FIGURE 3.
LIS1-MeCP2 interaction, implications on adult brain. (A) The degree of nest building was assessed on a scale of 0 – 4 (Deacon, 2006). Nesting ability is presented in the distribution graph. Both the single and the double mutants exhibited impaired nesting ability. (B) The mean locomotion activity during the dark (active) diurnal phase is presented. The double mutant mice were significantly less active than the WT mice during the dark phase. (C) The mean latency to cross the beam in the balanced beam test is presented. The double mutant mice exhibited a significant higher latency to cross over. (D–G) CatWalk parameters are presented. (D) The mean run duration, double mutants differed from WT. (E) Mean speed, the double mutant and the MeCP2 cKO mice were significantly slower than the WT. (F) The stride length of front paws (on left) and the hind paws (on right) are presented. Stride length of both hind and front paws of the MeCP2 cKO and the double mutant was shorter than that of WT mice. (G) The base of support (BOS) of front paws (left) and the hind paws (right) are presented, the hind paws BOS of the MeCP2 cKO and the double mutant mice was higher as compared to WT. (H,I) The latency to fall in the rotarod test is presented. (H) The latency to fall over different days is presented. (I) Comparison between the different genotypes. Heterozygotes Lis1 exhibited significant increased latency to fall as compared with MeCP2 cKO and double mutants mice. Data are shown in (B–G), and (I) as Box plots [box = 25, 50 (median), 75 percentiles; whiskers = 5–95 percentiles] and (H) as mean ± SEM. *p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, as compared with controls.