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Neurobiology of Disease

Nerve Growth Factor Contribution via Transient Receptor
Potential Vanilloid 1 to Ectopic Orofacial Pain
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It is well known that oral inflammation causes tenderness in temporomandibular joints or masseter muscles. The exact mechanism of
such an orofacial ectopic hyperalgesia remains unclear. Here, we investigated the functional significance of interaction of nerve growth
factor (NGF) and transient receptor potential vanilloid 1 (TRPV1) in relation to heat hyperalgesia in the whisker pad skin caused by
complete Freund’s adjuvant (CFA) injection into the lower lip. CFA injection induced heat hyperalgesia of the ipsilateral whisker pad skin.
Moreover, it leads to enhancement of spontaneous activity and heat responses in trigeminal ganglion (TG) neurons that was elicited by
heat stimulation of the whisker pad skin. The heat hyperalgesia was dose-dependently reversed by intraperitoneal TRPV1 antagonist
administration, also diminished by neutralizing anti-NGF antibody administration into the lower lip and intraganglionic administration
ofK252a, atyrosine kinase receptor inhibitor. Nerve fibers in bundle of mandibular nerve and TG neurons that innervates the whisker pad
skin and lower lip both expressed labeled NGF, which was administrated into the lower lip. Moreover, the NGF concentrations in
ophthalmic-maxillary and mandibular divisions of the TG increased after CFA injection into the lower lip. The number of TRPV1-positive
neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip, and this increase was
annulled by anti-NGF administration. The present findings suggest that inflammation in the lower lip induces release of NGF that
regulates TRPV1 expression in TG neurons. This TRPV1 overexpression may underlie ectopic heat hyperalgesia in the whisker pad skin.

Introduction

It is well known clinically that local inflammation in the oral
cavity causes tenderness in masseter muscles or the temporo-
mandibular joint (TMJ) and that patients suffering from TM]J
pain sometimes complain of heat hypersensitivity in other oro-
facial regions (Maixner et al., 1998; Fernandez-de-las-Penas et al.,
2010). In a case of neuropathic pain, it is presumed that a nerve
injury leads to persistent alterations in the properties of adjacent
uninjured, unmyelinated fibers because of changes in expression
of ion channels responsible for the membrane excitability (Gold
et al., 2003; Shim et al., 2007). In the effort to develop effective
treatments for atypical orofacial pain, it is important to establish
an appropriate model, and to investigate the exact mechanisms of
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ectopic heat hyperalgesia induced by local inflammation in the
orofacial region.

The transient receptor potential vanilloid 1 (TRPV1) that be-
longs to the TRPV subfamily of the large TRP ion channel super-
family is highly expressed in primary sensory neurons. TRPV1 is
a critical contributor to normal and pathological pain (Tominaga
and Caterina, 2004). This receptor can be activated by noxious
heat (>43°C), extracellular acidification, various lipids, and cap-
saicin (Caterina et al., 1997; Tominaga and Tominaga, 2005).
Several studies demonstrated that TRP channel functions are
modulated during inflammation (Ji et al., 2002; Kanai et al., 2007;
De Schepper et al., 2008). One of the representations of such a
modulation is an inflammatory-mediated heat hyperalgesia
(Zhuang et al., 2004; Breese et al., 2005). Among the factors that
affect TRPV1 channel function, nerve growth factor (NGF) pos-
sesses a central role (Ji et al., 2002). NGF is not required for
survival but it has a crucial role in the generation of pain and
hyperalgesia in acute and chronic pain states in adults (Hefti et
al., 2006). It has been recently demonstrated that intravenous
application of NGF causes robust, long-lasting mechanical and
thermal hyperalgesia (Lewin et al., 1994; Niewiadomska et al.,
2010). Intradermal recombinant human NGF administration of
minute doses in humans led to lowering of heat pain threshold
(Dyck et al., 1997; Rukwied et al., 2010). One of the possible
explanations of such an effect of NGF on pain is that the NGF
rapidly potentiates the activity of TRPV1 channels in dorsal root
ganglion (DRG) neurons (Shu and Mendell, 1999; Bonnington



7146 - J. Neurosci., May 11,2011 - 31(19):7145-7155

and McNaughton, 2003). DRG neurons cultured in the presence
of NGF showed abnormal hyperexcitability (Kitamura et al.,
2005). These results suggest that NGF is a potent activator of
nociceptors and an endogenous mediator of heat pain sensation.

The aim of the present study is to test the hypothesis that (1)
local inflammation in the mandibular division (V3) plays a role
in heat nociception in the ophthalmic-maxillary division (V1-
V2), (2) NGF produced by local inflammation in the V3 is retro-
gradely transported to the trigeminal ganglion (TG), and (3)
upregulation and/or sensitization of TRPV1 in TG neurons in
V1-V2 after lower lip inflammation facilitate the transmission of
nociceptive information via functional interactions among TG
neurons.

Materials and Methods

Animals. Male C57BL/6 mice (20—30 g) were used in this study (Japan
SLC). Mice were exposed to a 12 h light/dark cycle and kept in a
temperature-controlled room (23°C) with food and water ad libitum.
This study was conducted in accordance with the ethical guidelines of the
International Association for the Study of Pain (Zimmermann, 1983)
and was approved by the local animal ethics committee in accordance
with the Guidelines for Animal Experiments in Nihon University School
of Dentistry.

Induction of inflammation in lower lip. Under anesthesia with intraperito-
neal injection of sodium pentobarbital (50 mg/kg; Schering Plough), mice
were injected with a 3 ul of solution of complete Freund’s adjuvant (CFA)
(Sigma-Aldrich) or physiological saline subcutaneously into the left
lower lip.

