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Abstract

Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the 

molecular mechanisms underpinning the dissemination of primary breast tumor cells and their 

ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic 

and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), 

which interact both directly and indirectly with key components of gene regulatory networks to 

alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG 

whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in 

dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by 

environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival 

of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via 
survival and viability pathways, as well as decreased activation of cell death pathways. As such, 

BORG expression acts as a (i) marker capable of predicting which breast cancer patients are 

predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to 

maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that 
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contribute to the pathophysiological activities of BORG during its regulation of breast cancer 

metastasis, chemoresistance, and disease recurrence.
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Introduction

With over 250,000 newly diagnosed cases in 2017, breast cancer is the most commonly 

diagnosed malignancy among U.S. women [1]. Although recent advances in treatment have 

produced a moderate decline in the mortality rate associated with breast cancer [2], this 

disease nevertheless still plagues women and is the second leading cause of cancer-related 

death, resulting in over 40,000 deaths each year [1]. The clinical management of breast 

cancer is complicated by its manifestation as an exceptionally heterogeneous disease. In fact, 

the degree of molecular and histopathologic variation demonstrated by breast cancers 

necessitates its classification not as a single, uniform disease, but rather as one that is 

composed of a diverse collection of diseases that possess varying clinical prognoses and 

require distinct treatment strategies. Integral to this heterogeneity are the receptors for the 

ovarian steroid hormones estrogen (ER) and progesterone (PR), and for the membrane-

associated tyrosine kinase HER2/ErbB-2. Moreover, the expression or lack thereof of these 

receptors dictates therapeutic schemes and disease-free progression [3,4]. Likewise, the 

multiple various permutations in the expression patterns of these receptors exemplify the 

heterogeneity of the disease and necessitate the tailoring of specific treatments to each 

individual patient. In fact, clinicopathologic detection for the expression of these receptors 

remains an advantageous trait, as they represent some of the most consistently predictive and 

actionable molecular targets in all of oncology [5]. As such, the largest clinical burden 

associated with breast cancer stems from a subset of patients whose tumors fail to express 

ER, PR, and HER2, lesions known as triple-negative breast cancer (TNBC). This genetically 

distinct breast cancer subtype constitutes ~15−20% of all diagnosed breast cancers [6] and 

portends the worst overall survival rates of all breast cancer subtypes, an untoward trait that 

reflects their extreme propensity to relapse within 5 years of initial diagnosis and treatment 
[7]. The molecular features that underlie the development, metastasis, and relapse of TNBCs 

remain to be fully elucidated. Recently, a novel intergenic lncRNA known as BORG 

(BMP/OP-Responsive Gene) was identified as being a prominent driver of these 

tumorigenic activities in TNBCs. Here we highlight the pathophysiology associated with 

aberrant BORG expression in TNBCs, as well as discuss clinical implications of BORG and 

its potential for therapeutic targeting to alleviate metastatic disease.

Breast Cancer Metastasis

Despite immense efforts undertaken to characterize the molecular complexity of primary 

breast cancers, the lethality associated with all subtypes of breast cancer is attributed 

primarily to the dissemination and colonization of distant tissues [8,9], an untoward clinical 

event that results in dismal median survival rates of ~1 year. Moreover, the finding of 

metastatic TNBC is essentially a fatal diagnosis regardless of the chemotherapeutic 

Gooding et al. Page 2

J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intervention deployed to combat this disease [10]. Despite decades of intense investigation, a 

complete understanding of the molecular forces vital to metastasis remains incomplete, a 

knowledge gap that continues to hinder the development of therapeutics capable of 

specifically targeting and alleviating metastatic lesions. Nonetheless, fundamental steps 

taken by malignant cells to facilitate their dissemination from the primary tumor site to 

distant tissues for colonization have been identified and are called the metastatic cascade 
[11]. The events that comprise this multi-step process include (i) local invasion and migration 

of malignant cells into the stroma surrounding the primary lesion; (ii) intravasation into the 

vasculature or lymphatic system to permit transit through these circulatory routes; (iii) 
vascular stasis and subsequent extravasation into parenchymal tissues at distant sites of 

colonization; (iv) survival and micrometastasis formation; and (v) overt growth and 

metastasis formation [12]. Interestingly, the earliest phases of metastatic progression (i.e., 

dissociation and emigration from site of origin via the vasculature) represent the barriers that 

are most easily surmounted by primary lesions, as evidenced by the fact that tumors readily 

liberate thousands upon thousands of cells into the circulation each day [13,14]. However, 

despite the relative abundance of tumor cells traversing the vascular systems of some 

patients, the process of metastasis remains a supremely inefficient event. Indeed, animal 

modeling studies estimate that only ~0.01% of circulating tumor cells are capable of 

initiating some form of metastatic outgrowth [15], and as such, it is the late stages of 

metastatic progression that ultimately dictate the competency of disseminated cells in 

establishing overt metastases within the metastatic niche [12].

