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With the widespread use of deep learning methods, semantic segmentation has achieved great improvements in recent years.
However, many researchers have pointed out that with multiple uses of convolution and pooling operations, great information
loss would occur in the extraction processes. To solve this problem, various operations or network architectures have been
suggested to make up for the loss of information. We observed a trend in many studies to design a network as a symmetric type,
with both parts representing the “encoding” and “decoding” stages. By “upsampling” operations in the “decoding” stage, feature
maps are constructed in a certain way that would more or less make up for the losses in previous layers. In this paper, we focus on
upsampling operations, make a detailed analysis, and compare current methods used in several famous neural networks. We also
combine the knowledge on image restoration and design a new upsampled layer (or operation) named the TGV upsampling
algorithm. We successfully replaced upsampling layers in the previous research with our new method. We found that our model
can better preserve detailed textures and edges of feature maps and can, on average, achieve 1.4–2.3% improved accuracy
compared to the original models.

1. Introduction

Compared to traditional classification tasks, semantic seg-
mentation is much more difficult. From the level of the
neural network, a classifier should be used for each pixel of
an image. .is can help machines have a better un-
derstanding of complex images, not only simple object
recognition. Deep learning methods, especially convolu-
tional neural networks, have generated spectacular results
for visual recognition problems. .is has proven that
convolutional operations can successfully extract global
information and features for maintaining spatial in-
variances. When looking back on existing studies, we ob-
served that most of them follow a symmetric architecture,
which decreases the resolution (called the encoding stage)
and then gradually increases it layer by layer (called the
decoding stage). Whatever detailed designs are, for feature
maps, if a network contains a high-to-low process, it will
bring inevitable losses because this process aims to generate
a more liable low-resolution presentation from a high-res-
olution one. Meanwhile, with a layer increased, there would

be a great effect on the texture (or boundary information) of
the final dense images.

One way to handle this challenge is to reduce the loss of
operations during performance. Chen et al. [1] used an
atrous convolution. By inserting “blanks” between pixels, the
researchers enlarged the receptive field and generated a
higher resolution feature map. Although this method is
effective and successful, it is still hard to apply, considering
the limitations of hardware and memory.

Another solution focuses on the methods of making up
for losses. In recent research, a design of hierarchical net-
works [2, 3] has been a trend. Researchers found that losses
can be made up for in later stages. High-level feature maps
can be better recovered when mixing information of low-
level intermediate results, which further improves dense
predictions.

We were inspired by the making-up idea and trend to
group the layers into encoding and decoding stages (see
Figure 1). In the encoding stage, layers downsample the
spatial resolution layer by layer; afterward, in the decoding
stage, feature maps (intermediate results produced by layers)
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are “upsampled” and resolutions are increased corre-
spondingly until the entire image is reconstructed to the
original size. Researchers believe that, in the down-up
sampling process, in which images are segmented and
reconstructed, networks can detect the most important
features without destroying the shapes or textures of objects.
.e aim of reconstruction is to make up for the losses
produced in the encoding stage, and the choice of the
upsampling method is the key point.

In this paper, we follow symmetric designs and focus on
the research of upsampling methods in the decoding stage.
Our contributions are as follows:

(1) We made a detailed introduction of upsampling
methods that are now commonly used, necessary
concepts, and mathematical definitions.

(2) We proposed a new upsampling method based on
the total generalized variation (TGV) model [4–6]
and applied it to different networks.

2. Related Works

Semantic segmentation, an important branch of deep
learning [7], has also become an active topic in neural
network research. In this section, we introduce several
advanced networks in the field of semantic segmentation
and their upsampling methods used in the decoding stage.