Assessment of heat sensitivity of whisker pad skin. To assess nocifensive
responses to heat stimuli, mice were briefly sedated with 2% isoflurane
(Mylan) and gently placed in a restraint device, manufactured as de-
scribed previously (Kamp et al., 2003), inside a sound-attenuating, dark
chamber, and allowed to recover from isoflurane sedation (30 min) be-
fore behavioral assay. Radiant heat was applied to the left whisker pad
skin. The head withdrawal latency to radiant heat was manually recorded
with a chronometer before CFA injection into the left lower lip to assess
basal levels. The same procedure was performed on days 2, 4, 6, 8, 10, 12,
and 14 after CFA injection into the left lower lip. A cutoff of 10 s was
established to prevent tissue damage.

TG neuronal recording. Mice were initially anesthetized with urethane
(1.2 mg/kg, i.p.), and spontaneous activity and evoked responses of TG
neurons by heat stimulation of the whisker pad skin were recorded on
day 4 after CFA or saline injection into the lower lip. Mice were mounted
in a stereotaxic frame, the cortical surface was exposed by a craniotomy,
and dura was removed from the exposed brain surface to insert recording
electrodes into the TG through the cortex (anterior, 2.5-3.0 mm; left,
0.5-1.2 mm; depth, 5.5-6.2 mm, from the bregma). Mice were anesthe-
tized with continuous inhalation of 2-3% isoflurane mixed with oxygen,
and immobilized with pancuronium bromide (3.3 mg/kg/h, i.p.) during
recording session. End-tidal CO, was maintained from 3.5 to 4.5% and
the rectal temperature was maintained at 37°C by a feedback-controlled
heating blanket. The electrocardiogram was monitored and the heart rate
was maintained at 400—500/min. When the heart rate was increased
during heat stimulation, the concentration of isoflurane was increased
appropriately. After identification of heat-sensitive TG neurons inner-
vating whisker pad skin (whisker pad TG neurons) using tungsten mi-
croelectrodes (impedance, 10 M()), the single neuronal activity was
amplified and stored in the computer hard disk. Spikes were sorted and
spike frequencies were analyzed using the Spike II software (CED 1401;
Cambridge Electronic Design).

Spontaneous activity and evoked responses by heat stimulation of the
whisker pad skin (55°C, 10 s) using a contact thermode (Intercross) were
analyzed on day 4 after injection of CFA or saline into the lower lip.

Effect of TRPVI antagonist on heat hyperalgesia. To assess the involvement
of TRPV1 in heat hyperalgesia of the whisker pad skin induced by CFA
injection into the lower lip, CFA-injected animals were administered with
the TRPV1 antagonist N-(3-methoxyphenyl)-4-chlorocinnamide
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(SB366791) (Sigma-Aldrich). SB366791 was dissolved in 50% dimeth-
ylsulfoxide in saline. On day 4 after injection of CFA into the lower
lip, SB366791 (0.1, 1.0, and 10 mg/kg, i.p.) was administrated in a
volume of 0.1 ml. These doses of SB366791 were determined from
previous reports (Varga et al., 2005). Head withdrawal latency to
radiant heating of the whisker pad skin was determined before (pre)
and 0, 30, 60, and 90 min after intraperitoneal administration of
SB366791. Control animals received the same volume of vehicle.

Peripheral administration of neutralizing anti-NGF antibody. To assess
the involvement of NGF in the heat hyperalgesia of whisker pad skin
induced by CFA injection into the lower lip, 3 ul of anti-NGF antibody (1
ng/kg/d, s.c.; Santa Cruz) was administrated into the lower lip for 4
successive days (day 0 through day 3) in CFA-injected mice. Anti-NGF
antibody was dissolved in saline, with the dose of anti-NGF antibody
determined from a previous report (Delafoy et al., 2003). Head with-
drawal latency to radiant heating of the whisker pad skin was determined
on day 4 after injection of CFA into the lower lip. Control animals re-
ceived the same volume of vehicle.

Peripheral administration of NGF. To assess the involvement of NGF
into the lower lip in heat hyperalgesia of the whisker pad skin, 3 ul of
NGF 2.5S (5 pg/kg, s.c.; Sigma-Aldrich) dissolved in saline was admin-
istrated into the lower lip for 4 successive days (day 0 through day 3) in
naive mice. The dose of NGF 2.5S was determined from a previous report
(Delafoy et al., 2003). Head withdrawal latency to radiant heating of the
whisker pad skin was determined on day 4 according to the methods
described above. Control animals received the same volume of vehicle.

TRPV1 expression in whisker pad TG neurons or TG neurons innervating
lower lip (lower lip TG neurons). whisker pad or lower lip TG neurons were
identified by means of the retrograde labeling with 3% hydroxystilbamidine
[FluoroGold (FG)] (Fluorochrome) dissolved in saline or 100 mg/ml (in
100% ethanol) of 1,1’-dioctadecyl-3,3,3",3-tetramethylindocarbocyanine
methanesulfonate (Dil) (Invitrogen). In advance, FG injection (3 ul) into
the ipsilateral whisker pad skin and Dil injection (3 ul) into the ipsilateral
lower lip were performed with a 30 gauge needle before injection of CFA or
saline into the lower lip.

On day 4 after CFA or saline injection into the lower lip, CFA-injected
animals receiving anti-NGF antibody or saline daily into the lower lip
were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and tran-
scardially perfused with saline followed by a fixative containing 4% para-
formaldehyde in 0.1 M phosphate buffer, pH 7.4. Each group consisted of
five animals. Ipsilateral TGs were dissected out after perfusion and im-
mersed in the same fixative for 4 h at 4°C. Postfixed TGs were kept in 0.01
M PBS containing 20% sucrose for 12 h for cryoprotection. The speci-
mens were then embedded in TissueTek (Sakura Finetek) and stored
until cryosectioning at —20°C. TGs were cut in the horizontal plane
along the long axis of the ganglion on a cryostat at a thickness of 10 um.
For analysis, every 10th section—four sections per TG—was chosen for
each mouse. Sections were thaw-mounted onto MAS-coated Superfrost
Plus microscope slides (Matsunami) and dried at dark room temperature
overnight.

