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ABSTRACT

One of the most notable challenges in single cell RNA-Seq data analysis is the so called drop-
out effect, where only a fraction of the transcriptome of each cell is captured. The random
nature of dropouts, however, makes it possible to consider imputation methods as means of
correcting for dropouts. In this article, we study some existing single cell RNA sequencing
(scRNA-Seq) imputation methods and propose a novel iterative imputation approach based
on efficiently computing highly similar cells. We then present the results of a comprehensive
assessment of existing and proposed methods on real scRNA-Seq data sets with varying per
cell sequencing depth.

Keywords: drop-out effect, imputation, locality sensitive hashing, locality sensitive imputation,

similarity, single cell RNA-Seq.

1. INTRODUCTION

Emerging single cell RNA sequencing (scRNA-Seq) technologies enable the analysis of tran-

scriptional profiles at single cell resolution, bringing new insights into tissue heterogeneity, cell dif-

ferentiation, cell type identification, and many other applications. The scRNA-Seq technologies, however,

suffer from several sources of significant technical and biological noise, which need to be addressed dif-

ferently than in bulk RNA-Seq.

One of the most notable challenges is the so-called drop-out effect. Whether occurring because of

inefficient messenger RNA capture or naturally due to low number of RNA transcripts and the stochastic

nature of gene expression, the result is capturing only a fraction of the transcriptome of each cell and hence

data that have a high degree of sparsity. The dropouts typically do not affect the highly expressed genes but

may affect biologically important genes expressed at low levels such as transcription factors. Combining

cells as a measure to compensate for the drop-out effects could be defeating the purpose of performing

single cell RNA-Seq. In this article, we take advantage of the random nature of dropouts and develop

imputation methods for scRNA-Seq. In the next section, we briefly discuss some existing scRNA-Seq

imputation methods and propose a novel iterative imputation approach based on efficiently computing

highly similar cells. We then present the results of a comprehensive assessment of the existing and

proposed methods on real scRNA-Seq data sets with varying sequencing depth.
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2. METHODS

2.1. Existing single cell RNA-Seq imputation methods

2.1.1. DrImpute. The DrImpute (Kwak et al., 2017) R package implements imputation for scRNA-

Seq based on clustering the data. First DrImpute computes the distance between cells using Spearman and

Pearson correlations, then it performs cell clustering based on each distance matrix, followed by imputing

zero values multiple times based on the resulting clusters, and finally averaging the imputation results to

produce a final value for the dropouts.

2.1.2. scImpute. The scImpute (Li and Li, 2017) R package makes the assumption that most genes have a

bimodal expression pattern that can be described by a mixture model with two components. The first component

is a Gamma distribution used to account for the dropouts, whereas the second component is a Normal distri-

bution to represent the actual gene expression levels. Thus, in Li and Li (2017), the expression level of gene i is

considered a random variable with density function fXi
(x) = kiGamma(x; ai; bi) + (1 - ki)Normal(x; li; ri),

where ki is the drop-out rate of gene i, ai and bi are shape and rate parameters of its Gamma distribution

component, and li and ri are the mean and standard deviation of its Normal distribution component. The

parameters in the mixture model are estimated using Expectation-Maximization. The authors’ intuition

behind this mixture model is that if a gene has high expression and low variation in the majority of cells, then

a zero count is more likely to be a drop-out value. In contrast, when the opposite occurs, that is, when a gene

has constantly low expression or medium expression with high variation, then a zero count reflects real

biological variability. According to Li and Li (2017), this model does not assume an empirical relationship

between drop-out rates and mean expression levels and thus allows for more flexibility in model estimation.

2.1.3. KNNImpute Troyanskaya et al. (2001). Weighted K-nearest neighbors [KNNimpute,

(Troyanskaya et al., 2001)], a method originally developed for microarray data, selects genes with expression

profiles similar to the gene of interest to impute missing values. For instance, consider gene A that has a missing

value in cell 1, KNN will find K other genes that have a value present in cell 1, with expression most similar to

A in cells 2 - N, where N is the total number of cells. A weighted average of values in cell 1 for the K genes

closest in Euclidean distance is then used as an estimate for the missing value for gene A.

