.12 0.66 1.10 1.12 0.0128 − 78
Practolol [24] 45/1533 0.03 70/1521 0.05 0.01 0.64 0.63 − 0.0167 60
Propranolol [25, 26] 70/1916 0.04 115/1921 0.06 0.001 0.61 0.60 − 0.0233 43
Propranolol [27] 20/193 0.10 19/195 0.10 1.07 1.06 1.07 0.0062 − 162
Propranolol [28] 25/278 0.09 37/282 0.13 0.12 0.69 0.65 − 0.0413 24
Sotalol [29] 44/873 0.05 28/583 0.05 0.84 1.05 1.05 0.0024 − 421
Timolol [30, 31] 72/945 0.08 106/939 0.11 0.006 0.67 0.65 − 0.0367 27
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2 � Materials and Methods

We used fictive individual patient data to simulate the trans-
lation process for clinical trial efficacy to real-life effective-
ness because generally only aggregated data are publically 
available. Aggregated data provide estimates for the ‘aver-
age’ patient enrolled in the clinical trial, who is probably not 
representative of patients in the real world since higher-risk 
patients are rarely enrolled in phase III clinical trials. Hence, 
the results from these analyses should be assessed qualita-
tively and not quantitatively.

2.1 � Simulation Framework

We simulated three populations, two drugs with different 
efficacies, and two trials with different sampling protocols.

2.1.1 � Populations

Each population, A, B and C, comprised 100,000 individu-
als who were all assumed to have the same disease, thus 
they were all at risk of the same clinical event, but the event 
rates in untreated individuals (Rc) differed in each popula-
tion (Fig. 1). The distributions of Rc differed, but the average 
Rc was the same for populations A and B (0.35) and was 
lower for population C (0.22). The effect of the two drugs 
on the clinical outcome was modelled with the Wang model 
(see Sect. 2.2). The population metrics for the beneficial 
effects of drugs 1 and 2 were then computed for the three 
populations.

2.1.2 � Drugs

In the simulation, both drugs 1 and 2 had the same mode 
of action but drug 1 was more potent than drug 2 (Table 2) 
[33].

2.1.3 � Clinical Trials

Two clinical trials were simulated in population A, one for 
each drug, to obtain two sets of summary trial metrics using 
different sampling processes. Trial 1 should have been run 
on a random sample of population A; however, since ran-
dom variations and confidence intervals were not taken into 
consideration in our approach, the whole population A was 
used in trial 1, not a random sample. Hence, this can be 
considered as a random sample with the same average Rc 
as the overall population, without the random variations. A 
non-random sample from population A with an average Rc 
that was lower than that for the overall population was used 
in trial 2.

2.2 � The Wang Model

The Wang model is the simplest model of drug action on 
a clinical outcome that takes into consideration the main 
features of both the drug’s pharmacological action on its 
biological target and the consequences on the course of a 
disease [34]. It assumes that the probability of the outcome 
under treatment (or the event rate, Rt) follows a logistic func-
tion of the drug’s pharmacodynamic effect with two param-
eters (β0, the intercept, and S, the coefficient of E), which 
can be interpreted as the scale of the drug effect size [35]. 
See the ESM for more details.

2.3 � Calculations

To assess any translation biases arising from the source of 
data used for the efficacy metrics calculation, we compared 

Fig. 1   Distribution of risk without treatment (Rc) in three simulated 
populations, A, B and C, each comprising 100,000 individuals who 
were all assumed to have the same disease and, therefore, were all at 
risk of a clinical event but the event rates in the untreated individuals 
(Rc) differed in each population

Table 2   Summary of characteristics of drugs 1 and 2 [33]

Gamma and stimulus are two parameters of the Hill equation. For the 
purposes of this demonstration, we assigned the units for the drug as 
milligrams
ED50 the amount of a drug that is therapeutic in 50% of the individu-
als or animals in which it is tested, Emax the amount of a drug that 
produces the maximum therapeutic effect

Parameter Drug 1 Drug 2

Dose (mg) 3.5 5
Gamma 3 2.7
ED50 (mg) 30 29
Stimulus 2 3
Emax (mg) 35 35
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the efficacy metrics of each of the two drugs (1) computed 
on the trial summary data (for the two trials with each of the 
two drugs), (2) computed on the three populations (for each 
of the two drugs) and (3) translated for the three populations 
from the trial summary data (for the two trials and the two 
drugs). More details about this process are provided in the 
ESM.