Dormancy: A Metastatic Bottleneck

The acquisition of metastatic phenotypes was originally believed to be an evolutionary 

consequence of advanced, late-stage disease. However, recent findings indicate that 

carcinoma cells comprising primary breast tumors do in fact enter the circulation months-to-

years prior to the point at which the primary tumor becomes symptomatic and diagnosable 
[16]. As such, a large proportion of breast cancer patients already harbor disseminated tumor 

cells (DTCs) at their time of diagnosis [11,17,18]. Indeed, DTCs are readily detected in the 

bone marrow of 30–40% of patients diagnosed with early-stage breast cancer, an event that 

portends a significantly worse prognosis as compared to patients whose bone marrow is free 

from DTCs at the time of diagnosis [19]. Interestingly, a large fraction of these DTCs initially 

remain clinically asymptomatic due in part to their acquisition of dormancy-associated 

phenotypes upon arrival to the micrometastatic niche [12].

Although diverse genetic and epigenetic analyses have begun to reveal the molecular 

landscape that characterizes metastatic breast cancers, only recently have these 

investigations been directed at and tailored for DTCs and their reactivation of proliferative 

programs during metastatic relapse. As such, a unified definition of dormancy remains 

elusive. At a cellular level, current models suggest that metastatic cells often undergo 

proliferative arrest upon arriving to a micrometastatic niche, a phenomenon believed to 

reflect the initial maladaptation of DTCs to foreign stromal environments [20]. Indeed, the 

stromal characteristics that impact DTC dormancy are multifactorial and encompass a 

diverse array of immunomodulatory and vascular endothelial cell signals (e.g., cytokine 

milieu, rigidity of the microenvironment, presence of active immunosurveillance [17,21,22]) 
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that converge on niche-localized DTCs. In doing so, these unique microenvironment signals 

may prove to be inhospitable to DTCs, thereby provoking cellular stress and the initiation of 

apoptosis as these cells struggle to cope and respond to foreign junctional and adhesive 

signaling networks [23–25]. Consequently, newly established micrometastatic lesions fail to 

propagate and expand due to (i) deficiencies to initiate and progress through the cell cycle; 

and (ii) propensity to undergo apoptosis at a pace that equals or exceeds the proliferative rate 

of DTCs. Despite these barriers, a subset of DTCs remain viable and poised to reactivate 

proliferative programs that result in metastatic relapse years-to-decades after implementation 

of initial treatments, such as chemotherapy and radical primary tumor resection [26,27]. 

Clinically, extended periods of metastatic dormancy is evidenced by growth modeling 

studies performed on over 1,000 breast cancer patients. In doing so, two discrete peaks that 

define the probability of metastatic recurrence were identified: (i) one correlating with a 

model of continuous, slow growth of metastatic cells; and (ii) one corroborating the 

principle that the majority of delayed relapses are indeed the result of a temporary period of 

dormancy prior to reactivation of proliferation programs [28]. Indeed, it is this second peak 

that poses the greatest threat to breast cancer patients, with ~62% of breast cancer deaths 

occurring 5–20 years after initial diagnosis [27]. Taken together, these findings reveal that 

dormant DTCs play a pivotal role in the majority of breast cancer-associated mortality, a 

feature that cements them as one of the most clinically relevant targets in all of oncology.

Models of Metastatic Dormancy in Breast Cancer

In vitro and in vivo models of dormancy represent critical tools for investigating the 

molecular mediators that impact dormant states. However, the establishment of such models 

pose significant challenges, as the growth and propagation of dormant cell lines is, by 

definition, inherently impractical. Likewise, the size and sparsity of dormant 

micrometastases makes their identification highly burdensome. Nonetheless, accepted 

models of breast cancer dormancy do in fact exist. One particularly powerful model of 

metastatic dormancy is the murine D2.HAN series, which consists of two cell lines that 

display distinct metastatic properties, namely the dormant D2.OR cell line and the highly 

metastatic D2.A1 cell line [29]. These cell lines were derived from a premalignant murine 

hyperplastic alveolar nodule implanted into the cleared mammary fat pad of BALB/c mice, 

resulting in spontaneous tumors that were subsequently classified by alternations in their 

surface glycoprotein composition as determined by retention to the lectin, peanut agglutinin 
[29]. Accordingly, dormant D2.OR cells exhibit high affinity for peanut agglutinin and 

