
REVIEWARTICLE

Genomic instability and innate immune responses
to self-DNA in progeria

Susana Gonzalo & Nuria Coll-Bonfill

Received: 19 April 2019 /Accepted: 21 June 2019 /Published online: 6 July 2019
# American Aging Association 2019

Abstract In the last decade, we have seen increasing
evidence of the importance of structural nuclear proteins
such as lamins in nuclear architecture and compartmen-
talization of genome function and in the maintenance of
mechanical stability and genome integrity. With over
400 mutations identified in the LMNA gene (encoding
for A-type lamins) associatedwithmore than ten distinct
degenerative disorders, the role of lamins as genome
caretakers and the contribution of lamins dysfunction to
disease are unarguable. However, the molecular mech-
anisms whereby lamins mutations cause pathologies
remain less understood. Here, we review pathways and
mechanisms recently identified as playing a role in the
pathophysiology of laminopathies, with special empha-
sis in Hutchinson Gilford Progeria Syndrome (HGPS).
This devastating incurable accelerated aging disease is
caused by a silent mutation in the LMNA gene that
generates a truncated lamin A protein “progerin” that
exerts profound cellular toxicity and organismal decline.
Patients usually die in their teens due to cardiovascular
complications such as myocardial infarction or stroke.
To date, there are no efficient therapies that ameliorate
disease progression, stressing the need to understand
molecularly disease mechanisms that can be targeted
therapeutically. We will summarize data supporting that

replication stress is a major cause of genomic instability
in laminopathies, which contributes to the activation of
innate immune responses to self-DNA that in turn ac-
celerate the aging process.
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Introduction

Lamins are intermediate filament proteins that form a
scaffold between the inner nuclear membrane and chro-
matin, which is known as the nuclear lamina. Two types
of lamins form the nuclear lamina: A-type lamins (lamin
A and C), encoded by the LMNA gene via alternative
splicing, and B-type lamins (lamin B1, B2, and B3),
encoded by LMNB1 and LMNB2 genes (Burke and
Stewart 2013). Cryo-electron tomography shows that
nuclear lamins assemble into tetrameric filaments that
appear as globular-decorated fibers of 3.5-nm thickness
(Turgay et al. 2017). The nuclear lamina is viewed as a
center for the organization and distribution of genome
function in cells, through its interaction with chromatin,
transcription factors, nuclear envelope proteins, nuclear
pore complexes, and the cytoskeleton (Guillin-Amarelle
et al. 2018). Cells devoid of all lamins exhibit frequent,
prolonged, and often nonhealing nuclear membrane
ruptures, in addition to increased DNA damage
(γH2AX foci) (Chen et al. 2018). Structurally, lamins
consist of a central α-helical rod domain flanked by
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non-helical globular and tail domains (Burke and
Stewart 2013). Lamin A is synthesized as a prelamin
A precursor that undergoes extensive processing. In
particular, its C-terminal –CAAX motif is farnesylated,
the –AAX residues cleaved, and the terminal –Cys
residue carboxyl methylated. Subsequently, the last 15
amino acids are cleaved by the Zmpste24/FACE1
metallopeptidase, producing mature lamin A
(Schreiber and Kennedy 2013). In addition, lamin A/C
are phosphorylated at multiple residues during inter-
phase, which promotes filament disassembly and solu-
bilization into the nucleoplasm (Kochin et al. 2014;
Torvaldson et al. 2015). Alterations in the maturation
of lamin A result in cellular damage and are associated
with disease. Lamin-related diseases or laminopathies
embody a range of tissue pathologies, including muscu-
l a r dy s t r oph i e s , pe r i phe r a l neu ropa t h i e s ,
lipodystrophies, dermopathies, leukodystrophies, and
segmental progeroid syndromes such as Hutchinson
Gilford Progeria Syndrome (HGPS), Atypical Werner
Syndrome (AWS), and Restrictive Dermopathy (RD)
(Worman et al. 2009; Gordon et al. 2014; Gonzalo and
Kreienkamp 2015; Vidak and Foisner 2016; Ho and
Hegele 2019). In addition to pathogenic mutations, al-
tered expression levels of lamins are associated with
cancer. In particular, reduced lamin A levels have been
reported during the progression of a variety of cancers,
including breast, ovarian, and cervical cancers, often
associated with poor prognosis (Alhudiri et al. 2019;
Wang et al. 2019).