There are also some methods for clustering with implicit imputation, such as BISCUIT Azizi et al.

(2017), Prabhakaran et al. (2016), and CIDR Lin et al. (2017). These, however, are out of scope of this

article, as we are focusing on stand-alone imputation methods yielding imputed gene expression profiles

that can be used for downstream analyses beyond unsupervised clustering, such as dimensionality reduc-

tion, counting cells that express known markers, and differential gene expression analysis.

2.2. Proposed method: locality sensitive imputation

We propose a novel algorithm that uses similarity between cells to infer missing values in an iterative

approach. The main steps of the algorithm are as follows:

Step 1. Given a set S of n cells (represented by their scRNA-Seq gene expression profiles), start by

selecting pairs of cells with highest similarity level until at least mmin distinct cells (mmin = 6 in our

implementation) are selected or the highest pair similarity drops below a given threshold. This process

guarantees that each selected cell has highest pairwise similarity level to at least one other selected cell.1

Step 2. Cluster the m cells selected in Step 1 using a suitable clustering algorithm (our implementation

uses spherical K-means with k =
ffiffiffiffi
m
p

). The clusters formed in this step are expected to be ‘‘tight,’’ with

each selected cell having high similarity to the other cells in its cluster.

Step 3. For each of the clusters identified in step 2, replace zero values for each gene j with values

imputed based on the expression levels of gene j in all the cells within the cluster.

Step 4. The selected cells now have imputed values and the clusters they form are collapsed into their

respective centroids. The centroids are pooled together with not yet selected cells to form a new set S,

and the process is repeated starting again at Step 1.

1Note that, unlike KNN, which uses similarity between genes, LSImpute uses similarity between cells. Also, the
number of nearest cells used for imputation is not fixed but depends on the minimum similarity threshold.
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Note that, naturally, in Step 3 expression levels are imputed only for original cells and not for centroids but

centroid expression levels are used in the imputation process if they are selected in Step 1. The expression

levels used to replace the zero expression values can be inferred through different models. In Section 3 we

give results for two simple approaches, namely using the mean, respectively, the median of all expression

values for gene j in cells belonging to the cluster (these variants are referred to as LSImputeMean, respec-

tively, LSImputeMed in Section 3). Using the median of both zero and nonzero values first decides implicitly

whether a zero is a drop-out event or a true biological effect, and prevents large but isolated expression values

from driving imputation of nearby zeros, while collapsing into centroids in each iteration limits the propa-

gation of potential imputation errors. Figure 1 illustrates the first two steps of the algorithm.

The worst case number of iterations taken by the algorithm is O(n) as the total number of remaining cells

and centroids starts at n and decreases by at least one in each iteration. In practice the number of iterations is

much smaller. Our current implementation has two options for finding the pairs of cells with highest similarity

level in Step 1. The first option is to use Cosine similarity of Hornik et al. (2013). Alternatively, this could be

done in O(n) time using Jaccard similarity and Locality Sensitive Hashing by Leskovec et al. (2014). Both

similarity metrics are available in the Shiny app available at (http://cnv1.engr.uconn.edu:3838/LSImpute/),

where the user can also adjust the minimum similarity threshold used in Step 1. It is recommended, however,

to use a high similarity threshold, which will restrict the imputation to only highly similar cells as a way of

being conservative with imputation to avoid the risk of overimputation. A low similarity threshold can lead to

imputing more values and can be used when the data set has a particularly low sequencing depth. All results

presented in Section 3 use Cosine similarity and a minimum similarity threshold of 0.85 regardless of

sequencing depth to avoid overfitting. Using Jaccard similarity based on the R package LSHR of Selivanov

(accessed 2015) resulted in similar imputation levels as the Cosine similarity based implementation.

2.3. Experimental setup

2.3.1. Data sets. To assess the performance of the compared imputation methods, we used multiple

evaluation metrics on data sets consisting of real scRNA-Seq reads down-sampled to simulate varying sequencing

depths per cell. Specifically, we used ultradeep scRNA-Seq data generated for 209 somatosensory neurons

isolated from the mouse dorsal root ganglion (DRG) and described in Li et al. (2016). An average of 31.5M 2 · 100

read pairs were sequenced for each cell, leading to the detection of an average of 10‚ 950� 1‚ 218 genes per cell.

