
Cellular/Molecular

Short-Term Plasticity Optimizes Synaptic Information
Transmission

Ziv Rotman, Pan-Yue Deng, and Vitaly A. Klyachko
Department of Biomedical Engineering, Department of Cell Biology and Physiology, Center for Investigations of Membrane Excitability Disorders,
Washington University School of Medicine, St. Louis, Missouri 63110

Short-term synaptic plasticity (STP) is widely thought to play an important role in information processing. This major function of STP has
recently been challenged, however, by several computational studies indicating that transmission of information by dynamic synapses is
broadband, i.e., frequency independent. Here we developed an analytical approach to quantify time- and rate-dependent synaptic
information transfer during arbitrary spike trains using a realistic model of synaptic dynamics in excitatory hippocampal synapses. We
found that STP indeed increases information transfer in a wide range of input rates, which corresponds well to the naturally occurring
spike frequencies at these synapses. This increased information transfer is observed both during Poisson-distributed spike trains with a
constant rate and during naturalistic spike trains recorded in hippocampal place cells in exploring rodents. Interestingly, we found that
the presence of STP in low release probability excitatory synapses leads to optimization of information transfer specifically for short
high-frequency bursts, which are indeed commonly observed in many excitatory hippocampal neurons. In contrast, more reliable high
release probability synapses that express dominant short-term depression are predicted to have optimal information transmission for
single spikes rather than bursts. This prediction is verified in analyses of experimental recordings from high release probability inhibitory
synapses in mouse hippocampal slices and fits well with the observation that inhibitory hippocampal interneurons do not commonly fire
spike bursts. We conclude that STP indeed contributes significantly to synaptic information transfer and may serve to maximize infor-
mation transfer for specific firing patterns of the corresponding neurons.

Introduction
Short-term plasticity (STP) acts on millisecond-to-minute time-
scales to modulate synaptic strength in an activity-dependent
manner. STP is widely believed to play an important role in syn-
aptic computations and to contribute to many essential neural
functions, particularly information processing (Abbott and Re-
gehr, 2004; Deng and Klyachko, 2011). Specific computations
performed by STP are often based on various types of filtering
operations (Fortune and Rose, 2001; Abbott and Regehr, 2004).
This generally accepted role of STP in information processing has
been challenged recently by several computational studies aimed at
directly computing STP influence on information transfer using an
information-theoretic framework (Lindner et al., 2009; Yang et al.,
2009). Although earlier studies have shown that information trans-
fer is dependent on release probability (Zador, 1998), which is di-
rectly modified by STP, Lindner et al. (2009) used a generalized
model of STP to show that information transfer by dynamic syn-

apses is frequency independent, no matter whether synapses express
dominant facilitation or depression. Similar results obtained using
more detailed models of the calyx of Held synapse also demonstrated
that information transmission is predominately broadband
(Yang et al., 2009). These studies suggested that STP does not
contribute to frequency-dependent information filtering and
raised the question of what specific roles STP plays in synaptic
information transmission.

One common feature of these computational studies, how-
ever, is that they considered only steady-state conditions that
synapses reach after prolonged periods of high-frequency stimu-
lation. Although this is a physiologically plausible condition, it
reflects the strained state of the synapses when significant
amounts of their resources, such as the readily releasable pool
(RRP) of vesicles, have been exhausted. This is not representative,
for instance, of excitatory CA3–CA1 synapses, which typically
experience rather short 15- to 25-spike-long high-frequency
bursts separated by relatively long periods of lower activity (Fen-
ton and Muller, 1998). In fact, less than half of the RRP is typically
used at any time during such naturalistic activity (Kandaswamy
et al., 2010) with nearly complete RRP recovery between the
bursts. This discrepancy between the strained state of synapses
used in analytical calculations of information transmission and
the realistic state of the synapses during natural activity suggests
that more representative conditions need to be considered to
evaluate STP contributions to information processing.

We therefore developed an analytical approach to calculate
the time and rate dependence of synaptic information transmis-
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sion using a realistic model of STP in excitatory hippocampal
synapses. Indeed, using more realistic conditions, we found that
STP contributes significantly to increasing information transfer
over a wide frequency range. Furthermore, our time-dependent
analysis indicated that STP optimizes information transmission
specifically for short high-frequency spike bursts in low release
probability synapses, and that this optimization shifts from
bursts to single spikes in high release probability synapses. We
verified these predictions using recordings in excitatory and in-
hibitory hippocampal synapses with corresponding properties.
Our study thus directly establishes the role of STP in information
transmission within the information-theoretic framework and
shows that STP works to optimize information transmission for
specific firing patterns of the corresponding neurons.

Materials and Methods
Animals and slice preparation. Horizontal hippocampal slices (350 �m)
were prepared from 15- to 25-d-old mice using a vibratome (VT1200 S,
Leica). Both male and female animals were used for recordings. Dissec-
tions were performed in ice-cold solution that contained the following
(in mM): 130 NaCl, 24 NaHCO3, 3.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 5.0
MgCl2, and 10 glucose, saturated with 95% O2 and 5% CO2, pH 7.3.
Slices were incubated in the above solution at 35°C for 1 h for recovery
and then kept at room temperature (�23°C) until use. All animal pro-
cedures conformed to the guidelines approved by the Washington Uni-
versity Animal Studies Committee.