Hutchinson Gilford Progeria Syndrome (HGPS) is
caused by a single-base substitution in exon 11 of the
LMNA gene that activates a cryptic splice site, leading to
deletion of 50 residues near the C-terminus that include
the Zmpste24 cleavage site De Sandre-Giovannoli et al.
2003; Eriksson et al. 2003). The mutant protein,
known as “progerin” , remains permanently
farnesylated and carboxyl methylated and causes nu-
clear alterations similar to those of prelamin A-
expressing cells. Progerin elicits, in a dose-dependent
manner, nuclear deformation, loss of heterochromatin
from the nuclear periphery, telomere shortening, de-
regulation of gene expression, mitochondria dysfunc-
tion, oxidative stress, DNA damage, and eventually
premature entry into senescence (Goldman et al.
2004; Merideth et al. 2008; Pereira et al. 2008;
Prokocimer et al. 2013; Gordon et al. 2014; Gonzalo
and Kreienkamp 2015; Ullrich and Gordon 2015;
Kreienkamp et al. 2016; Gonzalo et al. 2017). Despite

the progress identifying cellular processes altered by
progerin, we still lack a clear picture of the molecular
mechanisms involved.

HGPS patients are normal at birth but exhibit a clear
growth defect by 2 years of age, often not surpassing 4 ft
of height and 30 kg of weight (Gordon et al. 2007;
Kieran et al. 2007). Before their teenage years, patients
show severe aging phenotypes, including almost com-
plete alopecia, swollen veins, age spots, beak-shaped
nose, shrunken chin, narrow chest, swollen and stiff
joints, reduced fat and bone mineral density, and severe
cardiovascular disease (CVD) (Merideth et al. 2008;
Gordon, Gordon et al. 2011; Gordon et al. 2014;
Ullrich and Gordon 2015). HGPS patients ultimately
die at an average age of 14.6 years from cardiovascular
complications such as stroke or myocardial infarction
(Ullrich and Gordon 2015). The recent finding that
progerin is expressed in the hearts of patients with
dilated cardiomyopathy and correlates with left ventric-
ular remodeling (Messner, Ghadge et al. Messner et al.
2018) supports a potential role of progerin in CVD
during aging. Interestingly, HGPS pathology spares the
central nervous system (CNS). Kids with progeria have
normal brain function, with no evidence of cognitive or
memory challenges usually associated with aging. Stud-
ies aiming to understand why cognitive functions in
HGPS patients are preserved revealed that the LMNA
gene in brain produces primarily lamin C and not lamin
A or progerin. This is due to the expression of a micro
RNA, miR-9, which specifically targets prelamin A/
progerin transcripts in the brain (Jung et al. 2012;
Jung, Tu et al. Jung et al. 2014). Importantly, expression
of miR-9 in HGPS patient-derived fibroblasts alleviates
cellular phenotypes of aging. Thus, miR-9 could be
considered as a potential strategy to reduce progerin
toxicity in different tissues, once all its targets are care-
fully examined.

Over the years, different mouse models of the disease
have been generated, which have been instrumental for
identifying mechanisms underlying premature aging
and for testing therapies. A mouse model carrying the
same mutation as in human patients in homozygosis
(LmnaG609G/G609G) recapitulates more closely the phe-
notypes of HGPS patients, although with less severity
(Osorio et al. 2011). Interestingly, our recent studies
revealed that when these mice are fed high-caloric/
high-fat diets, they experience a significant extension
of lifespan, which is accompanied by increased disease
severity (Kreienkamp et al. 2018a). These progeria mice
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on high-fat diet recapitulate more closely pathologies of
HGPS patients, and thus might represent a better model
to study the disease moving forward. Progeria mice and
cells derived from HGPS patients are the focus of ex-
tensive research to identify molecular mechanisms un-
derlying progerin-induced cellular toxicity and organis-
mal decline, as well as to test therapies that ameliorate
disease progression.