To simulate varying levels of drop-out effects, we downsampled the full data set to 50K, 100K, 200K, 300K,

400K, 500K, 1M, 5M, 10M, and 20M read pairs per cell. At each sequencing depth, transcript per million (TPM)

gene expression values were estimated for each neuron using the IsoEM2 package by Mandric et al. (2017). As

ground truth, we used TPM values determined by running IsoEM2 on the full set of reads. For clustering accuracy

evaluation, we used as ground truth the cluster assignment from Li et al. (2016), focusing on the eight cell

populations identified using scRNA-Seq data and not its refinement based on neuron sizes (Fig. 2). The C1–C8

FIG. 1. Illustration of Steps 1 (left) and 2 (right) of LSImpute. Light dots represent already processed cells and collapsed

centroids from previous iterations. Darker dots represent cells in pairs with highest similarity level that are selected for clustering.
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clusters we used in this study correspond to the following cell populations identified by their most prominent

marker genes as indicated by Li et al. (2016): C1, Gal; C2, Nppb; C3, Th; C4, Mrgpra3 and Mrgprb4; C5, Mrgprd-

high; C6, Mrgprd-low and S100b-high; C7, S100b-low; and C8, Ntrk2 and S100b-high.

2.3.2. Evaluation metrics. We used the following metrics to evaluate the imputation methods’

performance at different sequencing depths:

� Detection fraction accuracy. A common application of single cell analyses is to estimate the per-

centage of cells expressing a given marker gene, for instance CD4 + or CD8 + tumor infiltrating

lymphocytes by Duan et al. (2014). A gene is considered to be detected in a cell if the (imputed or

ground truth) TPM is positive. For each imputation method, the detection fraction is defined as the

number of cells in which the cell is detected divided by the total number of cells. This was compared

with the ‘‘true’’ detection ratio, defined based on ground truth TPM values.
� Median percentage error. As defined in Nicolae et al. (2011), the median percentage error (MPE) is

the median of the set of relative errors for the gene metric examined, in this case the detection fraction.

If a gene has predicted detection fraction y and a ground truth detection fraction of x, the gene’s

relative error is defined as
jy - xj

x
. For each sequencing depth, we computed MPE relative to all genes as

well as subsets of genes corresponding to the four quartiles defined by gene averages of nonzero

ground truth TPM values over all cells (ranges of mean nonzero TPM values for the four quartiles were

[0‚ 2:3] (2:3‚ 6:744], (6:744‚ 24:517], and (24:517‚ 18576:98], respectively). Full error curves plotting

the percentage of genes with relative error more than varying thresholds were also used for a more

detailed comparison of imputation methods.
� Gene detection accuracy. This metric views gene detection as a binary classification problem. For

each imputation method, true positives (TPs) are the (gene, cell) pairs for which both imputed and

ground truth TPM values are positive, while true negatives (TNs) are (gene, cell) pairs for which both

TPM values are zero. The accuracy is computed as the number of true predictions (TP + TN) divided

by the product between the number of genes and the number of cells.
� Clustering microaccuracy. For each sequencing depth and imputation method, we clustered imputed

TPM values using several clustering algorithms and assessed the effect of imputation on clustering

accuracy using the microaccuracy measure by Lee et al. (2011) and Van Asch (2013) defined byPK
i = 1 Ci=

PK
i = 1 Ni, where K is the number of classes, Ni is the size of class i, and Ci is the number of

correctly labeled samples in class i relative to the ground truth from Li et al. (2016).

3. RESULTS AND DISCUSSION

To assess imputation accuracy on data sets with varying amounts of dropouts, we subsampled the

ultradeep DRG scRNA-Seq data to simulate sequencing depths between 50K and 20M read pairs per cell.