2.1. Symmetric-Like Networks. Symmetric networks [8–11]
have been proven to be highly effective in particular fields.
As for the reason for choosing a symmetrical type, re-
searchers thought that regardless of the convolutional layer,
there would be a loss of information when extracting fea-
tures. With further training, even a small loss may result in
defects in boundary information or texture edges. To make
up for the loss, they grouped all layers in a model into two
stages according to the size of the feature maps. Long et al.
[9] first used a fully convolutional network (FCN). .ey
advised that fully connected layers can be replaced by
convolutional layers, and further improved connections can
be made between stages via “skip connections.” Although

the FCN has incomplete symmetry, a skip connection, which
builds a “bridge” between layers in the encoding stage and
decoding stage, provides another source for a feature map.
Based on this idea, Ronneberger et al. [8] designed a
U-shaped network (U-Net). .ey considered that the ex-
pansive path of features has a relationship with the con-
tracting path and thus enlarged the number of feature
channels. However, when we want to design a new network,
parameter size is a significant problem that much impor-
tance should be attached to, considering that symmetric
networks need many more parameters than other kinds of
networks, which would be a great challenge to CPU and
GPU usage. At almost the same time, Badrinarayanan et al.
[10] applied a new upsampling method named “unpooling,”
which records the indices when max-pooling. With these
indices, original location information can be easily found in
the decoding stage. In this case, parameters needed in
training processes are greatly reduced.

2.2. Current UpsamplingMethods. With the visualization of
convolutional networks [12], we know that convolutional
computations can effectively extract and generalize fea-
tures, outputs of which can be seen as a set of features. .e
goal of upsampling operations is to increase the resolution
from low-resolution map data and to upsample original
data to a high-resolution map, aiming to make up for the
information lost in previous layers because of convolution
operations.

.e difficulty of the entire process lies in how to generate
sampling data from low-resolution maps and corresponding
colour channels.

2.2.1. Bilinear Interpolation. In early deep learning research
[7, 13], this kind of method could often be seen. Compared
to methods introduced later on, the greatest advantages of
the bilinear method are high speed and simple operations.
From the level of layers, there is no need to learn and adjust
weights when using bilinear interpolation, as one parameter
(referring to the desired size of the final image) is enough for
the entire operation.

Skip connections
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Encoding stage
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Figure 1: General symmetric network architecture.
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For example, with four known point values, x11 �

(x1, y1), x12 � (x1, y2), x21 � (x2, y1), and x22 � (x2, y2),
the value of function τ can be found at the point (x, y).

X-direction:

Q x,y1( ) � τ x, y1( 􏼁 ≈
x2 −x

x2 −x1
τ x11( 􏼁 +

x−x1

x2 − x1
τ x21( 􏼁,

Q x,y2( ) � τ x, y2( 􏼁 ≈
x2 −x
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x−x1

x2 − x1
τ x22( 􏼁.

(1)

Y-direction (yielded):
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With the above processes, it is possible to find an ap-
proximation value of any point (x, y) within the function
interval (x ∈ (x1, x2), y ∈ (y1, y2)).

2.2.2. Transposed Convolution. Strictly speaking, transposed
convolution is a kind of convolution operation instead of a
sampling method, but many researchers are currently making
it their first choice to make up for losses in the decoding stage.

From the perspective of convolution arithmetic, each
convolution operation can be represented as y � C∗ x, where
C and x stand for weight matrix and input maps, respectively.

In the period of backpropagation, assuming that the
derivative of layers zLoss/zy (Loss means the loss of the
whole network when training) is known, corresponding
derivatives of weights can be written as

zLoss
zx

� 􏽘
i

zLoss
zxi

� 􏽘
i

zLoss
zyi

∗
zyi

zxj

� 􏽘
i

zLoss
zyi

∗Cij �
zLoss

zy
∗C∗j

� C
T
∗,j ∗

zLoss
zy

.

(3)

Equation (3) shows the relationship of zLoss/zx and
zLoss/zy. It shows that transposed convolution is actually
multiplying CT or (CT)T � C when doing a forward pass and
a backward pass, respectively.

When transposed convolution is used as the upsam-
pling method, situations are totally different from bilinear
interpolation. .e study of Dumoulin and Visin [14]

introduced four different cases where a transposed oper-
ation was applied.