3 � Results

3.1 � Simulated Clinical Trials

The results from the four simulated clinical trials, which 
were assumed to be statistically significant, showed that the 
efficacy metrics differed in the two populations for the same 
drug (Table 3). The efficacy metrics for the least potent drug, 
i.e. drug 2, were less favourable in both trials.

3.2 � Results from Simulated Translation

The results from the simulated translation of results from 
clinical trials with drugs 1 and 2 are summarised in Table 3. 
Although the NPEpop should be constant for a given drug in 
a given population when translated using trial summary data, 
its value varied depending on the metric used to calculate it. 
For example, the NPEpop for drug 2 in population C, calcu-
lated from trial summary data, was 125% of the true value 
when calculated with AB from trial 1 and 356% and 535% of 
the true value when calculated with the RR and OR, respec-
tively, from the same trial. For NNTpop, the ratio varied from 
one population to another within the single trial, which could 
have been anticipated. The estimates of real-world effective-
ness metrics using the clinical trial efficacy metrics differed 

from the values calculated for the trial populations, with the 
exception of population A in trial 1 with both drugs, since 
the whole population was included in this trial. The number 
of prevented events (NPEs) and NNTs were under-predicted 
for drug 1 and over-predicted for drug 2 when the RRs and 
ORs from the clinical trials were used for the translation 
(Table 4). RR varies with Rc, and the RRs varied between 
trials and with the population (Fig. 2; Table 4). This varia-
tion was greater for drug 2, which was less efficacious than 
drug 1.

Table 5 summarises the values of estimated effectiveness 
metrics in populations A, B and C based on the trial efficacy 
metrics estimated from trial 1 for each of the two drugs. 
These data show that use of the trial efficacy metrics for 
inferring population benefit results in erroneous population 
metrics. For example, the observed RRs in trial 1 with drugs 
1 and 2 were 0.255 and 0.955, respectively. When these 
were used to translate to the three populations individually, 
we observed the same values for population A because the 
whole population was included in the trials, but the RRs for 
populations B and C were, respectively, 0.174 and 0.201 for 
drug 1 and 0.938 and 0.942 for drug 2. The bias was lowest 
when AB, computed with trial summary data, was used for 
the translation. The RR computed using trial 2 summary 
data differed from the RR for the true population A since 
trial 2 was run on a selected sample of population A (see 
the ESM).

4 � Discussion

The observed differences between trial efficacy metrics and 
real-world effectiveness metrics is due to differences in Rc 
distributions in trial and real-world populations. We dem-
onstrated that it is possible to translate an appropriate trial 

Table 3   Summary of efficacy 
metrics from two clinical trials 
for drugs 1 and 2

In trial 1, the whole population was included as it was not possible to include a randomised sample because 
the approach does not take into consideration random variations and, thus, confidence intervals. In trial 2, 
a non-randomised sample was selected, with a lower average risk in the untreated patients than that for the 
whole population
AB absolute benefit, N trial population size, NNT number needed to treat, OR odds ratio, Rc risk in control 
group, RR relative risk, Rt risk in treated group

Drug 1 Drug 2

Trial 1 (N = 100,000) Trial 2 (N = 52,963) Trial 1 (N = 100,000) Trial 2 
(N = 52,963)

Control group: Rc 0.351 0.195 0.351 0.195
Treated group: Rt 0.089 0.029 0.335 0.181
Efficacy metrics
 OR 0.358 0.181 0.978 0.945
 RR 0.255 0.150 0.955 0.929
 AB 0.261 0.166 0.016 0.014
 NNT 4 6 63 72
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efficacy metric to a population effectiveness metric if the 
trial is undertaken on a random sample of the population 
of interest. However, in most diseases, except rare (orphan) 
diseases, it is extremely difficult, if not impossible, to recruit 

patients into clinical trials who are truly representative of 
the population that will be treated. Although the clinical 
trial population is drawn from the treatment target popula-
tion, it is selected using eligibility criteria that result in a 