produce slow growing tumors that are incapable of forming disseminated tumors in either 

spontaneous or experimental metastasis models. In stark contrast, metastatic D2.A1 cells 

exhibit low affinity for peanut agglutinin and produce fast growing tumors that metastasize 

aggressively [30]. Importantly, in vivo videomicroscopy reveals that these D2.HAN 

derivatives show no differences in the mechanism, timing, and proportion of cells capable of 

extravasating into the lungs of mice, indicating that post-extravasation events underlie their 

vastly disparate abilities to undergo metastatic outgrowth [31]. Despite their inability to form 

secondary tumors, a large proportion of disseminated D2.OR cells readily survive the 

process of extravasation (i.e., ~80% at 3 weeks and ~50% at 11 weeks) and remain viable 

despite their non-proliferative phenotype (i.e., Ki-67-negative) [32]. Collectively, these 

cellular and functional features form the crux of the dormancy-associated phenotypes 
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exhibited by D2.OR cells in vivo, thus establishing them as a valuable model for studying 

the molecular mechanisms underlying metastatic dormancy [33–35].

IncRNAs in Breast Cancer

Elucidating the molecular determinants of breast cancer metastasis, especially those 

associated with DTC acquisition of and eventual emergence from dormancy, remains a 

critical undertaking that is essential to the future development of therapies capable of 

targeting DTCs. Recently, a surprising class of molecules called long noncoding RNAs 

(lncRNAs) have been identified and function as potent contributors to the malignant 

properties of breast cancer cells. Broadly, these transcripts are defined as RNA molecules 

that are >200 nucleotides in length and lack an open reading frame capable of producing a 

functional protein [36]. LncRNAs were originally believed to possess negligible function and 

exist primarily as “transcriptional noise” originating from illegitimate regulatory DNA 

elements. However, it is now clear that lncRNA expression patterns transpire in a highly 

specific cell- and tissue-dependent manner [37,38]. Importantly, noncoding RNA molecules 

do not require protein-coding capacity to act as powerful determinants of cell fate. Indeed, 

lncRNAs harbor immense intrinsic functionality within the course of cellular homeostasis 

and disease formation. For instance, the developmental complexity of organisms correlates 

more closely with the extent and diversity of the noncoding genome rather than with the 

collective composition of protein-coding genes [39–41].

In light of the dynamic and diverse functions attributed to lncRNAs, it is unsurprising that 

malignant cells, including those arising from the breast, have hijacked lncRNAs to directly 

and indirectly alter their proliferative, invasive, and metastatic ability [42–44]. As such, 

several lncRNAs have been shown to modify critical breast cancer-associated molecular 

pathways in a manner that transcends hormone receptor status, frequently driving the 

development and progression of TNBCs [45]. Similarly, ER-associated signaling pathways 

also regulate the expression of lncRNAs [46], including HOTAIR, whose promoter contains 

several estrogen response elements [47]. Moreover, induction of HOTAIR promotes the 

growth and metastasis of breast cancers via widespread epigenetic reprogramming [48].

BORG

Although numerous lncRNAs have been linked to breast cancer tumorigenesis and 

metastasis [49], the intergenic lncRNA BORG has recently emerged as a unique and 

formidable regulator of the metastatic competence and survival of breast cancer cells. 

Originally discovered in murine C2C12 myoblast cells treated with BMP2 or BMP7, BORG 

is a spliced and polyadenylated ~2.8 kb transcript that shows no evidence of an open reading 

frame and carries multiple conserved repeat sequence elements of unclear significance [50]. 

Collectively, these features implicate BORG as a lncRNA, whose primary sequence has been 

subject to several functional analyses. For instance, BORG houses several novel pentamer 

motifs (AGCCC) that are essential in facilitating its strict residence in the nucleus, 

representing the first demonstration of sequence-based determinants operant in dictating the 

subcellular localization of lncRNAs [51]. Indeed, the nuclear localization of lncRNAs 

directly impacts their ability to elicit widespread alterations in transcriptional networks by 
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(i) localizing transcription factors to specific genomic loci [52–54], and (ii) exerting gross 

changes in the nuclear architecture of cells [55]. Likewise, BORG oversees a host of cellular 

functions that are readily harnessed by breast cancer cells to enhance their tumorigenic 

behaviors. As will be discussed in the succeeding sections, these BORG-dependent events 

play an essential role in promoting breast cancer cell proliferation, chemoresistance, and 

survival.