TG sections were incubated with rabbit anti-TRPV1 polyclonal anti-
serum (Alomone) after dilution at a concentration of 1:500 in 0.01 M PBS
containing 4% normal goat serum and 0.3% Triton X-100 (Sigma-
Aldrich). Sections were reacted with the reagent for overnight at 4°C.
After rinsing with 0.01 M PBS, sections were reacted with Alexa Fluor
488-conjugated goat anti-rabbit IgG (1:200 in 0.01 M PBS; Invitrogen) for
2 h at room temperature. After rinsing with 0.01 M PBS, sections were
coverslipped in mounting medium (Thermo Fisher Scientific) and ex-
amined under a fluorescence microscope. Using appropriate filters,
double-labeled (FG or Dil, with Alexa Fluor 488) neurons were identified
and analyzed using a BZ-9000 system (Keyence). Neurons twofold or
more intense than average background were considered positive for
TRPV1 immunoreactivity. No specific labeling was observed in the ab-
sence of primary antibody. The ratio of TRPV1-positive neurons in each
animal was calculated by the following formula: 100 X total number of
TRPV1-positive and FG- or Dil-labeled neurons in four sections of TG/
total number of FG- or Dil-labeled neurons in four sections of TG. Mean
percentages of TRPV1-positive neurons in FG- or Dil-labeled neurons
were calculated from the ratio of five animals.
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Figure 1. Changes in heat sensitivity measured in whisker pad skin for 14 d. CFA or saline was
injected into the psilateral lower lip. Data are expressed as percentage (mean == SEM) for withdrawal
atency for each animal, normalized to withdrawal latency (100%) on preinjection. *p << 0.05 com-
pared with withdrawal latency of saline-injected animals (n = 6in each group; two-way ANOVA with
repeated measures, followed by Bonferroni’s multiple-comparison tests).

NGEF receptors and extracellular signal-regulated kinase phosphorylation
expression in whisker pad TG neurons. whisker pad TG neurons were
identified by means of retrograde labeling with 3% FG injection (3 ul, s.c.)
performed with a 30 gauge needle inserted into the ipsilateral whisker pad
skin before CFA injection. On day 4 after CFA injection into the lower lip,
CFA-injected animals were anesthetized with sodium pentobarbital (50 mg/
kg, i.p.) and transcardially perfused with saline followed by a fixative con-
taining 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. To identify
TrkA, p75 receptors, and extracellular signal-regulated kinase (ERK) phos-
phorylation (pERK) expression immunohistochemically in TG, anti-TrkA
rabbit polyclonal antibody (1:100; Millipore), anti-p75 goat antibody (1:200;
Neuromics), and anti-phospho-p44/42 mitogen-activated protein kinase
(MAPK; Thr2%%/Tyr>**) rabbit antibody (1:200; Cell Signaling Technology)
were used as a primary antibody, and Alexa Fluor 488-conjugated goat anti-
rabbit IgG or donkey anti-goat IgG (Invitrogen) was used as a secondary
antibody. Immunohistochemical staining and calculation of positive neu-
rons were performed as described in the previous section.

Western blotting analysis. On day 4 after injection of CFA or saline into
the lower lip, animals were anesthetized with sodium pentobarbital (50
mg/kg, i.p.) and transcardially perfused with saline. TG was taken out
rapidly and divided into ophthalmic-maxillary (V1-V2) and mandibular
divisions (V3). The tissue was homogenized in 200 ul of ice-cold lysis
buffer (137 mm NaCl, 20 mm Tris-HCI, pH 8.0, 1% NP40, 10% glycerol,
1 mM phenylmethylsulfonyl fluoride, 10 wg/ml aprotinin, 1 g/mlleupep-
tin, and 0.5 mM sodium vanadate) using a tube pestle (Thermo Fisher
Scientific). Samples were then centrifuged at 15,000 rpm for 10 min at
4°C. Supernatants were collected to new tubes and protein concentra-
tions of the samples were determined with a protein assay kit (Bio-Rad)
and subjected to Western blotting and ELISA. For Western blotting,
100-200 ug of total protein was subjected to 10% SDS-PAGE. The sep-
arated protein was transferred to an Immobilon membrane (Millipore)
electrophoretically, and Western blotting was performed as described
previously (Asano et al., 2004). The rabbit anti-TRPV1 antibody (1:200
dilution with 1% bovine serum albumin (BSA)-PBST in 0.1% Tween
20-PBS; Alomone) was used as the primary antibody. Horseradish
peroxidase-conjugated goat anti-rabbit IgG (H+L) (1:5000 dilution with
1% BSA-PBST; Jackson ImmunoResearch) was used as the secondary
antibody. The bands were detected using an ECL kit (GE Healthcare) and
were captured by a scanner. The intensities of the bands were quantified
by NIH Image analysis system. The intensities of TRPV1 bands were
normalized with that of GAPDH bands. The intensity ratio was set as
100% when saline was injected into the lower lip.

Peripheral administration of labeled recombinant NGF. The Alexa Fluor
488 labeling of B-NGF (R&D Systems) was performed with Alexa Fluor
488 microscale protein labeling kit (Invitrogen). Briefly, 50 ug of B-NGF
was mixed with 5 ul of 1 M sodium bicarbonate and pipetted thoroughly.
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Figure 2.  Effect of injection of CFA or saline into the lower lip on spontaneous activity and

heat responses of whisker pad TG neurons. 4, €, Typical peristimulus time histograms of spon-
taneous activities (4) and heat responses (C) of TG neurons. B, D, Mean firing frequency of
spontaneous activity (B) and heat response (D). *p << 0.05, **p << 0.01 versus saline-injected
(n = 5in each group; Student’s ¢ test). Error bars indicate SEM.