For each sequencing depth, the metrics described in Section 2.3 were computed for three previous methods

(DrImpute, scImpute, and KNNImpute), the two variants of our locality sensitive imputation (LSImpute)

method described in Section 2.2 (LSImputeMean and LSImputeMed), and, as a reference, for the ‘‘Raw

Data’’ consisting of TPM values without any imputation.

3.1. Detection fraction accuracy

Figure 3 plots the true detection fraction (x-axis) against the detection fraction in the raw data, re-

spectively, after imputation with each of the five compared methods (y-axis) at three selected sequencing

depths (100K, 1M, and 10M, respectively, read pairs per cell; high resolution plots for all 10 evaluated

sequencing depths are available in the bioRxiv preprint of Moussa and Mandoiu (2018a). Each dot in the

scatter plots represents one gene. Dot color shades are based on the four quartiles as defined previously. For

an ideal imputation method, all dots would lie on the main diagonal, which represents perfect agreement

between predicted and true detection fractions. Dots below the diagonal correspond to genes for which the

detection fraction is underestimated, whereas dots above the diagonal correspond to genes for which the

detection fraction is overestimated. Dropouts in the raw data yield severe underestimation of the detection

fraction for most genes at sequencing depths of 100K and 1M read pairs per cell, but at 10M read pairs per

cell, detection fractions computed based on raw data are very close to the true fractions for nearly all genes.
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FIG. 3. True versus imputed detection fractions (left to right: 100K, 1M, and 10M read pairs per cell; top to bottom:

raw data, DrImpute, scImpute, KNNImpute, LSImputeMed, and LSImputeMean).
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Existing methods overimpute detection fractions for most genes, even at low sequencing depths. At

100K read pairs per cell, LSImputeMed underestimates detection fractions, improving very little over raw

values, whereas LSImputeMean gives most accurate detection fractions. At higher sequencing depths,

LSImputeMean begins overimputing, whereas LSImputeMed yields most accurate detection fractions at

1M read pairs per cell and only slightly overimputes at 10M read pairs per cell.

3.2. Detection fraction error curves and MPE comparison

Although dot plots shown in Figure 3 give a useful qualitative comparison of detection fraction accuracy

of different methods, for a more quantitative comparison of detection fraction accuracy, Figure 4 shows the

so-called error curve of each method. The error curve plots, for every threshold x between 0 and 1, the

percentage of genes with a relative error >x. The error curves shown in Figure 4 confirm that LSImpute-

Mean has highest detection fraction accuracy of the compared methods at a sequencing depth of 100K read

pairs per cell, whereas LSImputeMed significantly outperforms the other methods at 1M read pairs per cell

and matches raw data accuracy at 10M read pairs per cell. The relative performance of the methods can be

even more concisely captured by their MPE values, which are the abscissae of the points where the horizontal

line with an ordinate of 0.5 crosses the corresponding error curves. The surface plots shown in Figure 5

FIG. 4. Error curves for (a) 100K, (b) 1M, and (c) 10M read pairs per cell. The abscissa of dashed vertical lines

corresponds to MPE of raw data. MPE, median percentage error.
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display MPE values (y axis, on a logarithmic scale) as a function of both sequencing depth (x axis) and mean

nonzero expression quartile (z axis). The only imputation methods that do not result in MPE values >100%,

depicted in red in the surface plot, are LSImputeMed and LSImputeMean. At all sequencing depths and for all

assessed imputation methods, genes in the lowest quartile (Q1) have very high MPE, suggesting that detection

fractions based on imputed values should not be used for these genes.

3.3. Gene detection accuracy and relation to MPE

Table 1 gives the gene detection accuracy achieved by the compared imputation methods, with the highest

accuracy at each sequencing depth typeset in bold. We assessed gene detection accuracy based on both fractional

ground truth and imputed TPM values, as well as after rounding both to the nearest integer, which is equivalent

to using a TPM of 0.5 as the detection threshold. For the results without rounding, DrImpute has the highest gene

detection accuracy at 50K and 100K read pairs per cell. LSImputeMean has highest gene detection accuracy for

200K read pairs per cell, whereas LSImputeMed outperforms the other methods for 300K–1M read pairs per

cell. Raw data (no imputation) give best gene detection accuracy at 5M read pairs per cell and higher depths. For

the rounded data sets, DrImpute also has the highest gene detection accuracy at 50K and 100K read pairs per cell,

whereas LSImputeMed outperforms the other methods for 200K–500K read pairs per cell. For sequencing depth

of 1M read pairs per cell and higher, the raw data give best detection accuracy followed by LSImpute methods.