Control of Proliferation

In undertaking a combination of in silico and cell biological analyses, we recently 

determined that the expression of BORG directly correlates with aggressive breast cancer 

phenotypes, and with their metastatic competence and recurrence. Specifically, BORG 

liberates D2.OR cells from a state of dormancy in 3D-organotypic cultures by conferring a 

proliferative shift in the cell cycle from G0/G1 to G2/S [56]. Importantly, this proliferative 

stimulus is sufficient to enable BORG-expressing D2.OR cells to form overt metastases in 

the lungs of BALB/c mice [56]. Interestingly, the mitogenic properties of BORG are highly 

context-dependent, as they only emerge in D2.OR cells propagated in microenvironments 

that mimic primary and/or metastatic tumor sites (e.g., 3D-cultures). Such context-

dependent activities of BORG imply that this lncRNA confers malleable phenotypes to 

DTCs, thus compelling them to activate adaptive signaling programs that enable their 

survival and outgrowth within diverse metastatic niches.

BORG as a Manipulator of Protein Function

In searching for mechanistic insights into how BORG induces DTCs to escape from 

dormancy, we performed mass spectrometry analyses on proteins captured by the pulldown 

of biotinylated, anti-sense BORG transcripts. These analyses identified the E3 SUMO ligase 

TRIM28 (KAP1) as a strong binding partner of BORG [57]. TRIM28 functions as a 

transcriptional co-repressor and scaffolding protein for histone and DNA modifying 

enzymes that enhance breast cancer cell proliferation, doing so in part by suppressing the 

transcription of senescence promoting genes, especially p21 and Gadd45a [58–61]. 

Interestingly, elevating BORG expression in D2.OR cells to levels that approximate those 

detected in their metastatic D2.A1 counterparts dramatically downregulated the expression 

p21 and Gadd45a, indicating that BORG may rely upon TRIM28 to confer proliferative 

states to dormant DTCs. Indeed, CRISPR/Cas9-mediated knockout of TRIM28 restores a 

dormant phenotype in BORG-expressing D2.OR cells, as does expression of mutant BORG 

transcripts that can no longer bind TRIM28 [57]. Thus, the oncogenic activities of BORG 

depend upon its physical interaction with TRIM28, an event that serves as a proliferative 

stimulus to dormant DTCs.

The diverse range of functions elicited by lncRNAs is thought to be promoted by their 

unique structural diversity. Their inherent length and nucleic acid structure allow the 

formation of flexible, complex secondary and higher order structures that facilitate their 

interactions with macromolecular complexes [40]. Indeed, lncRNAs can acquire behaviors 

analogous to ligands, as their binding to proteins can trigger conformational changes and/or 

modify protein:protein interactions that dramatically impact protein activation states [62]. 

Accordingly, BORG enhances the function of TRIM28 to inhibit transcription by regulating 
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the pause and release of RNA Polymerase II (Pol II) [63,64]. For instance, heterologous 

expression of mutant BORG transcripts that retain their capacity to bind TRIM28 remain 

competent to elicit Pol II promoter pausing at the p21 and gadd45a loci, whereas those 

BORG mutants incapable of binding TRIM28 fail to impact the pausing index of Pol II at 

these loci [57]. Furthermore, widespread evidence indicates that lncRNAs can function as 

molecular scaffolds for proteins, thereby (i) tethering cooperative proteins together to 

enhance their functions, or (ii) localizing RNA-protein complexes to specific genomic 

regions through base-pair and tertiary structure interactions with DNA [41,65]. Along these 

lines, chromatin immunoprecipitation assays reveal that BORG enhances the binding of 

TRIM28 to specific genomic loci [57]. Thus, BORG promotes the metastatic outgrowth of 

dormant DTCs in part through its ability to promote the localization and transcriptional 

repressive activity of TRIM28.

Although BORG directly modifies the ability of TRIM28 to suppress the expression of p21 
and gadd45a in dormant DTCs, it should be noted that TRIM28 also exerts widespread 

alterations in the transcriptomes of a multitude of cell types [63,64,66]. To gain additional 

insight into the repertoire of transcriptional events coupled to TRIM28 in DTCs, we 

performed RNA-seq and microarray-based transcriptomic analyses on parental and BORG-

expressing D2.OR organoids propagated in 3D-cultures. To assess the specific impact of 

TRIM28 on these dormancy-associated phenotypes (i.e., parental dormancy versus BORG-

mediated outgrowth), we also rendered these cells deficient in TRIM28 expression. 

Unsurprisingly, BORG-expressing D2.OR cells harbored a transcriptional signature that 

deviated significantly from its parental and TRIM28-deficient counterparts. Moreover, 

cellular network analyses revealed specific BORG- and TRIM28-dependent transcriptional 

patterns that were significantly enriched for proliferative and prometastatic signatures [57]. 