The sample was further mixed with 2.6 ul of Alexa Fluor 488 solution and
incubated for 15 min at room temperature. The reaction mixture was
applied to the spin column and unreacted dye was eliminated. The flow-
through was collected and the protein concentration was measured. The
labeled protein was aliquoted and stored at —80°C until use. In advance,
FG injection (3 wl) into the ipsilateral whisker pad skin and Dil injection
(3 ul) into the ipsilateral lower lip were performed with a 30 gauge needle
before injection of CFA or saline into the lower lip. CFA or saline with 3
ul of Alexa Fluor 488-labeled B-NGF (1 wg/ul, s.c.) was administrated
into the lower lip in mice. On day 1 after CFA or saline injection with
Alexa Fluor 488-labeled B-NGF into the lower lip, the animals were
perfused with 4% paraformaldehyde and TGs were cut in the horizontal
plane along the long axis of the ganglion on a cryostat as described above.
After rinsing with 0.01 M PBS, sections were coverslipped in mounting
medium (Thermo Fisher Scientific) and examined under a fluorescence
microscope. Using appropriate filters, FG and Alexa Fluor 488 double-
labeled neurons and Alexa Fluor 488-labeled nerve fibers were identified.
The mean percentages of NGF-positive neurons in FG- or Dil-labeled
neurons were calculated as described in the previous section. The Alexa
Fluor 488 labeling of BSA was conducted, administered with CFA or
saline into the lower lip, and examined under equal conditions as de-
scribed above.

ELISA measurements of NGF. On days 0.5, 1, 4, and 10 after injection of
CFA or saline into the lower lip, animals were anesthetized with sodium
pentobarbital (50 mg/kg, i.p.) and transcardially perfused with saline.
Supernatants were taken from V1-V2 and V3 in TG, the lower lip, whis-
ker pad skin, and supraorbital regions by the method described above
(see Western blotting analysis).

Sympathetic postganglionic neurons are notorious for their ability to
take up and transport NGF. These axons of the superior cervical ganglion
(SCG) run in large numbers through the TG on the way to the face and
could be the source of NGF protein changes in the TG. Animals were
anesthetized with sodium pentobarbital (50 mg/kg, i.p.), the SCG was
exposed surgically (cervical incision, ~1 c¢m in length), and removal of
the ipsilateral SCG or sham operation was performed. The incision was
closed with 5-0 silk sutures, and animals were subsequently returned to
their home cages until use. Animals were anesthetized and perfused on
day 1 after injection of CFA into the lower lip; supernatants were taken
from V1-V2 and V3 in TG by the method described above (see Western
blotting analysis).
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On day 4 after CFA injection, TRPV1-positive whisker pad or lower lip TG neurons in V1-V2 (4-D) and V3 (E-H) defined by FG or Dil, respectively. A, E, TRPV1-positive TG neurons. B,

F, Dil-labeled TG neurons. C, G, FG-labeled TG neurons. D, H, Dil- and FG-labeled 3-NGF-positive TG neurons. Arrows, TRPV1-positive TG neurons. Open arrowheads, Dil-labeled TG neurons.

Arrowheads, FG-labeled TG neurons. Scale bar, 50 pem.
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Figure 4. A, TRPV1immunoreactivity of whisker pad TG neurons defined by FG. B, Frequency of FG-labeled TRPV1-positive TG neurons. ¢, Mean number of FG-labeled TG neurons. D, TRPV1
immunoreactivity of lower lip TG neurons defined by Dil. E, Frequency of Dil-labeled TRPV1-positive TG neurons. F, Mean number of Dil-labeled TG neurons. The arrow indicates a double-labeled
neuron. Scale bar, 50 wm. *p < 0.05 (n = 5 in each group; one-way ANOVA followed by Bartlett’s multiple comparisons). Error bars indicate SEM.

The concentration of NGF in 100 ug of total protein was quantified
using the E-max immunoassay system (Promega) according to the man-
ufacturer’s instructions. Absorbance values of standards and samples
were corrected by subtraction of the background value to correct for
absorbance attributable to nonspecific binding. Absorbance was mea-
sured using a Microplate reader model 3550 (Bio-Rad).

Intraganglionic administration of K252a. Mice were anesthetized with
sodium pentobarbital (50 mg/kg, i.p.) and placed in a stereotaxic appa-
ratus, and then a guide cannula was implanted into the left TG (anterior,
2.5 mm; left, 1.0 mm; depth, 5.5 mm, from the bregma). The guide
cannula was kept detaining with stainless-steel screws and dental resin.
After completion of surgery, mice were allowed to recover for 9-10 d
before experiments were performed.

To assess the involvement of intraganglionic NGF induced by CFA injec-
tion into the lower lip in the heat hyperalgesia of whisker pad skin, 0.5 ul of
(9S-(9a,10B,12a))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxy-
carbonyl)-9-methyl-9,12-epoxy-1 H-diindolo[1,2,3-fg:3",2",1"-kl] pyr-
rolo[3,4-i][1,6]benzodiazocin-1-one (K252a), a nonselective tyrosine

kinase receptor inhibitor (1 ug/d; Santa Cruz), was administered into TG via
a 31 gauge, 6.0-mm-long needle for 4 successive days (day 0 through day 3)
in CFA-injected mice. K252a was dissolved in 0.01 M PBS in 5% DMSO.
Head withdrawal latency to radiant heating of the whisker pad skin was
determined on day 4 after injection of CFA into the lower lip. Control ani-
mals received the same volume of vehicle.