At very low sequencing depth, it is possible for some methods to impute values that are not detected in the

ground truth. This could lead to good performance in detection fraction accuracy despite low performance in

FIG. 5. Surface plots indicating MPE values in log scale (y axis) for each depth (x axis) in each quartile (z axis) for

each method: (a) raw data, (b) DrImpute, (c) scImpute, (d) KNNImpute, (e) LSImputeMed, and (f) LSImputeMean

LSIMPUTE 829



gene detection accuracy. Furthermore, although one would expect all accuracy measures to improve with

increased sequencing depth, this may not necessarily be the case for methods that overimpute. To illustrate the

relationship between MPE and gene detection accuracy and the effect of sequencing depth increase, in Figure 6

we plot for each method the gene detection accuracy and MPE achieved without rounding at each sequencing

depth from 50K up to 20M read pairs per cell, with consecutive depths connected by arrows pointing in the

direction of sequencing depth increase.

Since high accuracy and low MPE are preferable, the points near the lower right corner of the plot and

arrows pointing toward it indicate better results. For some methods such as scImpute and DrImpute, although

the starting point (50K read pairs per cell) shows considerable improvement over raw data, as sequencing depth

increases, one or both of the accuracy measures substantially worsen due to overimputation. Both LSImpu-

teMed and LSImputeMean start with improvement over raw data in both MPE and Gene Detection Ac-

curacy and continue in the right direction for higher depths until, as mentioned before, the raw data without

any imputation give slightly better gene detection accuracy at 5M read pairs per cell and higher, which

suggests that imputation at such high depths comes with the risk of overimputation for all methods tested.

3.4. Clustering accuracy

To assess the impact of imputation on clustering results, we tested each of the imputation methods in

combination with the following clustering methods: Principal component analysis (PCA)-based hierar-

chical clustering using Spearman correlation, the TF-IDF_Top_C clustering approach by Moussa and

Mandoiu (2018b), and PCA-based spherical k-means clustering. The microaccuracy results shown in

Figure 7 suggest that the effect of imputation varies when combined with different clustering approaches.

We also tested Seurat Satija et al. (2015) k-means clustering of genes and cells (using k = 8 with default

parameters); however, there was very little change in clustering accuracy for different depths.

Although the MPE and detection accuracy of some imputation methods suggest that the imputation

radically alters gene expression profiles, the similarity between cells of a cluster could still hold when all cell

profiles are changed in a consistent manner. This can very well lead to no or little change in clustering

accuracy, when in fact cell expression profiles are far from the ground truth as the MPE and gene detection

accuracy results suggest. As shown in Figure 8, featuring the log (x + 1) expression levels of the marker genes

for the DRG 100K data set, although the expression levels of most genes are changed through imputation, the

clusters driven by high expression levels of several marker genes can still be the prominent signal for

clustering and in most cases this signal remains visually apparent in the heatmaps. Clustering accuracy is

hence not recommended as the sole performance evaluation metric when assessing imputation methods.

3.5. Testing LSImpute for 10 · Genomics Technology data

Although the DRG data set is unique in the sense that the ultradeep sequenced version of the scRNA-Seq

data can be used as the ground truth for imputation methods testing, we were still able to use a data set from