Collectively, these findings establish BORG as the only known lncRNA that functions in 

modifying the activity and cellular localization of a transcriptional regulator (i.e., TRIM28) 

to confer genome-wide transcriptomic alterations that compel the reactivation of 

proliferative programs in dormant DTCs.

Chemoresistance

The development of therapeutic resistances continues to hamper the prolonged efficacy of 

standard-of-care treatment regimens. Moreover, these clinical challenges are compounded 

by the fact that the underlying mechanisms responsible for targeted and chemotherapeutic 

resistance are immensely diverse. Nonetheless, malignant breast cancer cells regularly rely 

on the malleable intrinsic state of cancer cells, which enables their adaptation to cytotoxic 

cellular stresses in order to maintain viability [67] in a manner that most closely follows the 

paradigm of acquired resistance [68]. Indeed, the plasticity underlying the appearance of 

chemoresistance is naturally permissive and reflects alterations in the epigenome. Moreover, 

these events are bolstered by defects in the ability of DTCs to maintain genome integrity that 

arise in response to aberrant cell cycle checkpoints and DNA repair mechanisms, and to 

increased rates of proliferation. Additionally, interactions between DTCs and the tumor 

microenvironment induce unique de novo mechanisms of therapeutic resistance, as cell 

adhesion networks (e.g., integrins) activate a specialized survival program known as “cell 

adhesion-mediated” drug resistance that elicit DTC insensitivity to numerous treatment 
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regimens [69,70]. As such, the stromal composition of the metastatic microenvironment 

creates a natural sanctuary for DTCs to survive therapeutic insults.

Interestingly, dormant DTCs have long been recognized for their inherent resistance to 

commonly used chemotherapeutic drugs [11]. These resistant traits naturally stem from the 

quiescent phenotype of dormant cells, which effectively abolishes the clinical utility of 

chemotherapeutics and cytotoxic agents that target metabolically active and dividing cells 
[71]. Moreover, dormant cells preferentially upregulate signaling pathways associated with 

cell survival, a trait stemming from their allocation of metabolic resources away from cell 

cycle progression as a means to remain viable in the face of environmental stressors (i.e., 

chemotherapy) [72]. Accordingly, chemotherapeutic treatment can select for a subset of 

dormant cells that are enriched for pro-survival pathways and multidrug resistance, implying 

that cytotoxic insults can select for a population of cells that are exceedingly equipped to 

instigate post-therapy relapse [73,74]. Importantly, we recently determined that BORG plays a 

central role in driving the development of chemoresistance in TNBCs (see below).

BORG: A Novel Inducer of Chemoresistance

In addition to possessing enhanced proliferative abilities, BORG-expressing D2.OR cells 

also exhibit (i) extensive upregulation of pro-survival and viability pathways, and (ii) 
widespread downregulation of cell death pathways [56]. Moreover, BORG expression is 

highly responsive to metabolic stresses such as hypoxia and nutrient deprivation, as well as 

to treatment with a wide panel of chemotherapeutic drugs, including doxorubicin, 

hydroxyurea, docetaxel, 5-fluorouracil, and 6-thioguanine [56]. These cellular attributes of 

BORG are consistent with its ability to enhance metastatic outgrowth and disease 

recurrence. Indeed, comet assays demonstrate that heterologous expression of BORG 

dramatically mitigates the extent of double-stranded DNA breaks experienced by D2.OR 

cells in response to doxorubicin exposure. Moreover, these genoprotective features of BORG 

rely upon its binding to the single-strand DNA-binding protein, RPA1, which functions as an 

essential molecule in the repair of DNA damage [75,76]. Interestingly, the capacity of BORG 

to induce resistance to doxorubicin appears to supersede its ability to enhance cell cycle 

progression, an event that could potentially render BORG-expressing cells more sensitive to 

the cytotoxic activities of doxorubicin [77,78]. As such, the genoprotective effects of BORG 

are essential in establishing the foundation operant in mediating deadly relapse in patients 

with metastatic breast cancers. Moreover, as lncRNAs typically function as molecular 

scaffolds that facilitate the formation of protein complexes, particularly in the nucleus [79], it 

is tempting to speculate that BORG promotes the interaction of RPA1 with proteins critical 

to its repair of DNA, including additional subunits RPA2 and RPA3 [80], as well as other 

DNA-repair associated proteins, such as BRCA2, XPA, and p53 [81–83] (Table 1).