For instance (Figure 2), the transposed convolution over
a 2× 2 input for a 3× 3 output (stride� 1) equals a reverse
operation of the convolutional layer (y � C∗x, with input
4× 4; kernel size� 2)..e original 2× 2map is padded with a
2× 2 border of zeros first, and then CT is multiplied.

2.2.3. Unpooling. Various combinations of layers have
currently improved the efficiency of networks, but they
brought a severe problem at the same time: parameters. Even
a single convolutional layer requires a high number of
weight parameters, which poses a significant challenge for
CPUs or GPUs. As noted in Section 2, transposed convo-
lution equals multiplying a transposed matrix of corre-
sponding convolutional layers, meaning that we should
spare enough memory to save these matrices when training.

First utilized in deconvolutional networks [15],
unpooling is much simpler and easier to use.

Figure 3 shows a basic process of an unpooling opera-
tion. All numbers above correspond to values in a feature
map. Assume that for some map input the unpooling
method records indices of the largest values before per-
forming max-pooling (from input⟶ a). In the decoding
stage, having received outputs b from previous layers, with
pooling indices (represented by the black grids), it is possible
to upsample the pixel values inside to their original places
(from b⟶ output). In fact, unpooling keeps the directional
information (“pooling indices”) of the largest pixel values in
each feature map when processing max-pooling operations.
.is action solves the problems of “directions” and “pad-
ding” at the same time.

Compared to transposed convolution, the advantage of
unpooling lies in the number of parameters, which should
only record the pooling indices.

3. TGV Upsampling Algorithm

Inspired by the total variation model [16, 17], we introduce
another upsampling method named “TGV upsampling.”We
see upsampling methods as a way to combine feature map
restoration with knowledge of image restoration (with the
aim of making up for loss of information). .e background
and details of our method are described as follows.

3.1. Problem Transformation. Although it has been several
years since the first convolutional neural network (CNN)
was used [7], the internal architecture can still be simply
concluded. Most networks now can be thought of as a
combination of convolutional layers and max-pooling
layers, and there are a lot of research studies [14, 18–21]
available for understanding what CNN is. Many previous
studies pointed out that “max-pooling can be replaced by a
convolutional layer with increased stride and without loss in
accuracy at the same time” [22]. Certainly, we can think of
network components with max-pooling and convolutional
layers as a set of convolutional computations regardless of
what the internal architecture actually is.
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As we discussed in previous sections, in the field of
semantic segmentations, researchers have tended to di-
vide the whole process into encoding and decoding stages
where the upsampling step always happens in the
decoding stage. Many researchers thought that a “path”
exists in convolution operations. From the perspective of
feature maps, stages of encoding and decoding refer to the
expanding and contracting paths, respectively; these two
paths are more or less symmetrical. Under such cir-
cumstances, we treat upsampling as a restoration task of
feature maps produced from corresponding layers in
encoding stages.

For example, Figure 1 provides a simple view of a general
symmetric-like network. .e whole network is grouped into
encoding and decoding stages, and layers in the two stages
are represented by Ei andCj, respectively (where i and j stand
for the direction of the layer). When i� j, it means
Einput �Coutput, and we consider the outputs of Cj as the
result of feature map restoration to Einput.

As shown in Figure 4, after a set of convolutional
computations, a 4× 4 feature map in the encoding stage
becomes a 2× 2 pixel matrix (this matrix is also the output of
a certain layer). With a projection operation, this map can be
recovered to the original size of the map in the encoding
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Figure 3: Unpooling operation.
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Figure 2: Transposed convolution.

4 Computational Intelligence and Neuroscience



stage (this temporary result is denoted by Cinput). .e
padding part (referring to the heavy blue grids) appears as
blurred (noisy) areas; the rest of the work is a restoration job.

When comparing the left matrix with the right one, we
formulate the basic loss function as follows:

loss u, Cinput􏼐 􏼑 �
1
2

u Cinput􏼐 􏼑−Cinput

�����

�����
2

2
, (4)

where u stands for our upsampled result and ‖·‖2 denotes 2-
norm.