Table 1. Gene Detection Accuracy

Not rounded Rounded

Data Raw Dr. sc. KNN. LSMd LSMn Raw Dr. sc. KNN. LSMd LSMn

50K 0.676 0.822 0.700 0.799 0.687 0.693 0.752 0.866 0.748 0.700 0.762 0.765

100K 0.740 0.810 0.778 0.713 0.772 0.797 0.816 0.876 0.720 0.712 0.841 0.850

200K 0.800 0.778 0.754 0.726 0.836 0.839 0.872 0.878 0.689 0.722 0.892 0.884

300K 0.829 0.772 0.740 0.732 0.864 0.861 0.899 0.880 0.673 0.726 0.909 0.892

400K 0.847 0.762 0.731 0.736 0.872 0.868 0.915 0.882 0.663 0.730 0.918 0.895

500K 0.859 0.759 0.725 0.738 0.878 0.878 0.927 0.883 0.655 0.732 0.928 0.909

1M 0.891 0.737 0.703 0.747 0.899 0.896 0.952 0.882 0.634 0.738 0.947 0.937

5M 0.918 0.705 0.661 0.762 0.902 0.910 0.980 0.894 0.621 0.772 0.940 0.960

10M 0.920 0.768 0.692 0.648 0.896 0.887 0.987 0.907 0.627 0.800 0.947 0.939

20M 0.921 0.690 0.635 0.774 0.892 0.901 0.994 0.921 0.634 0.825 0.959 0.970

Bold values indicate highest accuracy at each sequencing depth.
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FIG. 7. Microaccuracy on imputed data for (a) PCA-based hierarchical clustering using Spearman correlation, (b) TF-

IDF_Top_C Moussa and Mandoiu (2018b), and (c) PCA-based spherical k-means. PCA, principal component analysis.

FIG. 6. Gene detection accuracy versus MPE at varying sequencing depths.
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FIG. 8. Heatmaps of marker genes from Li et al. (2016) for the 100K DRG data set: (a) raw Data, (b) DrImpute, (c)

scImpute, (d) KNNImpute, (e) LSImputeMed, and (f) LSImputeMean.
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10 · Genomics Technology platform for testing LSImpute. A library of immune cells, mostly macrophages

and natural killer T cells, with an average of 494,275 reads per cell, was downsampled to 52,180 reads per

cell (fraction of reads kept is *11.8%) by the CellRanger toolkit of 10 · Genomics Cell Ranger� R Kit

Tutorial: Secondary Analysis on 10 · Genomics Single Cell 3 RNA-Seq (n.d.) when combining it with other

libraries of the same experiment with lower reads per cell average. As ground truth we used the 500K reads

per cell version of the data and we imputed using DrImpute and LSImpute using mean imputation option

and 0.75 minimum similarity (we excluded scImpute and KNNImpute due to their consistent over-

imputation in Section 3).

The gene detection fraction plots for rounded values are shown in Figure 9. The severity of the drop-out

effect appears to be lower than for comparable sequencing depths in the DRG set (compare Fig. 9 with the

first row of Fig. 3), most likely due to the fact that the ‘‘ground truth’’ for the 10 · data set is itself affected

by dropouts. Clearly, overimputation again poses a risk when imputing this data set, as apparent in

DRImpute performance, especially for genes detected in higher percentage of the cells as shown in

Figure 9b. In contrast, LSImpute imputation approaches the ground truth detection fraction for all genes

a

c

b

FIG. 9. Detection fraction plots of 10 · leukocytes set of 638 cells. (a) 500K(true) versus 50K(downsampled) reads

per cell. (b) True versus DrImpute imputed detection fractions. (c) True versus LSImputeMean detection fractions.

LSIMPUTE 833



with negligible overimputation as shown in Figure 9c. The gene detection accuracy is 0.970 for the raw

reads, 0.950 for DrImpute, and 0.974 for LSImpute.

4. CONCLUSION

Although imputation can be a useful step in scRNA-Seq analysis pipelines, it can become a two-edged

sword if expression values are overimputed. In this article, we evaluated the performance of several

existing imputation R packages and presented a novel approach for imputation. LSImpute, especially the

variant based on median imputation, tends to impute more conservatively than existing methods, resulting

in improved performance based on a variety of metrics. Overall, LSImpute is more likely to reduce drop-

out effects and reduce sparsity of the data without introducing false expression patterns or overimputation.

Cosine and Jaccard similarity based implementations of LSImpute are available as a Shiny app at (http://

cnv1.engr.uconn.edu:3838/LSImpute).
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