Total RNA extraction and reverse transcription-PCR. To detect NGF
mRNA expression in the lower lip and TG before and at 12 h after injec-
tion of CFA or saline into the lower lip, animals were anesthetized with
sodium pentobarbital (50 mg/kg, i.p.) and transcardially perfused with
saline. The lower lip and TG divided into V1-V2 and V3 were dissected
and frozen rapidly. Total RNA in lower lip, V1-V2, and V3 was purified
using an RNeasy mini kit (Qiagen). One microgram of total RNA was
subjected to first-strand ¢cDNA synthesis as described previously
(Omagari et al., 2008). The cDNA was amplified by sequence-specific
primers for NGF and B-actin. The primers used in this study were as
follows: NGF, 915 bp, forward primer, 5'-GCATGGTGGAGTTTTGGC-
3'; reverse primer, 5'-AGGAGAGTGTGGAGGGGG-3'; B-actin, 225 bp,
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two-way ANOVA with repeated measures followed by Bonferroni’s multiple-comparison tests).

forward primer, 5'-TTCCAGCCTTCCTTCCTGG-3'; reverse primer,
5'-TTGCGCTCAGGAGGAGCAA-3'. The PCR products were separated
by agarose gel electrophoresis. The intensity of both NGF and B-actin
bands was measured by NIH Image system and the relative ratio was
calculated. NGF mRNA expression level in the lower lip induced by CFA
injection was set as 1.

Statistical analysis. Data were expressed as means = SEM. Statistical
analyses were performed by Student’s t test, one-way ANOVA followed
by Dunnett’s multiple-comparison tests, or two-way repeated-measures
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Figure 7.  Effects of neutralizing anti-NGF antibody on heat sensitivity of CFA-injected ani-

mals. Values of histograms are represented as mean == SEM. Effect of lower lip neutralizing
anti-NGF antibody (A) or saline (B) administrations on heat sensitivities of whisker pad skin on
day 4 after CFA injection. Gray, whisker pad skin preinjection. Black, whisker pad skin ipsilateral
to CFA-injected lower lip. White, whisker pad skin contralateral to CFA-injected lower lip. **p <
0.01 (n = 5in each group; one-way ANOVA followed by Bartlett’s multiple-comparison test).
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Figure 8. Effects of administration of NGF 2.5S into the lower lip on heat sensitivity of
whisker pad skin. Values of histograms are represented as mean = SEM. Effect of lower lip NGF
2.55 (A) or saline (B) administrations on heat sensitivities of whisker pad skin on day 4. Gray,
whisker pad skin of preinjection. Black, Ipsilateral whisker pad skin. White, Contralateral whis-
kerpad skin. **p << 0.01 (n = 5ineach group; one-way ANOVA followed by Bartlett's multiple-
comparison test).

ANOVA followed by Bonferroni’s multiple-comparison tests where ap-
propriate. A value of p << 0.05 was considered significant.

Results

Heat hyperalgesia in whisker pad skin after CFA injection

into the lower lip

We first studied the changes in the heat withdrawal latency after
lower lip injection of CFA. Mice receiving a unilateral lower lip
injection of CFA developed lip inflammation with swelling on
day 1. The heat withdrawal latency of the whisker pad skin signif-
icantly decreased after CFA injection into the ipsilateral lower lip
(80.9 = 6.6% in change; 3.4 * 0.2 s) compared with saline-
injected controls (106.2 = 7.6% in change; 4.2 = 0.2 s) on day 4
after injection. Significant heat hyperalgesia was observed in the
ipsilateral whisker pad skin on day 4 through day 14 ( p < 0.05)
(Fig. 1). There were no significant changes in heat withdrawal
latency of the saline-injected whisker pad skin during the exper-
imental period. No significant changes in heat withdrawal latency
of the contralateral whisker pad skin were observed during the
experimental period compared with the basal value before injec-
tion (data not shown). Animals ate and gained weight normally
during the experimental period.
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Changes in excitability of whisker pad
TG neurons after CFA injection into the
lower lip

whisker pad TG neurons in CFA-injected
(n = 5) and saline-injected mice (n = 5)
were functionally identified on day 4 after
CFA or vehicle injection. Spontaneous ac-
tivity in whisker pad TG neurons signifi-
cantly increased in CFA-injected mice
compared with saline-injected (p < 0.01)
(Fig. 2A,B). Moreover, evoked responses
by heat stimulation of the whisker pad
skin were significantly larger in CFA-
injected mice than that of saline-injected
(p <0.05) (Fig. 2C,D).

TRPV1 expression in whisker pad

TG neurons

We then studied whether changes in ex-
pression of TRPV1 channels may under-
lie the CFA-mediated hyperalgesia and
the changes of excitability of TG neurons.
We examined the presence of TRPV1 im-
munoreactivity in whisker pad and lower lip
TG neurons using immunofluorescence
techniques combined with retrograde-
tracing fluorescent neuronal tracer FG or
Dil (Fig. 3). Retrogradely labeled neurons
were observed in TG after injections of FG
into the whisker pad skin or Dil into the
lower lip. FG-labeled neurons containing TRPV1 were present in
TG (Fig. 4A). Mean percentage of FG-labeled TRPV1-positive
neurons was significantly increased on day 4 after CFA injection
(13.3 = 0.4%) compared with saline (6.7 = 0.6%; p < 0.05).
Daily anti-NGF antibody application after CFA injection pre-
vented the increase in number of TRPV1-expressing neurons
(9.1 £ 0.9%) (Fig. 4 B). There were no differences in the mean
number of total FG- and Dil-labeled neurons in the TG ipsi-
lateral to CFA, CFA plus anti-NGF antibody, or saline injec-
tion (Fig. 4C,F).

Dil-labeled neurons containing TRPV1 were present in TG (Fig.
4 D). Mean percentage of Dil-labeled TRPV1-positive neurons was
significantly increased on day 4 after CFA injection (44.7 * 5.1%)
compared with saline (27.8 = 3.9%; p < 0.05), but returned to the
value of saline-injected group after CFA injection with daily anti-
NGF antibody application (24.1 * 1.7%) (Fig. 4E).

On day 4 after CFA injection, the protein expressions of
TRPV1in VI-V2 or V3 of TG were assessed by Western blotting
of protein extracts. TRPV1 protein expression in both V1-V2 and
V3 of TG ipsilateral to CFA injection was significantly greater
than that of the saline-injected group (278.7 * 46.7% in V1-V2
and 334.0 = 39.8% in V3, respectively) (Fig. 5A,B) (p < 0.05).