Here, we review new knowledge about how disrup-
tion of lamins function, and specially progerin expres-
sion, impacts cellular mechanisms that maintain genome
integrity. In particular, recent studies show that lamins
play a role in DNA replication and that the DNA dam-
age that builds up in lamin-deficient cells is elicited in
part by replication fork instability. In addition, we dis-
cuss the emerging model that DNA damage caused by
exogenous or endogenous sources can be detected by
cytosolic sensors of nucleic acids, which in turn activate
innate immune responses at the crossroads of aging,
cancer, and tumor immunity. Lastly, we bring awareness
about the beneficial effects of the hormonal form of
vitamin D (calcitriol) ameliorating phenotypes of geno-
mic instability in cells with lamin dysfunction and rep-
lication stress.

Lamin dysfunction hinders DNA replication

Awhole body of evidence supports that lamin dysfunc-
tion, either due to reduced expression or expression of
mutants such as progerin, elicits DNA repair defects,
telomere dysfunction, and overall genomic instability,
reviewed elsewhere (Gonzalo and Kreienkamp 2015;
Dobrzynska et al. 2016; Kubben et al. 2016b; Gonzalo
et al. 2017; Burla et al. 2018). In recent years, interest in
the effect of lamin dysfunction in DNA replication, a
stage of special vulnerability for the genome, has been
gaining momentum. Early studies in Xenopus egg ex-
tracts showed that disruption of lamin organization
elicits a strong reduction in DNA replication (Spann
et al. 1997; Moir et al. 2000). This defect was attributed
to changes in the distribution of PCNA and the RFC
complex, essential factors in the elongation phase,
which formed aggregates with lamins. In mammalian
cells, A-type lamins co-localize with PCNA in early
sites of DNA replication (Kennedy et al. 2000; Dechat
et al. 2008), and a direct interaction between PCNA and
lamins via their C-terminus Ig-fold domain seems im-
portant for PCNA positioning on chromatin (Shumaker

et al. 2008). In addition, lamins interact with DNA
polymerases δ (lagging strand) and ε (leading strand)
during S phase (Vaara et al. 2012), and lamin loss is
associated with deficiencies in the resolution of stalled
replication forks (Singh et al. 2013).

Prelamin A and progerin interact more robustly with
PCNA than mature lamin A (Kubben et al. 2010) and
are thought to sequester PCNA away from the replica-
tion fork, hindering replication fork progression
(Wheaton et al. 2017). Consistently, prelamin A expres-
sion results in increased mono-ubiquitination of PCNA
and induction of Pol η, markers of replication fork
stalling (Cobb et al. 2016). In support of the PCNA
sequestration model, progerin-expressing cells exhibit
a marked reduction of PCNA at replicating DNA
(Hilton et al. 2017; Wheaton et al. 2017), concomitant
with markers of replication stress/DNA damage such as
increased γH2AX, ATR activation, and RPASer33
phosphorylation (Wheaton et al. 2017). Progerin also
causes aberrant accumulation of the nuclease XPA at
stalled or collapsed forks (Hilton et al. 2017). Lowering
the levels of progerin or XPA reinstates normal levels of
PCNA at replication forks, with the consequent reduc-
tion of cell death. Moreover, RFC1 is degraded by a
serine protease in HGPS cells, contributing to deficient
loading of PCNA and Pol δ onto DNA (Tang et al.
2012). Interestingly, cells carrying other LMNA muta-
tions (G232E and Q294P), associated with diseases
such as Emery-Dreifuss muscular dystrophy (EDMD),
overexpress a HEC-type E3 ubiquitin ligase, HECW2. It
was recently shown that HECW2 interacts with PCNA
and lamin B1 and mediates their ubiquitination and
proteasomal degradation (Krishnamoorthy et al. 2018).
HECW2 also interacts and ubiquitinates lamin A, but
this interaction is reduced in presence of the mutants.
Thus, the functional relationship between lamins,
ubiquitinating enzymes, and replication factors should
be further investigated as a potential mechanism con-
tributing to genomic instability in laminopathies.