BORG and NF-κ B: A Feed-forward Loop to Chemoresistance

Cellular network analyses of parental and BORG-expressing D2.OR derivatives demonstrate 

significant enrichment of a hallmark gene signature that correlates with the induction of NF-

κB activity [56]. Accordingly, NF-κB reporter assays show enhanced activation of NF-κB 

signaling in BORG-expressing D2.OR cells as compared to their parental counterparts. In 

light of the longstanding association between NF-κB activation and the initiation of pro-
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survival and cellular stress responses [84,85], we further explored the connections between 

NF-κB and BORG in eliciting DTC resistance to chemotherapy. In doing so, we inactivated 

the NF-κB pathway via several complementary strategies, including (i) stable expression of 

a dominant-negative form of IκBα;(ii) CRISPR/Cas9-mediated knockout of the BORG-

responsive gene NEMO/IKKγ; or (iii) administration of small molecule inhibitors to IKKβ. 

In all cases, inhibiting NF-κB signaling in BORG-expressing D2.OR cells restored their 

sensitivity to doxorubicin both in vitro and in vivo, and to apoptosis induced by hypoxia- 

and nutrient deprivation [56]. It should be noted that while BORG requires ample expression 

of RPA1 to protect against doxorubicin-induced DNA damage and subsequent apoptosis, 

this event appears to be dissociated from the ability of BORG to activate NF-κB signaling. 

Indeed, CRISPR/Cas9-mediated disruption of RPA1 expression had no effect on the ability 

of BORG to activate NF-κB signaling [56]. Thus, the chemoresistant phenotypes afforded by 

BORG-RPA1 interactions act independently of the NF-κB signaling axis.

Interestingly, the promoter region of the BORG locus contains multiple stretches of 

nucleotides that exhibit sequence homology to the consensus DNA-binding sequence for 

NF-κB. Accordingly, NF-κB readily bound to the BORG promoter in BORG-expressing 

cells, thereby identifying a novel feed-forward loop whereby the activation of NF-κB (i.e., 

through chemotherapeutic and environmental stressors [86–89]) leads to enhanced BORG 

expression, which further promotes the induction NF-κB responsive genes. Along these 

lines, expression of a dominant-negative lκBα in TNBCs prevented their expression of 

BORG following exposure to doxorubicin, and to environmental stresses, such as hypoxia 

and nutrient deprivation [56]. Collectively, these findings implicate BORG as a unique 

lncRNA that is capable of promoting a NF-κB feed-forward signaling loop that effectively 

links metastasis-associated cellular stresses to a coordinated signaling program that 

engenders the survival of disseminated TNBCs.

BORG and Breast Cancer Stem Cells

Breast cancer stem cells (BCSCs) are malignant cells capable of tumor initiation, self-

renewal, and differentiation into a heterogeneous group of cancer cells that reflect those 

present in the original primary breast tumor; they are also associated with the acquisition of 

metastatic and chemoresistant phenotypes [90–93], particularly upon their colonization of 

foreign tissue microenvironments [94]. BCSCs typically divide asymmetrically to create (i) a 

single progenitor cell capable of differentiating into a variety of functionally diverse cancer 

cell types, and (ii) a single BCSC that can expand and undergo continual self-renew. 

Attempts to characterize BCSCs has been hampered by a relative lack of universal markers 

for BCSCs [95,96]. Indeed, BCSCs have been linked to the expression of several cell surface 

proteins, such as CD133 and CD44+/CD24-, and to the intracellular protein, ALDH1 [97–99]. 

Recent findings have associated the expression of lncRNAs with the generation and 

expansion of BCSCs. For instance, the lncRNAs ROR, HOTAIR, and Hh all induce the 

expression of transcription factors that regulate “sternness,” such as SOX2 and OCT4; they 

also impact the initiation of EMT programs [100–103], which elicit the selection, expansion, 

and self-renewal of BCSCs [104]. The role of BCSCs in regulating metastasis, 

chemoresistance, and survival signaling are reminiscent of the features attributed to aberrant 

BORG expression, suggesting that BORG may also regulate the behaviors of BSCSs. 
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Accordingly, BORG expression is elevated significantly in BCSCs as compared to non-

BCSCs populations; it also enhances the mammosphere forming activity of human and 

murine breast cancer cells (Gooding et al, unpublished observation). Thus, future studies 

need to determine precisely how BORG impacts the transcriptomic and epigenetic 

landscapes of breast cancer cells to impart BCSC characteristics coupled to metastatic 

progression and disease recurrence.

Discussion and Clinical Implications of BORG

Metastasis is an exceedingly complicated process, whereby tumor cells must undergo 

coordinated efforts to successfully disperse from primary tumors, emigrate to distant tissues, 

and survive and colonize foreign microenvironments. Even for highly transformed cells, 

traversing the metastatic cascade is immensely challenging, with the vast majority of 

disseminated cells unable to form overt metastases [15]. The inefficiencies characterizing 

metastasis are predominantly attributed to the cellular stresses associated with unfamiliar 

metastatic microenvironments, forces that obstruct both the survival and outgrowth of DTCs. 