TRPV1 mediates heat hyperalgesia in whisker pad skin

Effects of the TRPV1 antagonist SB366791 on heat hyperalgesia
of the whisker pad skin were tested on day 4 after CFA injection.
The SB366791 administration produced a marked dose-dependent re-
versal of CFA induced-heat hyperalgesia in the whisker pad skin
(Fig. 6). Recovery in head withdrawal latency peaked at 30 min
after SB366791 administration. SB366791 had no effect on heat
withdrawal latencies of the whisker pad skin at the control con-
ditions. Motor deficits or sedation were not observed during the
experimental period (data not shown).
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Figure 9.  A-C, TrkA-positive whisker pad TG neurons: TrkA-positive TG neurons (A); FG-labeled TG neurons (B); FG-labeled
TrkA-positive TG neurons (€). D-F, p75-positive whisker pad TG neurons: p75-positive TG neurons (D); FG-labeled TG neurons (E);
FG-labeled p75-positive TG neurons (F). G-I, pERK-positive whisker pad TG neurons defined by FG: pERK-positive TG neurons (G);
FG-labeled TG neurons (H); FG-labeled pERK-positive TG neurons (). J-L, Frequency of FG-labeled TrkA (/)-, p75 (K)-, and pERK
(L)-positive whisker pad TG neurons on day 4 after CFA or saline injection into the lower lip. The arrow indicates a double-labeled
neuron. Scale bar, 20 wm (n = 5in each group; Student's t test). Error bars indicate SEM.

Effect of anti-NGF antibody administration into the lower lip
on heat hyperalgesia in whisker pad skin

Four days after CFA injection into the lower lip, daily anti-NGF
antibody administration (day 0 through day 3) into the lower lip
had no effect on head withdrawal latency to heat stimulation of
the whisker pad skin (Fig. 7A, B). Moreover, daily anti-NGF an-
tibody alone had no effect on head withdrawal latency (data not
shown).

Effect of NGF 2.5S administration into the lower lip on heat
hyperalgesia in whisker pad skin

Four days after daily NGF 2.5S administration into the lower lip,
head withdrawal latency to heat stimulation of the whisker pad
skin was significantly shortened by daily NGF 2.5S administra-
tion (day 0 through day 3) into the lower lip compared with that
before administration ( p < 0.01) (Fig. 8 A). There was no signif-
icant difference in head withdrawal latency between groups re-
ceiving 100 ng and 1 pg of NGF 2.5S. No change in head
withdrawal latency was observed in the saline-injected group
(Fig. 8 B).

TrkA, p75, and pERK expression in TG

The presence of TrkA-, p75-, or pERK-positive whisker pad TG
neurons was examined by immunohistochemical staining com-
bined with retrograde tracing of FG. whisker pad TG neurons on
day 4 after CFA injection expressed TrkA, p75, or pERK (Fig. 9).
In FG-labeled neurons in TG ipsilateral to CFA injection, mean
percentage of TrkA-positive neurons was not altered, whereas
that of p75-positive neurons was significantly decreased (CFA-
injected, 17.9 * 1.2%; saline-injected, 26.6 = 2.5%; p < 0.05).
Mean percentage of FG-labeled pERK-positive neurons slightly
increased in TG ipsilateral to CFA injection (CFA-injected,
32.9 * 5.7%; saline-injected, 18.5 * 2.7%; p = 0.052).
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Mandibular nerve fibers were labeled by 3-NGF which was administrated into the lower lip with CFA (4) or saline (F). On day 1 after 3-NGF administration into the lower lip with CFA

orsaline, 3-NGF-positive whisker pad or lower lip TG neurons defined by FG or Dil, respectively. B, G, 3-NGF-positive TG neurons. C, H, Dil-labeled TG neurons. D, I, FG-labeled TG neurons. E, J, Dil-
and FG-labeled B3-NGF-positive TG neurons. Mandibular nerve fibers (K) and TG neurons (L) on day 1 after labeled BSA administration into the lower lip with CFA. Open arrow, 3-NGF-positive nerve
fibers. Arrow, Dil-labeled 3-NGF-positive TG neurons. Arrowhead, FG-labeled B3-NGF-positive TG neurons. Scale bar, 50 um. M, Frequency of B-NGF-positive neurons in FG- or Dil-labeled TG
neurons after CFA or saline injection into the lower lip (n = 5 in CFA-injected group; n = 4 in saline-injected group; Student’s ¢ test).

Release of NGF from TG neurons innervating the inflamed

lip tissue

Alexa Fluor 488-labeled B-NGF that was administrated into the
lower lip together with CFA or saline was expressed in the man-
dibular nerve fibers (Fig. 10A,F), whisker pad and lower lip TG
neurons (Fig. 10 B-E,G—J). No Alexa Fluor 488-labeled BSA was
expressed in the mandibular nerve fibers and TG neurons (Fig.
10K,L). Mean percentage of Dil-labeled NGF-positive neurons
in CFA-injected group was significantly larger than that of saline-
injected group (CFA-injected, 86.0 * 3.2%; saline-injected,
64.5 * 8.9%; p < 0.05) (Fig. 10 M). Moreover, mean percentage
of FG-labeled NGF-positive neurons in CFA-injected group was
also slightly larger than that of saline-injected group (CFA-
injected, 40.0 * 5.8%; saline-injected, 21.9 = 6.2%; p = 0.07).

Effect of tyrosine kinase receptor inhibitor K252a
administrated into TG on heat hyperalgesia

Four days after CFA injection into the lower lip, head withdrawal
latency to heat stimulation of the whisker pad skin was not altered
in mice that had received daily K252a administration (day 0
through day 3) into the TG ipsilateral to CFA injection (Fig.
11A). However, the head withdrawal latency was significantly
shortened after daily vehicle injection into the lower lip com-
pared with that before injection (p < 0.05) (Fig. 11 B). Moreover,
daily K252a alone had no effect on the head withdrawal latency
(data not shown).

