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Abstract

Over the past century, mice have been selectively bred to give rise to the strains used in biomedical 

research today. Mouse models of cancer allow researchers to control variables of diet, 

environment, and genetic heterogeneity found in the human population to better dissect the role of 

these factors in cancer. Because of the important role of genetic background in cancer, the strain of 

the mouse can give confounding results in studies of mouse models if not properly controlled or 

can provide important new insights into cancer mechanisms. In this chapter the sources of genetic 

heterogeneity in mouse models and how it modifies cancer phenotypes is reviewed.

Origin of inbred mouse strains used in cancer research:

Classical inbred strains are a genetic mixture of the Mus musculus subspecies: M. m. 
domesticus, M. m. musculus, M. m. castaneus, and M. m. molossinus (which is itself a 

hybrid between M. m. musculus and M. m. casteneus) (Figure 1A) (Silver 1995). East Asian 

“fancy” mice were selectively bred from M. m. molossinus and M. m. musculus as pets in 

the eighteenth century and brought to England during the Victorian era. They were further 

selectively bred with M. m. domesticus, resulting in European “fancy” mice. A limited 

number of founders from the European “fancy” mice were brought to the US in the 

twentieth century and inbred to establish the current classical inbred mouse strains. Genetic 

analysis of these inbred strains show that they are 94% M. m. domesticus, 5% M. m. 
musculus, and <1% M. m. castaneus (Yang et al. 2011). In addition, many pure subspecies 

have been inbred to give rise to the “wild-derived” inbred strains, such as WSB/EiJ 

(domesticus), PWK/PhJ (musculus), MSM/Ms (molossinus), and CAST/EiJ (castaneus), 

which are more genetically diverse that the classical inbred strains.

Different inbred strains have been favored in different research fields and are differentially 

represented in the background of mouse cancer models. Most genetically engineered mouse 

models are generated in embryonic stem cells, involving the 129/Sv and/or C57BL/6 strain 

backgrounds, or in mouse zygotes, involving the FVB/N, C57BL/6 and/or SJL strain 

backgrounds. In addition, BALB/cJ and A/J are commonly used in studies of autoimmunity 

and DBA/2J has been important in many fields. As biomedical fields interact and overlap, 

mouse models on different strain backgrounds have been combined. The resulting mixed 

strain backgrounds have the potential to confound the interpretation of mouse models, but 
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also allow researchers to identify interacting polymorphisms to better understand cancer 

pathways.

Sources of variation across different mouse strains:

Natural variation occurs in many forms and can be difficult to integrate (Scherer et al. 2007). 

The DNA sequence varies between different strains by single nucleotide polymorphisms 

(SNPs), small (<1kb) insertions and deletions (INDELs) that can give rise to restriction 

fragment length polymorphisms (RFLPs) or simple sequence length polymorphisms 

(SSLPs), and by larger (> 1kb) copy number variations (CNVs). Autosomal variants undergo 

germline recombination to produce additional variation in progeny of mixed strain crosses. 

In addition, these natural variations in DNA sequence are found on the X and Y sex 

chromosomes and the mitochondrial DNA. Because the sex chromosomes and mitochondrial 

genome do not undergo the similar recombination and inheritance as the autosomes, they 

can introduce bias into the mouse populations being studied.

Chromosome X:

The X chromosome undergoes germline recombination in females, but not males. On mixed 

strain backgrounds the X chromosome contributed by the father is fixed, but the X 

chromosome contributed by the mother can recombine compared to the previous generation. 

In female cells, one of the X chromosomes becomes inactivated to maintain the gene dosage 

similar to males. Whether the maternal or paternal copy of the X chromosome is inactivated 

is theoretically random, but is influenced by polymorphisms at the Xce locus (Chadwick et 

al. 2006). Loci on the X chromosome have been shown to modify ovarian granulosa cell 

tumors (Beamer et al. 1998; Dorward et al. 2003), mammary tumors (Koch et al. 2007), and 

testicular tumors (Hammond et al. 2007), so on a mixed strain background the choice of 

which X chromosome remains active could influence tumor phenotypes.

Chromosome Y:

The Y chromosome does not recombine, but has developed polymorphisms spontaneously 

between different strain backgrounds. Because the Y chromosome is inherited through the 

paternal line, male progeny of reciprocal F1 hybrids (AXB vs BXA) are not identical. 

Although there is not yet strong evidence for a role of Y chromosome polymorphisms in 

modifying tumorigenesis, a study of cardiac growth (Llamas et al. 2009) found expression 

changes in p53 pathway genes, including Pten, Cnnd1 (CyclinD1), and Cdkn1a (p21), in 

mice carrying the A/J Y chromosome vs the C57BL/6J Y chromosome. Therefore, it 

remains a formal possibility that Y chromosome polymorphisms can affect tumor 

phenotypes and should be controlled in genetic crosses.

The mitochondrial genome:

The mitochondrial genome is inherited through the maternal line and, like the Y 

chromosome, does not recombine, but accumulates polymorphisms spontaneously. Although 

the role of mitochondrial variation in tumorigenesis is only beginning to be appreciated, it 

clearly affects tumor related phenotypes of apoptosis, proliferation, and invasion (Jandova et 

al. 2012a; Jandova et al. 2012b). Mitochondrial polymorphisms also affect phenotypes 
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related to diabetes (Chen et al. 2011; Weiss et al. 2012), autoimmune disease (Jonsen et al. 

2009; Yu et al. 2009a; Yu et al. 2009b), and cell metabolism (Moreno-Loshuertos et al. 

2006).