Altogether, these studies provide evidence for
lamins playing a role in DNA replication, in part by
modulating the association of key proteins such as
PCNA to the replication fork, and for expression of
prelamin A, progerin, and potentially other lamin
mutants, causing replication stress (Fig. 1). In spite
of these findings, our mechanistic understanding of
lamins’ participation in DNA replication is limited.
Similarly, the extent to which replication stress con-
tributes to genomic instability in lamin-deficient cells
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and to the pathophysiology of laminopathies war-
rants further investigation. One could envision that
different mutant lamins, with varying binding affini-
ties for replication factors such as PCNA and DNA
polymerases, could cause different DNA replication
phenotypes. In addition, lamin dysfunction is associ-
ated with DNA repair deficiencies and accumulation

of DNA damage, which poses a challenge for repli-
cation fork progression (Berti and Vindigni 2016;
Bhat and Cortez 2018). Thus, lamin-deficient cells
might need to deal with extra roadblocks that stall the
replication fork. Given the increasing evidence that
DNA repair proteins interact and protect the replica-
tion fork, while helping with the resolution of

Fig. 1 Lamins preserve replication fork (RF) stability. Scheme
depicts mechanisms of protection of RF integrity during instances
of replication stress (RS) and models how lamin A and progerin
impact these mechanisms. Left diagram shows that in lamin-
proficient cells, lamin A binds to the RF, together with a broad
range of DNA repair and remodeling factors (RPA, BRCA1/2,
PALB2, RAD51), helping to ensure the stability of the fork by
protecting it from nuclease-mediated degradation. These

protective factors also mediate fork reversal and restart, ensuing
genome stability. Right diagram shows a model whereby progerin
sequesters PCNA, and potentially wild-type laminA protein, away
from the RF. This, in turn, could lead to RF stalling in addition to
RF deprotection and nuclease (MRE11 and XPA)-mediated deg-
radation of the stalled forks. As a consequence, progerin expres-
sion causes a robust replication fork instability phenotype

258 GeroScience (2019) 41:255–266



replication conflicts (Kolinjivadi et al. 2017), it is
feas ib le tha t lamin def ic iency hinders the
recruitment/function of DNA repair factors at the
replication fork. Some evidence along this line was
obtained recently (Li, Chen et al. 2018). Li and
colleagues demonstrated that lamin A binds the ho-
mologous recombinase RAD51, preventing its
proteasomal degradation. They also identified a
lamin-binding ligand (LBL1) that breaks lamin A-
RAD51 interaction, rendering RAD51 available for
proteasome-mediated degradation, which in turn in-
hibits DNA repair by HR (Li, Chen et al. 2018).
Thus, it is tempting to speculate that loss of lamins
or expression of mutant forms might inhibit RAD51
role in DNA replication, causing replication stress.
New techniques such as genome-wide single-molec-
ular replication assays (DNA fiber assays), in situ
analysis of protein interactions at DNA replication
forks (SIRF) (Roy et al. 2018), isolation of proteins
on nascent DNA (iPOND) (Sirbu et al. 2011), and
electron microscopy (Vindigni and Lopes 2017) are
allowing us to identify specific mechanisms during
replication that are regulated by lamins, and those
that are altered in cells expressing different lamin
mutations. Interestingly, there is evidence by iPOND
that lamin A, but nor progerin, binds to nascent DNA
(Wheaton et al. 2017).