3.2. TGV-Based Upsampling. TGV [23] is mainly used to
solve problems like image denoising and restoration. But in
this paper, we adapted it into a trainable upsampling method
of feature maps. We increase the resolution of maps to a
target size and then perform TGV on each map.

.e first step in our method is projection, considering the
size difference between low- and high-resolution maps. We
first applied bilinear interpolation to get a preliminary result,
which has the same size as maps in the encoding stage. .ese
processedmaps will be seen as noisy areas (actually referring to
the entire image), which would be treated in TGV restoration.

Since Bredies et al. [23] put forward the TGV model, it
has been widely used in the field of image restoration. .e
TGVmodel greatly reconstructs an image from blurred data
or noisy, indirect measurements. We formulated the whole
upsampling problem as a convex optimization model
[12, 24–26]. .e mathematical formulations for our model
are outlined as

min
u

λloss(u, x) + TGVK
α (u)􏽮 􏽯, (5)

where loss(u, x) represents image fidelity, the parameter λ is
used to weight previous operations to compute a global op-
timization, and TGVK

α (u) stands for the regularization term.
With the visualization of convolutional networks [8], we

know that convolutional computations can effectively ex-
tract and generalize features, outputs of which can be seen as
a set of features. To better understand the semantics of an
image, smoothness of textures and border edges are par-
ticularly important to feature maps.

For a k-order image, traditional restoration methods
tend to fix the bounded variation seminorm, whereas the
TGV model introduces a k-order function and incorporates
information from different channels, which can effectively
maintain texture discontinuities.

Given a k-order image μ, we represent the TGVmodel as
follows:

TGVk
a(u) � sup

⎧⎨

⎩􏽚
Ω
Ωdiv

k
v dx ∣ v ∈ C

K
C Ω, Symk IRd

􏼐 􏼑􏼐 􏼑,

· div
l
v

�����

�����≤ al, l � 0, . . . , k− 1
⎫⎬

⎭.

(6)

Let Symk(IRd) represent the space of symmetric
tensors of order k. By balancing derivatives from the first
order to the kth order, it greatly alleviates the problem of
containing different grey levels when imaging, leading to
boundary information loss as well as edge and corner
loss.

But in this work, aiming at featuremaps, it turns out that a
2-order TGV is sufficient. We formulate the 2-order model as

TGV2
a(u) � min

w
a1􏽚
Ω

|∇u−ω| + a2􏽚
Ω

|ε(ω)|􏼚 􏼛. (7)

For a given 2-order u, the minimum of the TGVmodel is
taken over all complex vector fields w in the bounded do-
main. ε(w) � 1/2(∇ω + ∇ωt) stands for the symmetrized
derivative. Parameters a1 and a2 are applied to balance the
first and second derivatives.

.e final TGV-based upsampling model is defined as a
combination of the loss function (5) and the TGV term (6) as
equation (7):

min
u,w

λ
2

u Cinput􏼐 􏼑−Cinput

�����

�����
2

2
+ a1􏽚

Ω
|∇u−ω| + a0􏽚

Ω
|ε(ω)|􏼨 􏼩.

(8)

Meanwhile, unlike fixed weights used in [23], we adapt
TGV into a trainable method, taking weights a_1 and a_2
into backpropagation to search for a suitable balance
point.

3.3. Optimization Methods. Considering that the upsam-
pling model we proposed (formula (8)) is convex and not
smooth, we used the primal-dual scheme [24, 25, 27] to solve
this problem. We reformulated our upsampling model as a
convex-concave saddle-point problem by introducing two
dual variables m and n. .e transformed model of formula
(8) is provided by

min
u

max
v

λ
2

􏽘
i,j∈Ω

u Ci,j􏼐 􏼑−Ei,j􏼐 􏼑
2

+ a1〈(∇u−ω), m〉

+ a2〈∇ω, n〉.