Controlling variation in genetic crosses of mouse cancer models:

Given the effects of strain on mouse phenotypes, it is critical to control for genetic 

background in experiments testing hypotheses of how genes, carcinogens, or therapies affect 

tumorigenesis (see Protocol 1). This can be achieved using well-controlled inbred 

backgrounds or by using appropriate sibling controls in mixed backgrounds, so that the 

extent of variation in the control group matches the variation in the experimental group. In 

this case, it is important to consider how the crosses are set up to ensure that variations in 

sex chromosomes and the mitochondrial genome are equally represented in all groups.

Once mutant mouse models are generated they can be switched to a different strain 

background by 10 or more generations of backcrossing; however, it is very difficult to 

completely remove the original strain polymorphisms in the region of the gene mutation. 

This leads to a window of strain contamination around the gene of interest that can modify 

the phenotype of the gene of interest (Bolivar et al. 2001; Reilly et al. 2004). It is 

particularly difficult to control this type of variation, particularly in heterozygous mutant 

models where mutants are compared with wild-type siblings. The wild-type siblings will not 

inherit the window of strain contamination, whereas the mutants will, leading to bias 

between the groups that is independent of the gene mutation. It is important to consider this 

caveat when interpreting results from this type of model system.

Modification of cancer genes by genetic background:

Genes that play important roles in tumorigenesis can be modified by strain background and 

can themselves by be polymorphic between different strains (Table 1). A better 

understanding of how strain-specific polymorphisms modify the cancer phenotypes can 

improve the understanding of cancer pathways. The role of a mutant gene in cancer, i.e. 

whether it is an oncogene, a tumor suppressor gene, or has no apparent phenotype, can be 

dramatically affected by the genetic background. For example, p53−/+ mice develop 

mammary tumors on the BALB/c background, but not the C57BL/6J background 

(Kuperwasser et al. 2000; Blackburn et al. 2007; Koch et al. 2007). In another example, the 

expression level of Nf1 varies between the C57BL/6J and 129S4/SvJae strains to the same 

extent as knocking out one copy of the gene in C57BL/6J (Hawes et al. 2007). Both Mtor 
and Cdkn2a have been found to carry polymorphisms between the BALB/c and DBA/2 

strains that modify tumorigenesis (Zhang et al. 1998; Bliskovsky et al. 2003). Studies of 

modifier effects on many cancer genes (Table 1) all contribute to the idea that any pathway 

relevant to cancer will likely be influenced by the genetic background of mouse models.

The Collaborative Cross Mouse Resource:

Although variation in genetic background can be a confounder in experiments with mouse 

models of cancer, understanding how this variation alters cancer phenotypes is critical for 

understanding cancer pathways and modeling the genetic heterogeneity found in human 
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populations. Comparisons of different inbred strains have yielded some results (Table 1), but 

are limited in scope. Over the past decade a new resource, the Collaborative Cross, has been 

developed to more robustly study genetic variation in mice (Threadgill et al. 2002; Churchill 

et al. 2004; Chesler et al. 2008; Iraqi et al. 2008; Morahan et al. 2008; Collaborative Cross 

Consortium 2012; Threadgill and Churchill 2012). Eight founder strains (Figure 1B) were 

chosen to represent the diversity of the M. musculus species and the most commonly used 

classical inbred strains in biomedical research. The eight strains were mated pairwise to 

combine the eight genomes and then inbred to homozygosity to generate approximately 350 

recombinant inbred lines. Because the lines are inbred, they are genetically stable and 

reproducible. The lines capture 90% of the genetic variation found across M. musculus and, 

unlike the classical inbred strains, the variation is evenly distributed across the genome, such 

that there are no “blind spots” for understanding the role of genetic background in disease 

(Roberts et al. 2007; Yang et al. 2011; Collaborative Cross Consortium 2012). It has been 

estimated that the Collaborative Cross panel carries 4–5 times the number of variants found 

in the human population. The Collaborative Cross will be a powerful tool in future research 

to improve mouse cancer models to represent the heterogeneity of the human population 

(see Protocol 2).

Summary:

Different mouse strains carry variants in cancer genes or in modifiers of cancer genes. If not 

properly controlled, experimental or control groups in cancer studies can carry biased 

representation of these variants, which can affect the phenotype as much as the experimental 

variable being studied. It is therefore important to take genetic background effects into 

consideration in designing mouse crosses and control groups. A new mouse resource, the 

Collaborative Cross, is making it more feasible to identify the genes and pathways 

underlying these genetic effects.
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Figure 1: 
(A) The distribution of Mus musculus subspecies and their contribution to modern day 

classical inbred strains. Classical inbred strains used in biomedical research were developed 

from European “fancy” mice that were descended from East Asian “fancy” mice. Classical 

inbred strains are mixtures of the domesticus, musculus, castaneus, and molossinus 
subspecies of Mus musculus. In addition, pure subspecies have been inbred to give rise to 

the “wild-derived” strains. WSB/EiJ is a M. m. domesticus strain originating in Maryland, 

USA. PWK/PhJ is a M. m. musculus strain originating near Prague, Czech Republic. 
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CAST/EiJ is a M. m. castaneus strain originating in Thonburi, Thailand. (B) The design of 

the Collaborative Cross to maximize genetic diversity across a panel of recombinant inbred 

strains. Eight founder strains include 5 classical inbred strains and 3 wild-derived strains. By 

varying the position of each founder in the different breeding funnels, polymorphisms in the 

mitochondria (m) and the Y chromosome (Y) can be equally represented across the resulting 

lines.
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