We recently used single-molecule replication as-
says to monitor the impact of progerin expression on
DNA replication. We found increased frequency of
replication fork stalling in progerin-expressing cells
under normal conditions, but not in lamin A-depleted
or -overexpressing cells (Kreienkamp et al. 2018b).
Replication fork stalling was accompanied by fork
deprotection and Mre11 nuclease-mediated degrada-
tion. Consistently, inhibition of Mre11 nuclease ac-
tivity by the compound Mirin rescues progerin-
induced replication defects. Replication fork instabil-
ity was also observed in lamin-depleted cells, but
only after treatment with fork-stalling compounds
(unpublished results). These replication defects are
associated with the increased DNA damage and the
chromosomal aberrations characteristic of lamin-
deficient cells. Ongoing studies are focused on un-
derstanding the molecular mechanisms whereby
progerin expression or loss of lamins cause replica-
tion fork instability, with emphasis on potential defi-
ciencies in DNA repair factors that stabilize stalled
replication forks.

Activation of innate immune response to self-DNA
in progeria

Recent work has established a strong relationship be-
tween DNA damage and immune signal ing
(Chatzinikolaou et al. 2014; Karakasilioti et al. 2013;
Brzostek-Racine et al. 2011). DNA damage caused by
exogenous sources (genotoxic agents, UV, ionizing ra-
diation) or endogenous metabolic processes (DNA rep-
lication, telomere dysfunction, oxidative stress) is
sensed in the nucleus by a repertoire of factors that
trigger the DNA damage response (DDR) (Ciccia and
Elledge 2010). The DDR, as well as other cellular
programs such as the unfolded protein response, oxida-
tive stress, senescence, or apoptosis, are coupled with
the generation of signals that trigger systemic responses
(Galluzzi et al. 2018). DNA damage for instance gener-
ates nucleic acid byproducts that can leak into the cyto-
plasm, where they are recognized by the machinery
responsible for the detection of foreign nucleic acids
(Kawai and Akira 2006; Ishikawa et al. 2009; Cai
et al. 2014). One of the main sensors of cytoplasmic
self-DNA and DNA from pathogens is cGAS (cyclic-
GAMP synthase), an enzyme that upon binding to DNA
synthesizes 2 ′ ,3 ′-cGAMP (cyclic-Guanosine
MonoPhosphate-Adenosine MonoPhosphate Synthase)
fromATP and GTP. cGAMP acts as a secondmessenger
to activate the adaptor protein STING (stimulator of
interferon genes), playing a crucial role in antimicrobial
immune response (Li and Chen 2018). Upon cGAMP
binding, STING is translocated from the ER to the
ERGIC/Golgi compartments where it mediates IRF3
and NFκB activation and nuclear translocation, via ki-
nases TBK1 and IKK, respectively. Nuclear IRF3 and
NF-κB induce the expression of type I IFNs and other
pro-inflammatory cytokines that boost the immune re-
sponse. IFNs are then released into the extracellular
milieu where in an autocrine or paracrine fashion bind
IFN receptors (IFNAR), which through the JAK/STAT
pathway activate hundreds of IFN-stimulated genes
(ISGs) (Schneider et al. 2014). The role of the
cGAS/STING/IFN pathway activating the innate im-
mune system to clear pathogen-infected or damaged
cells has been clearly demonstrated (Dou et al. 2017;
Gluck et al. 2017; Harding et al. 2017; Yang et al. 2017;
Li and Chen 2018). This pathway is also necessary for
the establishment of senescence and has been shown to
impact anti-tumor immunity and the response of tumors
to immunotherapy (Brzostek-Racine, Gordon et al.
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2011; Yu et al. 2015; Wang et al. 2017; Ng et al. 2018).
Thus, the cGAS/STING/IFN cascade, which is activated
in immune cells, tumor cells, and cells in the tumor
microenvironment, is currently at the spotlight as a
new target for immunotherapy.

The rapidly growing list of factors that trigger the
cGAS/STING/IFN pathway includes carcinogens like
DMBA, ionizing radiation, genotoxic agents such as
cisplatin and etoposide, oncogenes, DNA repair/
replication defects, telomere dysfunction, micronuclei,
depletion of ssDNA-binding proteins RPA and RAD51,
and loss of the cytoplasmic nuclease TREX-1 or the
dNTPase/exonuclease SAMHD1 (West et al. 2015;
Chen et al. 2016; Wolf, Rapp et al. Wolf et al. 2016;
Bhattacharya, Srinivasan et al. Bhattacharya et al. 2017;
Harding, Benci et al. Harding et al. 2017; Mackenzie
et al. 2017; Parkes et al. 2017; Coquel et al. 2018; Li and
Chen 2018; Ng, Marshall et al. Ng et al. 2018).