(9)
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Figure 4: Pretreatment to feature maps.
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.e feasible sets of ρ and φ are defined as follows:

M � m: Ωu⟶R
2 ∣ mi,j

�����

�����≤ 1, i, j ∈ Ωu􏼚 􏼛,

N � n: Ωu⟶R
2 ∣ ni,j

�����

�����≤ 1, i, j ∈ Ωu􏼚 􏼛.

(10)

.e final result is computed pixel by pixel via iterative
optimization. With u0 � Einput and v0, m0, and n0 � 0, step
sizes σm, σn and τu, τω are chosen. For iteration i≥ 0, updated
variables are as follows:

mi+1 � Projm mi + σma1 ∇􏽥ui − 􏽥ωi( 􏼁􏼈 􏼉,

ni+1 � Projn ni + σna2∇􏽥ωi􏼈 􏼉,

ui+1 � 1 +
λ
2
τu􏼠 􏼡

−1

ui + τu a1m
i+1 +

λ
2

Cinput􏼠 􏼡􏼢 􏼣

ωi+1 � ωi + τω a1n
i+1 + a2m

i+1( 􏼁,

u i+1 � ui+1 + θ ui+1 − u i( 􏼁,

ω i+1 � ωi+1 + θ ωi+1 −ω i( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(11)

where Projm(m) and Projn(n) denote the Euclidean pro-
jectors onto the sets M and N, respectively. .ey can be
calculated by pointwise operations:

Projm(m) �
m

max 1, |m|/a1( 􏼁
,

Projn(n) �
n

max 1, |n|/a1( 􏼁
.

(12)

In equation (11), θ stands for the relaxation parameter. It
can be updated iteration by iteration using preconditioning [5].
Hence, the TGV-based model can achieve globally optimal
upsampling solutions when dealing with 2-order images.

4. Evaluation

In this section, we make a quantitative evaluation of the
proposed TGV-based upsampling model. We compared our
model with current upsampling methods from different
perspectives. We used a PASCAL VOC2012 dataset (class
segmentation) to investigate the detailed advanced perfor-
mances. In the following experiments, we manually set the
TGV-based upsampling model’s parameters a1 and a2 (in
our experiments, we initially set a1 � 0.05 and a2 � 0.1; both
of them can be trained with iterations).

We retrained original networks (FCN, U-Net, and
SegNet) and their modified versions in the TGV upsampling
algorithm on a PASCAL training set (with 1464 images).

For a reconstruction comparison on feature maps
(Figures 5–7), we evaluated the above four methods on a
PASCAL validation set (with 1449 images). We randomly
select feature maps from a certain layer in FCN, U-Net, and
SegNet and compared the upsampled results of using dif-
ferent methods.

For overall comparisons of segmentation results
(Figure 8), we used a PASCAL test set (with 1456 images).
For quantitative results (with 1456 images), we adopted
overall accuracy (OA), mean accuracy (MAcc), frequency-
weighted intersection over union (FWIoU), and mean in-
tersection over union (MIoU) as metrics.

4.1. Experiments

4.1.1. Reconstruction of Intermediate Feature Maps. In this
stage, we replaced the original upsampling layer in all three
networks (FCN, U-Net, and SegNet) with our TGV
upsampling method (see Figure 9, with FCN as an example).
To better compare results, we illustrated the performance of
TGV upsampling when dealing with the same inputs (fea-
ture maps produced by previous layers) and so on, replacing
bilinear operations in U-Net and unpooling in SegNet.

Considering that certain upsampling methods may
multiply when used in models, we only selected one com-
parison regardless of the size of the inputs and how many
upsampling operations appeared in the networks. Feature
maps in Figures 5–7 are the most representative of activation
outputs in each layer in the training process.