Table 4   Number of prevented 
events and number needed to 
treata, translated in populations 
A, B and C, using various trial 
efficacy metrics estimated using 
summary data from trials 1 and 
2, for drugs 1 and 2

Example of interpretation: the true NPE for population 2 and drug 2, directly computed on the Rc distribu-
tion in population 2 with the Wang model (see Sect. 2) is 1265. The NPE in this population with drug 2 
computed with the AB from trial 2 summary data is 1382. The ratio 1382/1265 in percent is 109%. It gives 
the value of the bias in estimating population C NPE with the AB computed on trial data. As it is often 
done in translation process, RR computed from trial summary data is used for translating the efficacy of 
new drug. In the considered case, this gives a translated NPE = 7084, thus a bias ratio = 560%
AB absolute benefit, N population size, NNT number needed to treat, NNTpop number needed to treat in the 
population, NPEpop number of prevented events in the population, OR odds ratio, RR relative risk
a The NPE and NNT are expressed as a percentage of the true values

Efficacy metric Drug 1 Drug 2

Trial 1 in population Trial 2 in population Trial 1 in population Trial 2 in popula-
tion

A B C A B C A B C A B C

NPEpop

 OR 313 282 105 335 302 507 429 313 535 548 400 684
 RR 285 257 148 325 293 492 285 208 356 448 327 560
 AB 100 90 151 63 57 96 100 73 125 87 64 109

NNTpop

 RR 100 111 107 88 97 94 100 137 130 64 87 83

Fig. 2   Variation of absolute benefit with risk without treatment for two drugs (1 and 2) in the same population A. a The absolute benefit (AB) as 
a function of the risk without treatment (Rc) in population A for drug 1: b AB as a function of Rc in population A for drug 2

Table 5   Comparison of 
the values for odds ratio, 
absolute benefit, relative risk 
and number needed to treat 
effectiveness metrics calculated 
for populations A, B and C 
and drugs 1 and using efficacy 
metrics from trial 1 for each 
drug

AB absolute benefit, NNT number needed to treat, OR odds ratio, RR relative risk

Drug 1 Drug 2

Trial 1 Population Trial 1 Population

A B C A B C

OR 0.182 0.182 0.124 0.165 0.932 0.932 0.908 0.927
AB 0.261 0.261 0.290 0.173 0.016 0.016 0.022 0.013
RR 0.255 0.255 0.174 0.201 0.955 0.955 0.938 0.942
NNT 4 4 3 6 63 63 46 79
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subpopulation of the treatment target population that does 
not have the same characteristics as the whole population; 
in particular, the Rc differs.

The translation issue has been explored both through a 
factual approach by comparing clinical trial results with 
observational data and through a theoretical statistical 
approach [1, 14, 36]. The factual approach produced results 
that were difficult to interpret because of the variability of 
postmarketing (phase IV) studies and their limited capability 
to manage bias. The theoretical statistical approach was not 
intuitive for the medical community and will require more 
work to provide a practical solution.

As mentioned, simulation is a simple way to explore 
translation, although it does not resolve the issue, particu-
larly when the models and simulated data have not been 
validated. However, since there is no alternative approach 
for exploring this issue, our results should be interpreted 
cautiously.

The NNT metric is generally used by teachers, regula-
tors, authors and pharmaceutical companies to benchmark 
treatments or assess the relative benefits of a treatment. The 
treatment with the lowest NNT is generally taken to be the 
most efficacious. It has been suggested that NNT ‘has that 
clinical immediacy’ (of clinical applicability), which is one 
reason why it is such a popular measure [37]. However, this 
is not true when the NNT is computed on clinical trial data 
for translation purposes or for comparing drug efficacies, as 
frequently occurs. We showed that the same drug in different 
trials can lead to different NNT values when the Rc for the 
trial populations differ and are different from those for the 
population of interest; therefore, the translated NNT should 
be interpreted cautiously. Several authors have warned 
against the sensitivity of NNT to factors that change baseline 
risk, e.g. patients’ characteristics, secular trends in incidence 
and case fatality and delay to event [38, 39]. The value of 
NNT is not the same if the treatment effect is immediate or 
if the effect is to delay an outcome rather than prevent it [40].