NGF concentration and its mRNA expression after CFA
injection into the lower lip

Concentrations of NGF were measured by ELISA after CFA in-
jection into the lower lip. In both V1-V2 and V3 of the TG, NGF
concentration (in picograms per milliliter) was significantly in-

A B %*:p<0.05

Withdrawal latency (s)

Naive Pre Ipsi Contra Naive Pre Ipsi Contra

K252a Vehicle

Figure 11.  Effects of intraganglionic administration of K252a (A) or vehicle (B) into TG on
heat sensitivity of whisker pad skin on day 4. Diagonal, whisker pad skin of naive. Gray, whisker
pad skin of preinjection. Black, Ipsilateral whisker pad skin. White, Contralateral whisker pad
skin. *p << 0.05 (n = 6 in each group; one-way ANOVA followed by Bartlett’s multiple-
comparison test). Error bars indicate SEM.

creased on days 1 and 10 after CFA injection into the lower lip
(p < 0.05) (Fig. 12A). In V3, NGF concentration after CFA
injection into the lower lip was significantly increased on day 1.
NGF concentration gradually declined, and there was no signifi-
cant difference in NGF concentration between CFA-injected and
saline-injected TG on day 10. In V1-V2, NGF concentration after
CFA injection into the lower lip was significantly increased on
day 1, and this increase was sustained throughout the experimen-
tal period ( p < 0.05). No significant changes in NGF concentra-
tion of TG to saline-injected group in both V1-V2 and V3 were
observed during the experimental period. On day 1 after CFA
injection into the lower lip, there were no significant differences
in NGF concentration in both V1-V2 and V3 between animals
with removal of the ipsilateral SCG and sham-operated (data not
shown).
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In the lower lip, NGF concentration A
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Model of ectopic _trlgemlnal e
inflammatory pain AL SIpes

Among the abundance of animal models
of inflammatory pain, some models have
been developed for the trigeminal region.
Local injection of CFA (Shinoda et al., 2005;
Tashiro etal., 2009), capsaicin (Hondaetal.,
2008), carrageenan (Teixeira et al., 2010), or
formalin (Wu et al., 2009) induces local in-
flammation in the trigeminal region and re-
sults in pain-related behavior, including
mechanical and heat hypersensitivity at the
inflamed site. However, these models as-
sessed changes in mechanical or heat sensi-
tivity at the inflamed site; few models
inducing ectopic inflammatory pain in the
noninflamed adjacent division of the tri-
geminal nerve have been developed in the
orofacial region.

In the present study, mice with local inflammation induced by
CFA injection into the lower lip demonstrated significant heat
hyperalgesia that could be measured by heat stimulation of whis-
ker pad skin. No significant changes in heat sensitivity of the
contralateral whisker pad skin were observed. These results indi-
cate that heat hyperalgesia in V2 can be induced by local inflam-
mation in V3. Development of useful animal models for this
condition will most likely increase our knowledge of the mecha-
nisms underlying ectopic orofacial inflammatory pain.

Whisker pad

Figure 13.

NGF expression in TG neurons

NGEF in peripheral inflamed tissue is elevated in several painful
inflammatory conditions in humans, including arthritis (Aloe et
al., 1992; Halliday et al., 1998), cystitis (Lowe et al., 1997; Oddiah
etal., 1998), and prostatitis (Miller et al., 2002). In the inflamma-
tory state, numerous inflammatory cytokines such as interleukin-1,
tumor necrosis factor-«, and interleukin-6 induce NGF produc-
tion in fibroblasts, endothelial cells, and glial cells in peripheral
tissues (Otten et al., 2000; Abe et al., 2007). In animal studies, the
concentration of NGF in inflamed tissue increases in response to
inflammation produced by injection of some irritants such as
capsaicin, endotoxin, turpentine, or trinitrobenzene sulfonic
acid (Oddiah et al., 1998; Stanzel et al., 2008; Chidiac et al., 2009).

NGF¢

Lower lip

2nd branch

Srd biandh Trigeminal ganglion

Schematic presentation of NGF contribution to ectopic heat hyperalgesia of whisker pad skin caused by lower lip
inflammation. Upregulation and/or sensitization of TRPV1in TG neurons in V1-V2 induced by NGF transported from the inflamed
lower lip may facilitate the transmission of nociceptive information.

In inflamed peripheral tissue, NGF receptors, TrkA and p75 lo-
calized in the distal axons are activated on binding of NGF, the
ligand-receptor complex is formed, internalized, and retro-
gradely transported to the soma of sensory neurons (Niewiadom-
ska et al., 2010). Neurons that contain NGF secrete NGF into the
extracellular space after neural excitation, resulting in an increase
in NGF concentration in the extracellular fluid in vitro (Blochl
and Thoenen, 1995; Hotta et al., 2009).

In the present study, NGF concentrations in TG, whisker pad
skin, and supraorbital tissue were measured after CFA injection
into the lower lip. In whisker pad skin and supraorbital tissue,
there were no changes in NGF concentrations after CFA injection
into the lower lip. However, NGF concentrations in the lower lip,
V1-V2, and V3 of TG significantly increased, and removal of the
ipsilateral SCG did not affect the increase of NGF concentration
in both V1-V2 and V3 of TG. After injection of CFA mixed with
labeled NGF into the lower lip, labeled NGF was detected in the
mandibular nerve fibers and the number of NGF-positive whis-
ker pad and lower lip TG neurons increased. NGF mRNA was
expressed in the lower lip after CFA injection into the lower lip,
but not in both V1-V2 and V3 of TG.

These findings suggest that NGF produced in the lower lip
locally after local inflammation binds to NGF receptors in the
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terminal membrane of nociceptors and is transported to the
soma of TG neurons and secreted to the extracellular space, re-
sulting in an increase in NGF concentration in both V1-V2 and
V3 of TG.