In Figures 5–7 (illustrating the comparisons of the
feature maps), all input maps are from some layer in the
encoding stage. We found that TGV upsampling performed
better at saving the textures and edges of the feature map. In
Figure 5, with the same input maps from the FCN archi-
tecture, we observed that compared with transposed con-
volution reconstruction, TGV upsampling reproduced
almost all classes (represented in different colors) that
appeared in input maps. While being a trainable operation,
the transposed operation processes inputs following a
“padding and extracting” pipeline. .ere absolutely exists a
certain chance that sampled maps contain some classes that
in fact are contained in input maps, or a class may be filtered.
It can be clearly seen that, in the second and third input
submaps (Figure 5), the transposed operation did not
completely reproduce all objects appearing in the input map.
Even if these cases are ignored, it is easy to observe that TGV
upsampling is better in reconstructing texture than trans-
posed operations.

As illustrated in Figure 6, bilinear interpolation recovered
too much unnecessary information about known classes from
both x and y directions of the object, compared to the
principle of TGV upsampling reconstruction, based on the
high-order divergence of the known pixel values. .e source
of the TGV model’s information was more reasonable and
more complex. .e reconstruction results of TGV upsam-
pling were also better than those of bilinear interpolation.

Lastly, Figure 7 compares unpooling and TGV upsam-
pling. Since unpooling only records the locations of maxi-
mum activations when performing pooling operations in the
encoding stage, it is clear that the unpooling reconstruction is
not complete, as there are many blank spaces in places where
texture should appear. In general, the efficiency of the
unpooling operation is the worst of the three in terms of
visualization results.
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4.1.2. Training in TGV Upsampling. In this experiment, we
compared overall segmentation results with those of the
original networks.

Figure 8 illustrates examples of PASCAL VOC outputs
from FCN (FCN-8s), U-Net, SegNet, and the modified TGV
upsampling-based networks (denoted by FCN-TGV, U-Net-

(a) (b) (c) (d)

Figure 6: Comparison between a bilinear operation and TGV upsampling for the same feature maps (in U-Net). (a) Input maps. (b) TGV
upsample. (c) Bilinear. (d) Ground truth.

(a) (b) (c) (d)

Figure 5: Comparison between a transposed operation and TGV upsampling for the same feature maps (in FCN). (a) Input maps. (b) TGV
upsample. (c) Transposed. (d) Ground truth.

(a) (b) (c) (d)

Figure 7: Comparison between an unpooling operation and TGV upsampling for the same feature maps (in SegNet). (a) Input maps.
(b) TGV upsample. (c) Unpooling. (d) Ground truth.

Computational Intelligence and Neuroscience 7



TGV, and SegNet-TGV, respectively). Compared to the
coarse-feature maps of the original networks, class (or ob-
ject) recognitions (referring to the interval area between

objects) in our results are more precious (see SegNet and
SegNet-TGV) and the situations of exceeding areas in
ground truth are greatly eased (see FCN and FCN-TGV). At

Input

FT

GT

S

ST

U

UT

F

Figure 8: Overall segmentation example results on PASCAL VOC (GT stands for ground truth, F, S, and U represent results from FCN,
SegNet and U-Net, while FT, ST, and UT mean three networks combined with TGV upsampling).
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the same time, they well preserved the smoothness of the
boundary. Lastly, it can be concluded that the TGV upsampling
method helps models make a better predication on semantics.

.e quantitative results of the VOC test set of our
proposed algorithm and the competitors are presented in
Table 1.We observed that, in terms of overall accuracy, mean
accuracy, frequency accuracy, or MIoU, all metrics were
improved by about 1.4–2.3%, corresponding to the visual-
ization results in Figure 10.

Figures 10–12 show the effect after applying the new
upsampling method (the X and Y axes represent iterations
and losses, respectively). We found that the TGV
upsampling algorithm had a significant effect on reducing
losses compared to the original methods. With a fixed batch
size, our new method converged faster than the original
models.

4.1.3. Loss Function in the Training Process. .e loss
function of FCN, FCN-TGV, U-Net, U-Net-TGV, SegNet,
and SegNet-TGV on the PASCAL VOC VALIDATAE set is
given in Figures 10–12.