Our studies have shown that progerin expression
activates the cGAS/STING/IFN pathway (Graziano
et al. 2018; Kreienkamp et al. 2018b). Performing
genome-wide RNAseq analysis of human skin fibro-
blasts derived from four HGPS patients and normal
fibroblasts from three parents, we identified a robust
signature of activation of genes in the IFN/antiviral/
innate immunity category. Nearly 50 genes in this cate-
gory were upregulated in HGPS fibroblasts of early and
late passage in culture, compared to normal fibroblasts.
These genes included pattern recognition receptors
(PRR), proteins that normally survey the cytoplasmic
space in search of nucleic acids from pathogens, but that
also recognize self-nucleic acids that reach the cyto-
plasm (RIG-I, MDA5, OASs, PKR, TLR3). In addition,
we found upregulation of PRR downstream signaling,
including IRFs (IFN responsive factors), STAT1 (signal-
transducing activators of transcription 1), and NFkB, as
well as over 40 STAT1-regulated IFN-stimulated genes
(ISGs). The results of our RNAseq analysis in HGPS
fibroblasts were recapitulated upon expression of
progerin, but not lamin A, in normal human-derived
fibroblasts. In particular, induction of progerin expres-
sion rapidly leads to increased protein levels of cGAS
and STING, global STAT1 and phosphorylated forms
(Y701 and S727), IRF3, and ISG15 (interferon stimu-
lated gene 15), a marker of IFN pathway activation
(Graziano et al. 2018; Kreienkamp et al. 2018b). Intrigu-
ingly, IFNs themselves were not expressed in HGPS
fibroblasts, indicating that this pathway represents a
cell-intrinsic, IFN-independent activation of STAT1

downstream inflammatory signals. Activation of STAT1
and downstream ISGs in an IFN-independent fashion
has been previously reported in other models
(Dempoya, Matsumiya et al. Dempoya et al. 2012;
Luu, Greenhill et al. Luu et al. 2014). Interestingly, a
recent s tudy showed tha t STAT1 media tes
autoinflammation, lipoatrophy, and juvenile lethality in
a mouse model that carries a gain-of-function mutation
in the PDGFRB (platelet-derived growth factor receptor
beta) gene (He et al. 2017). As such, crossing PDGRFB
mutants with STAT1−/− mice rescues autoinflammation
and improves lifespan. In contrast, deletion of IFNARs
does not rescue wasting in these mice, indicating that
STAT1 effect driving wasting in this context is indepen-
dent of IFNs.

Our studies in progerin-expressing cells support a
role for STAT1 linking DNA damage sensing with
activation of innate immune responses. In particular,
knockdown of STAT1 in progeria cells to levels ob-
served in normal cells results in reduced expression of
ISGs, in addition to improved cell proliferation and
migration capabilities (Graziano et al. 2018;
Kreienkamp et al. 2018b). These data suggest that
STAT1 activation might contribute to cellular aging
phenotypes. Further studies are needed to determine if
STAT1 downregulation or pharmacological inhibition
ameliorates organismal decline in mouse models of
laminopathies, especially in progeria mice. This would
be an important finding, given that STAT1 is associated
with inflammation in immune and vascular cells during
cardiovascular disease (Szelag, Piaszyk-Borychowska
et al. Szelag et al. 2016), which underlies early death
in HGPS patients (Prakash, Gordon et al. Prakash et al.
2018).