Accordingly, BORG has emerged as a potent and unique lncRNA that is poised to enhance 

breast cancer metastasis by altering both sides of this equation, i.e., providing both 

proliferative and pro-survival stimuli to DTCs.

From a potential clinical perspective, aberrant BORG expression is most frequently 

associated with TNBC/basal-like breast cancers, as determined by scrutinizing several 

publicly available RNA-seq datasets. Moreover, we detected significant elevations of BORG 

in metastatic human patient-derived xenograft (PDX) tissue samples, and in CNS metastases 

and their matched primary tumors from which these metastatic foci derived. In all cases, 

malignant tissues clearly express increased levels of BORG as compared to normal human 

mammary epithelial cells [56,57]. Thus, these findings support the hypothesis that primary 

malignancies that house high levels of BORG will disperse aggressive breast cancer cells 

that are predisposed to establishing clinically-relevant, chemoresistant secondary lesions. 

Indeed, TNBC patients who succumbed to metastatic relapse within 5 years of initial 

diagnosis and treatment possessed primary tumors that contained significantly higher levels 

of BORG compared to primary tumors derived from TNBC patients who remained disease-

free for at least 5 years post-treatment [57]. Taken together, these intriguing findings suggest 

that quantifying BORG expression in primary tumors could offer important insights into 

predicting the natural and clinical course of breast disease within TNBC patients.

The correlative finding that BORG expression largely aligns with the overall malignant 

propensity of breast cancer cells fails to address the mechanisms and signaling systems 

ultimately coupled to its upregulation in developing mammary tumors. Indeed, it has been 

proposed that lncRNAs evolved as a means to assist in maintaining cellular homeostasis in 

response to a wide variety of pathophysiologic conditions [105]. Accordingly, we show that 

BORG expression is similarly influenced by a number of cellular stressors, including 

chemotherapeutic insult, nutrient deprivation, and hypoxia [56], as well as in response to heat 

shock (Valadkhan et al, unpublished observation). Moreover, NF-κB is critical in linking the 

responsiveness of BORG to these environmental stressors [56], as NF-κB activation has long 

been tied to the survival of cells confronted with a host of intrinsic and extrinsic stressors 
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[84,85,106]. It therefore stands to reason that increased flux through the NF-κB pathway 

stemming from exposure to noxious stimuli may serve as the initial impetus in triggering the 

aforementioned NF-κB feed-forward loop, wherein NF-κB-induced upregulation of BORG 

propagates expression of NF-κB-responsive gene expression patterns [56].

Tumor progression and metastatic competence are thought to rely heavily upon the intrinsic 

plasticity of malignant cells, which facilitates their adaptation to harsh foreign 

microenvironments in order to maintain viability [67,107]. Because BORG is largely 

regulated by extracellular paracrine factors (e.g., TGF-β, BMP-2, and BMP-7 [50,56]) and the 

environmental cues, we surmise that BORG acts as a context-dependent, transcriptional 

rheostat for disseminated breast cancer cells, thereby dictating their engagement of 

proliferative and pro-survival pathways. Indeed, when faced with environmental or 

therapeutic stresses, the induction of BORG in malignant cells orchestrates a transcriptional 

signature that provokes aggressive tumorigenic states that ensures for their survival. As such, 

preventing BORG expression or impeding the activation of its downstream targets represents 

an innovative and potentially impactful strategy to target metastatic breast cancers and drive 

them into an apoptosis-prone state.

Current mechanistic insights into the regulation of BORG and its downstream effectors 

reveal that this lncRNA is uniquely poised to promote the metastasis of breast cancer cells. 

Indeed, BORG clearly exerts a pro-metastatic effect at both the primary and metastatic sites 

of tumor growth. For example, a subset of breast cancer patients may harbor primary tumor 

cells that have gained the expression of BORG (BORGhi) as a result of environmental 

stresses associated with a growing primary tumor (i.e., hypoxia and nutrient deprivation; 

Figure 1). Such tumors are prone to shedding BORGhi cells into the circulation that 

disseminate to distant tissues, wherein they exploit the proliferative and pro-survival effects 

of BORG to overcome the hostile metastatic microenvironment and form overt metastases 

(Figure 1). Accordingly, and as noted above, TNBC patients who succumbed to metastatic 

relapse within 5 years of initial diagnosis and treatment possessed primary tumors that 

contained significantly higher levels of BORG compared to primary tumors derived from 

TNBC patients who remained disease-free for at least 5 years post-treatment. Furthermore, 

breast cancer cells can emigrate from the primary tumor at very early stages of tumor 

development [18]. As such, these early disseminated breast cancer cells are likely to originate 

from a lesion experiencing little hypoxic or metabolic stress and are therefore more prone to 

harboring low levels of BORG (BORGlo). Although still capable of disseminating to distant 

tissues, these BORGlo cells are predicted to struggle within their foreign microenvironments, 

resulting in their undergoing cell death or retreating into a state of metastatic dormancy. 