4.2. Analysis. After concluding all four upsampling op-
erations introduced in the above sections, we can group
them into two types based on their different information
sources.

4.2.1. Back-Up (Including Unpooling and Transposed
Convolution Operations). Many researchers think that when
reconstructing feature maps, intermediate results produced
in previous operations should be referred to (especially
layers in the encoding stage) as if images are processed along

a “path.” Having known conditions of front distances (re-
ferring to corresponding layers in the encoding stage) makes
it possible to better “predicate” the following road conditions
(referring to feature map reconstructions). .us, when
applying these methods, operation information of previous
layers should be saved. For example, the unpooling oper-
ation is actually seen as an index storage. With saved pa-
rameters, feature maps can be well reconstructed.

However, in both transposed and unpooling operations,
it is unavoidable that the processed results would retain a
certain part of the intermediate results produced by previous
layers. In some cases, this is useful for keeping important
information that may be overlooked in the training process,
but it can also be a disturbance by bringing along un-
necessary information.

4.2.2. From-Itself (Including Bilinear Interpolation and
Our TGV Upsampling Operations). In contrast to the
“back-up” category, the information sources bilinear
interpolation and TGV upsampling used to make up for
losses are coming from the methods’ processes rather
than results of previous operations. As described in
Related Works, bilinear operation interpolates from x
and y directions based on known sample values. .e TGV

Table 1: Results of the PASCAL VOC set.

Method OA MAcc FWIoU MIoU
FCN-8s 91.13 78.68 84.59 64.59
FCN-TGV 92.33 80.12 87.49 66.02
SegNet 86.86 74.41 80.32 58.59
SegNet-TGV 87.46 76.08 83.45 60.48
U-Net 87.13 70.68 79.59 61.59
U-Net-TGV 89.14 72.12 81.49 63.89
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Figure 9: Replacing the transposed convolutional layer in the FCN with the TGV upsampling method.
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method has a more complex information source. It starts
from k-order divergence of known pixel values (for k-
order images). It can better preserve boundary

information of textures, and the step effect can be ef-
fectively avoided, raising the smoothness of the entire
image at the same time.
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Figure 10: Loss function of SegNet (a) and SegNet-TGV (b) on the PASCAL VOC VALIDATAE set.
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Figure 11: Loss function of FCN (a) and FCN-TGV (b) on the PASCAL VOC VALIDATAE set.
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Figure 12: Loss function of U-Net (a) and U-Net-TGV (b) on the PASCAL VOC VALIDATAE set.
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From the results of these experiments, the numerical
results of the loss function and the smoothness of the
sampled feature maps have proven that the TGV-upsam-
pling method is a great improvement over current methods.

5. Conclusions

In this work, we introduced a TGV-upsampling method
based on image restoration research. We transformed the
process of feature map reconstruction into a loss-optimiza-
tion problem. Based on the divergence of each order, we used
TGV regularization, which reconstructs piecewise functions.
For numerical optimization, we used a primal-dual algorithm,
which can effectively perform parallel computing and result in
high frame rates. We applied our new method to three
networks and evaluated the results via PASCAL VOC data-
sets..ese tests proved that the TGV upsampling method can
greatly make up for lost smoothness and boundary in-
formation ofmaps. Compared to the original methods used in
networks (FCN, U-Net, and SegNet), this new method made
average improvements of 1.4–2.3% in terms of MIoU accu-
racy when used in the decoding stage. When observing the
training process in the experiments, we clearly found that the
TGV upsampling method greatly made up for information
losses that resulted from other operations (mainly referring to
various convolutional layers).

.e proposed algorithm is not limited to single-layer
map upsampling. In the future, it will be extended to un-
derstanding entire scenes for effectively incorporating
temporal coherence in a consistent way. On the contrary,
with the proposed “restoration-like” method, we will further
concentrate on how to better understand latent semantics
under unsupervised settings.

Data Availability
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