Another question that remains unanswered is the
etiology of activation of the cGAS/STING pathway in
HGPS. The robust replication fork instability phenotype
observed in progerin-expressing cells suggests a model
whereby replication stress causes DNA damage, leading
to accumulation of nucleic acids in the cytosol that
trigger the cGAS/STING pathway (Fig. 2). In support
of this notion, immuno-FISH studies with lamin A
antibody and a PNA-labeled telomere probe show that
HGPS fibroblasts and MAFs from progeria mice accu-
mulate telomeric DNA in the cytoplasm (Kreienkamp
et al. 2018b). Given that telomeres are among the most
difficult-to-replicate domains, it is likely that cytoplas-
mic telomeric DNA results from replication defects.
However, this hypothesis remains to be formerly tested.
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Moreover, it is possible that the disruption of nuclear
integrity by progerin exacerbates the leakage of DNA
into the cytoplasm. Thus, the combination of replication
stress/DNA damage and disruption of nuclear integrity
might be responsible for the marked activation of the
cGAS/STING pathway and the IFN-like response in
progeria (Fig. 2).

Vitamin D (calcitriol) reduces replication stress
and represses innate immune response

Our work has revealed unique functions of the vitamin
D/vitamin D receptor (VDR) axis maintaining genome
stability. VDR loss in normal human fibroblasts immor-
talized with telomerase results in downregulation of
homologous recombination proteins BRCA1 and
RAD51, complete loss of recruitment of BRCA1 to
DNA damage sites, accumulation of DNA double-
strand breaks (DSBs), and premature entry into senes-
cence (Graziano, Johnston et al. Graziano et al. 2016).
Interestingly, cells undergoing oncogene (RasV12)-in-
duced senescence exhibit downregulation of VDR

concomitant with reduced expression of DNA repair
factors BRCA1 and 53BP1. Treatment with calcitriol
(hormonal active form of vitamin D) increases levels of
VDR and DNA repair factors and improves DNA repair
capabilities (Graziano, Johnston et al. Graziano et al.
2016). We also demonstrated that lamin-depleted and
progerin-expressing cells display low VDR expression
(Kreienkamp et al. 2016). Calcitriol increases VDR
levels and ameliorates progerin-induced cellular pheno-
types, including nuclear morphological abnormalities,
DNA damage, and premature senescence. Interestingly,
calcitriol rescues replication fork instability to the same
extent as Mirin treatment in progerin-expressing cells
and represses genes in the IFN/antiviral/innate immuni-
ty category that are upregulated in HGPS fibroblasts
(Kreienkamp et al. 2018b). In particular, we observed
reduced global levels of STAT1 and levels of phosphor-
ylated STAT1 upon calcitriol treatment. As testament of
the beneficial effects of calcitriol in progeria, treatment
of HGPS fibroblasts with calcitriol for 10 days increased
their efficiency of reprogramming into iPSCs (induced
pluripotent stem cells) (Kreienkamp et al. 2018b). The
effect of calcitriol rejuvenating HGPS patient-derived

Fig. 2 Model of how progerin activates innate immune responses
to self-DNA. Our recent studies support a model whereby alter-
ations in lamins function (1), such is the case of progerin expres-
sion, cause replication stress and genomic instability (2), in addi-
tion to disruption of nuclear integrity (1). These two
events—increased DNA damage and nuclear fragility/
leakage—contribute to the accumulation of DNA byproducts in
the cytoplasm, where they are erroneously recognized as foreign

by pattern recognition receptors or PRR (3). One of the key PRR is
cGAS (cGAMP-synthase), which through the synthesis of
cGAMP (4) activates STING (5) and a STAT1-mediated IFN
response. Through transcriptional activation of hundreds of ISGs
(6), the cells induce a robust innate immune response to self-DNA,
which contributes to cellular and organismal aging (7). Graphic
illustrations generated byMichael Andrus, BS, St Louis University
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cells justifies preclinical studies to evaluate the effect of
calcitriol in mouse models of progeria, and potentially
other laminopathies.