As mentioned, evidence exists that patients included in 
clinical trials, although taken from the overall target popula-
tion, are not representative of all patients to whom the new 
treatment will be prescribed. The main differences between 
the trial population and the real-world population are the risk 
of the outcome (Rc) and the presence of concomitant dis-
eases [5]. Although it is often assumed that the populations 
will be sufficiently similar to support the hypothesis that 
the new treatment will also be efficacious in the real-world 
population, we cannot extrapolate the size of the treatment 
effect from the clinical trial to the real-world population. 
Even when recruitment criteria focus on high-risk patients, 
it has been observed that trial patients are at lower risk than 
real-world ‘high-risk’ patients and the exclusion criteria 
often prevent patients with concomitant diseases and those 
who cannot respect the clinical trial schedules from being 

recruited to the trial, although these patients will potentially 
receive the new drug [18]. The results from trials assess-
ing β-blockers illustrate the fact that the same treatment 
can show differing efficacy when used in different patient 
populations who, in theory, all have the same disease or 
risk (Table 1).

With a low-risk population, there would be differences, 
but if the treatment were moderately efficacious, these dif-
ferences would be modest. Since, for most drugs, treatment 
efficacy assessed in trials is modest, the population-level 
effectiveness metrics obtained by translating trial efficacy 
metrics values may be viewed as satisfactory. However, this 
would be without taking into account the issue of respond-
ers/non-responders, which is more important when the 
observed efficacy is low.

Population efficacy metrics computed on clinical trial 
data were first used to assess the validity of the trial results. 
However, the statistical assessment with traditional null 
hypothesis testing is based on the assumption that the ana-
lysed trial is a random sample of an infinite number of simi-
lar trials and therefore the observed trial efficacy is repre-
sentative of the true treatment efficacy.

Regulators and payers continue to focus on statistical sig-
nificance and p values and have not adequately addressed the 
issue of translation of treatment efficacy from a trial setting 
to treatment effectiveness in a real-life setting. The guide-
lines published in 2007 by the European Medicines Agency 
explicitly mentioned the translation issue in the objectives 
section, but the issue was not properly formulated and 
addressed in the rest of the report, although the NNT was 
discussed in a way that came close to the fundamental issue 
[41]. This fundamental issue concerns the fact that we are 
dealing with non-linear effects, whereas the metrics used in 
translation assume a linear effect.

Pragmatic clinical trials were designed to address the 
translation issue by providing evidence for adoption of treat-
ment in real-world clinical practice [42, 43]. Since then, only 
a few truly pragmatic trials have been published, essentially 
because the rules that define a pragmatic trial are difficult to 
put into practice. For example, the patients should be similar 
to those who will receive the intervention in real life, but 
they must accept being randomised to the new treatment 
or the comparator, which is usually the current standard of 
care. In addition, the investigators, who should be real-world 
prescribers and not trialists, can decide how to administer 
the treatment. Alternatively, model-based methods can be 
used to translate observed trial results to a specified target 
population, but this approach can only take into considera-
tion a small number of covariates [14].

We propose that the effect model (EM) could be used 
to translate trial metrics to population metrics. The EM 
approach models the relationship between AB and Rc, which 
is a characteristic of the treatment at a given time point. This 



131Clinical Efficacy and Effectiveness

has been demonstrated using simulated populations and been 
reported in real life [44, 45].

5 � Conclusion

This analysis clearly shows that more appropriate and accu-
rate tools are needed to be able to translate clinical trial 
efficacy to population-level effectiveness. We showed that 
two population efficacy metrics, NPEpop and NNTpop, could 
be used to compare two or more treatments (e.g. drugs 1 and 
2 in populations A, B or C), irrespective of whether the trials 
had been run on random samples of the corresponding popu-
lations or whether unbiased translation has been achieved. 
This approach requires prior knowledge of, at least, the tar-
get population distribution of Rc and the treatment EM.
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