Nonetheless, stromal paracrine signals (e.g., TGF-β, BMP2, or BMP7), as well as the 

hypoxic and metabolic stresses associated with the metastatic microenvironment, can lead to 

the induction of BORG expression within these dormant DTCs, thereby activating 

proliferative programs and survival signaling to promote their metastatic outgrowth (Figure 

1).

Finally, neoadjuvant or adjuvant treatment of primary breast cancers with chemotherapeutic 

agents (e.g., doxorubicin) will selectively kill BORGlo cells that are not inherently resistant 

to the cytotoxic effects of these agents. The residual, chemoresistant BORGhi cells can 
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subsequently contribute to the recurrence of metastatic or primary lesions that are insensitive 

to standard-of-care therapies (Figure 1). These diverse cellular outcomes downstream of 

BORG establish this lncRNA as an essential driver of breast cancer metastasis and highlight 

the potential utility derived from therapeutically targeting BORG or its effectors as a novel 

means to alleviate the metastatic outgrowth and recurrence of disseminated TNBCs.
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Figure 1. BORG is a Potent Facilitator of Breast Cancer Metastasis.
Breast cancer cells can disseminate at very early stages of development. Due to the benign 

microenvironment associated with these lesions, these cells are likely to harbor low levels of 

BORG (BORGlo) expression and are prone to establishing dormant lesions in metastatic 

tissues. Nonetheless, stromal factors and environmental stressors in the metastatic 

microenvironment can induce BORG expression, thereby compelling these dormant cells to 

reinstate proliferative programs. The progression of primary tumors is associated with a 

hypoxic environment and stark competition for nutrients. Such stresses can enhance BORG 

expression in a subset of cells (BORGhi). These BORGhi cells can disseminate to distant 

tissues where they exploit the proliferative and survival advantages afforded by BORG to 
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produce overt metastases. Cytotoxic chemotherapeutic treatment is effective against BORGlo 

cells, but BORGhi cells show resistance to such therapies and are the foundation for 

chemoresistant, residual disease that can eventually metastasize to distant tissues.
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Table 1.

BORG-Associated Signaling Pathways

Upstream Inducers BORG-complexes Downstream Effectors Cellular Response Reference

BMP; OP-1; TGF-β BORG Alkaline phospatase Osteoblast Differentiation [50]

NF-κB BORG NF-κB Cellular Stress Response/Cell survival [56,84,85]

ATM BORG:TRIM28 P21 Proliferation [57,58]

ATM BORG:TRIM28 Gadd45a Proliferation [57,58]

- BORG:TRIM28 P38/MAPK Proliferation [57]

- BORG:TRIM28 ERK1/2 Proliferation [57]

Hypoxia/chemostresses BORG:RPA1 RPA2 & RPA3 DNA Damage Response [56,80]

Hypoxia/chemostresses BORG:RPA1 BRCA2 DNA Damage Response [56,81–83]

Hypoxia/chemostresses BORG:RPA1 XPA DNA Damage Response [56,81–83]

Hypoxia/chemostresses BORG:RPA1 P53 DNA Damage Response [56,81–83]

BORG plays essential functions in regulating breast cancer proliferation, metastasis, and chemoresistance. The specific effectors of BORG that 
activate cells proliferation and survival systems are annotated above, as are the BORG: effector complexes operant in mediating these events. 
Italicized text indicate a downregulation in protein expression, while underlined text represent proteins hypothesize to mediate BORG action based 
on findings published in the literature.

J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 August 21.


	Abstract
	Introduction
	Breast Cancer Metastasis
	Dormancy: A Metastatic Bottleneck
	Models of Metastatic Dormancy in Breast Cancer

	IncRNAs in Breast Cancer
	BORG
	Control of Proliferation
	BORG as a Manipulator of Protein Function

	Chemoresistance
	BORG: A Novel Inducer of Chemoresistance
	BORG and NF-κ B: A Feed-forward Loop to Chemoresistance
	BORG and Breast Cancer Stem Cells

	Discussion and Clinical Implications of BORG
	References
	Figure 1.
	Table 1.