The molecular mechanisms whereby calcitriol ame-
liorates HGPS cellular phenotypes await further inves-
tigation. It is possible that by rescuing replication fork
instability, calcitriol reduces the DNA damage and ac-
cumulation of cytoplasmic DNA that activates the
cGAS/STING pathway and the STAT1-mediated IFN-
like response. However, calcitriol also improves nuclear
morphological abnormalities, which could enhance the
integrity of the nuclear envelope and reduce leakage of
nucleic acids into the cytoplasm in HGPS cells.
Unraveling how calcitriol rescues replication stress
would be of critical importance for laminopathies, and
might also provide a strategy to ameliorate replication
stress in other contexts. Moreover, calcitriol has been
shown to impact directly on STAT1, playing an impor-
tant role in immune system function (Yang et al. 2013).
C a l c i t r i o l d e c r e a s e s STAT1 an d STAT3
phosphorylation/activation and inflammatory cytokine
output in cancer cell lines and autoimmune disease
mouse models (Muthian, Raikwar et al. Muthian et al.
2006; Wang, Li et al. Wang et al. 2013; Chen et al.
2015), as well as in large granular lymphocyte leukemia
(LGLL) (Kulling et al. 2018; Osorio et al. 2011). Thus,
it is possible that the beneficial effect of calcitriol in
HGPS is the combination of many factors: (i) improved
DNA repair/replication, (ii) reduced nuclear fragility,
and (iii) direct downregulation of STAT1/IFN-like re-
sponse. Studies in the next few years will hopefully shed
light onto the relationship between vitamin D/VDR
signaling, DNA damage, and immunogenicity of self-
DNA.

Importantly, we demonstrated that different com-
pounds known to ameliorate cellular decline in HGPS,
also reduced the extent of replication stress and STAT1
activation (Kreienkamp et al. 2018b). These include all-
trans-retinoic acid (ATRA), which represses progerin
expression (Swift et al. 2013; Pellegrini, Columbaro
et al. Pellegrini et al. 2015; Kubben et al. 2016a);
Remodelin, an inhibitor of NAT10 (N-acetyltransfer-
ase-10) that rescues nuclear abnormalities via microtu-
bule organization; and the combination of lonafarnib,
farnesyltransferase inhibitor that inhibits progerin
prenylation, and rapamycin, which increases
autophagy-mediated progerin clearance (Cao et al.
2011; Gordon, Kleinman et al. Gordon et al. 2016).
Overall, the data suggest that these phenotypes—

replication stress and STAT1/IFN response—are drivers
of the cellular decline in HGPS. Consistent with this
idea, in aged normal human fibroblasts, activation of the
STAT1/IFN pathway is concomitant with a decline in
fibroblast functionality, including proliferation, differen-
tiation, and migration (Midgley, Morris et al. Midgley
et al. 2016). Importantly, progerin and prelamin A ex-
pression has been observed in different tissues from
normal aged individuals (Dahl, Scaffidi et al. Dahl
et al. 2006).

Concluding remarks

Many lines of evidence point to genomic instability
driving cellular decline in lamin-related diseases. DNA
replication, in particular, is at center stage as a process
that requires an intact nuclear lamina. Although the
specific role/s that nuclear lamins play in DNA replica-
tion are not fully understood, data suggest that the
recruitment of factors critical for DNA replication and
for protection of replication forks from degradation is
hindered upon nuclear lamin dysfunction. Moreover,
evidence of the implication of replication stress and
DNA damage in the activation of antiviral/innate im-
mune responses is growing strong. In the context of
laminopathies, the characteristic nuclear fragility is like-
ly to contribute to increase the robustness of the re-
sponse. Importantly, this response has been placed at
the crossroads of senescence/aging, cancer,
immunosurveillance, and cancer immunotherapy, which
illustrates the importance of understanding molecular
mechanisms that allow its tunability. We envision that
the near future will bring new knowledge also about
pharmacological strategies that target this response. For
instance, understanding how calcitriol, a hormone pro-
duced in our body, modulates genome stability and the
innate immune response is of critical importance, and of
potential immediate applicability to the clinic. Although
still at the infancy of manipulating/tuning these path-
ways and mechanisms, new technologies and animal
models will allow us to advance in ways that help
patients with a broad range of diseases.
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