TRPV1 expression in TG neurons

We demonstrated that the number of TRPV1-positive TG neu-
rons significantly increased in both V1-V2 and V3 after CFA
injection into the lower lip, and protein expression of TRPV1 was
also significantly greater than that of saline-injected TG despite
no change in the number of total TG neurons. In addition, daily
neutralizing anti-NGF antibody application to the inflamed
lower lip suppressed the increment of TRPV1-positive TG neu-
rons in both V1-V2 and V3.

In sensory neurons, the three MAPK families of ERK, p38, and
c-Jun N-terminal kinase are expressed by NGF signaling (Ji et al.,
2002; Zhuang et al., 2004; Doya et al., 2005). Activation of down-
stream transcription factors by these MAPKs contributes to the
transcriptional changes in sensory neurons that are associated
with heat hyperalgesia (Ji et al., 2002). Indeed, retrograde NGF
signaling from peripheral terminals in the inflamed tissue to the
soma of nociceptive neurons enhances the expression of several
proteins, such as TRPV1 (Delcroix et al., 2003), substance P
(Yang et al., 2007; Ruiz and Banos, 2009), and brain-derived
neurotrophic factor (BDNF) (Michael et al., 1997). NGF signal-
ing also increases the anterograde transport of TRPV1 from the
cell body to the peripheral terminals of nociceptors (Ji et al.,
2002). In cultured TG neurons, chronic application of NGF led to
an increase in TRPV1 expression (Simonetti et al., 2006). NGF in
the DRG neurons activates p38, which in turn increases TRPV1
translation (Ji et al., 2002). In humans, TRPV1 mRNA level and
its protein expression in esophageal mucosa in esophagitis
patients were significantly greater, and NGF gene levels in
esophageal mucosa also significantly increased compared with
healthy controls (Shieh et al., 2010). A significant increase in
TRPV1-immunoreactive fibers was found in biopsies from
patients with quiescent inflammatory bowel disease (Akbar et
al., 2010). In an animal model, TRPV1 expression in sensory
neurons increased in osteoarthritis (Fernihough et al., 2005)
and CFA induced inflammation (Ji et al., 2002). In TG neu-
rons in V1-V2, NGF receptors (TrkA and p75) were ex-
pressed, and pERK expression was also increased. In addition,
spontaneous activity and evoked responses induced by heat
stimulation of the whisker pad skin were significantly en-
hanced after CFA injection into the lower lip.

Together, these findings suggest that NGF secreted into the
extracellular space in TG binds to TrkA and/or p75 receptors in
TG neurons in V1-V2, resulting in the enhancement of neural
excitability, which attributed to an increase in TRPV1 expression
in TG neurons in V1-V2.

Involvement of TRPV1 in heat hyperalgesia

The number of TRPV1-positive TG neurons and TRPV1 proteins
were significantly increased in V1-V2 and V3 after CFA injection
into the lower lip. To clarify the role of TRPV1 in heat hyperal-
gesia in the whisker pad skin induced by CFA injection into the
lower lip, we also studied the effect of the TRPV1 antagonist
SB366791 on the heat hyperalgesia. SB366791 inhibited compet-
itively capsaicin-induced activation of TRPV1 in vitro (Gunthorpe et
al., 2004). SB366791 administration also inhibited the develop-
ment of CFA-induced thermal hyperalgesia in vivo (Kanai et al.,
2007). In the present study, SB366791 administration produced
reversal of heat hyperalgesia in whisker pad skin after CFA injec-
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tion into the lower lip. In addition, heat hyperalgesia in the
whisker pad skin was depressed by daily application of neu-
tralizing anti-NGF antibody to the inflamed lower lip or a
nonspecific tyrosine kinase inhibitor K252a into TG ipsilateral
to the inflamed lower lip. BDNF, which is TrkB ligand, is released
from TG neurons by neuronal hyperexcitability (Buldyrev et al.,
2006), and also tooth pulp inflammation significantly increased
BDNF- and TRPV1-positive TG neurons (Tarsa et al., 2010). Be-
cause K252a inhibits tyrosine kinase, TrkB and TrkC inhibition by
K252a may also be involved in depression of the heat hyperalgesia in
whisker pad skin. Moreover, heat hyperalgesia was induced after
continuous NGF 2.5S application into the lower lip.

Our results revealed that heat hyperalgesia in whisker pad skin
induced by CFA injection into the lower lip depended on TRPV1-
positive TG neurons in V1-V2 increased by signaling of NGF,
which is transported from inflamed peripheral tissue. In addi-
tion, head withdrawal latency in the saline-injected group was
not altered after SB366791 administration, indicating that the
antihyperalgesic effects of SB366791 on whisker pad skin were
restricted to heat hyperalgesia associated with CFA injection into
the lower lip.

In addition, NGF rapidly induced more robust (20-fold)
enhancement of TRPV1 current in acutely dissociated DRG
neurons, which respond to capsaicin by activating the phos-
phatidylinositol 3-kinase and ERK pathways (Zhuang et al.,
2004). In addition to upregulation of TRPV1 expression by
increased NGF signaling in TG, heat hyperalgesia of whisker
pad skin induced by CFA injection into the lower lip might be
also involved in sensitizing TRPV1-positive TG neurons by
increased NGF signaling.

In conclusion, we have developed a new mouse model of ec-
topic orofacial pain induced by injection of CFA into the lower lip
that resulted in heat hyperalgesia of whisker pad skin, which was
diminished by antagonism of TRPV1. We have shown that the
increase in the number of TRPV1-positive TG neurons in V1-V2
was induced by lower lip inflammation, and this effect was re-
duced by daily neutralizing anti-NGF antibody administration
into the lower lip. In addition, the concentration of NGF that is
transported from the lower lip, in both the V1-V2 and V3 signif-
icantly increased after CFA injection into the lower lip. Upregu-
lation and/or sensitization of TRPV1 in TG neurons in V1-V2
after lower lip inflammation may facilitate the transmission of
nociceptive information via functional interactions among TG
neurons, thus contributing to the resultant enhancement of pain
response (Fig. 13).
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