Electrophysiological recordings. Whole-cell patch-clamp recordings
were performed using an Axopatch 200B amplifier (Molecular Devices)
from CA1 pyramidal neurons visually identified with infrared video mi-
croscopy (BX50WI, Olympus; Dage-MTI) and differential interference
contrast optics. All recordings were performed at near-physiological
temperatures (33–34°C). The recording electrodes were filled with the
following (in mM): 130 K-gluconate, 0.5 EGTA, 2 MgCl2, 5 NaCl, 2
ATP2Na, 0.4 GTPNa, and 10 HEPES, pH 7.3. The extracellular solution
contained the following (in mM): 130 NaCl, 24 NaHCO3, 3.5 KCl, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2, and 10 glucose, saturated with 95% O2 and
5% CO2, pH 7.3. In all experiments, NMDA receptors were blocked with
AP5 (50 �m) to prevent long-term effects. EPSCs were recorded from
CA1 pyramidal neurons at a holding potential of �65 mV by stimulating
Schaffer collaterals with a bipolar electrode placed in the stratum radia-
tum �300 �m (range �200 –500 �m) from the recording electrode.
EPSCs recorded in this configuration represent an averaged synaptic
response across a population of similar CA1–CA3 synapses. The same
recording configuration was previously used to provide experimental
support for the realistic model of STP (Kandaswamy et al., 2010) used in
the current study. Note that under our experimental conditions, receptor
desensitization and saturation are insignificant, and voltage-clamp er-
rors are also small and do not provide a significant source of nonlinearity
(Wesseling and Lo, 2002; Klyachko and Stevens, 2006b). Therefore, post-
synaptic responses can be used as a linear readout of transmitter release in
the relevant frequency range.

Data were filtered at 2 kHz, digitized at 20 kHz, acquired using custom
software written in LabVIEW, and analyzed using programs written in
MATLAB. EPCSs during the stimulus trains were normalized to an av-
erage of five low-frequency (0.2 Hz) control responses preceding each
train to provide relative changes in synaptic strength. Each stimulus train
was presented four to six times in each cell, and each presentation was sepa-
rated by �2 min of low-frequency (0.2–0.1 Hz) control stimuli to allow
complete EPSC recovery to the baseline. To correct for the overlap of EPSCs
at short interspike intervals (ISIs), a normalized template of EPSC waveform
was created for each stimulus presentation by averaging all EPSCs within a
given train that were separated by at least 100 ms from their neighbors and
normalized to their peak values. Every EPSC in the train then was approxi-
mated by a template waveform scaled to the peak of the current EPSC, and its
contribution to synaptic response was digitally subtracted.

The natural stimulus trains used in this study represent the firing
patterns recorded in vivo from the hippocampal place cells of awake,

freely moving rats (generously provided by Drs. A. Fenton and R. Muller,
State University of New York, Brooklyn, NY) (Fenton and Muller, 1998).
Spikes with ISIs �10 ms were treated as a single stimulus, because the
delay between the action potential firing and the peak of postsynaptic
currents/potentials prevented resolution of individual synaptic re-
sponses at shorter ISIs. Such treatment does not significantly affect syn-
aptic responses to natural stimulus trains, as we have shown previously
(Klyachko and Stevens, 2006a).

Analytical framework for analysis of information transmission by dy-
namic synapses. Information theory provides a general framework to
quantify information transfer in any system based on the principles of
Shannon (1948). Our approach described below is an extension of the
previous work of Zador (1998) to analytically compute the contributions
of STP to information transfer based on these principles. Synaptic infor-
mation transmission can be measured by how much information the
output spike train provides about the input train, which is termed “mu-
tual information” (Shannon, 1948). Within the information-theoretic
framework, this property is defined formally in terms of ensemble entro-
pies. The entropy is a basic measure in information theory and is given by
the following:

H� x� � � �P� xi�log2�P�xi��, (1)

where P�xi� is the probability of variable x to have the value xi. The
synaptic mutual information Im depends on the input (also termed
“source”) spike train’s entropy, H�s�, the entropy of output spike trains
(or of synaptic responses) H�r�, and their joint entropy H�r, s�, and by
definition is given by the following:

Im � H�r� � H�s� � H�r, s� � H�r� � H�r � s�, (2)

where H�r � s� is a conditional entropy of the output given the inputs,
which reflects variability of output for repeated presentations of the same
input. In practical terms, this means that variability of synaptic output
for the multiple presentations of the same input represents an inherent
“noise” in transmission and does not carry information, because it can-
not distinguish between two different inputs.

The realistic model of STP we used to describe synaptic dynamics in
the hippocampal synapses (Kandaswamy et al., 2010) is formulated to
predict changes in synaptic release probability during a random spike
input. The term “release probability” (Pr) is commonly used to describe
probability of vesicle release given a presynaptic spike. If we describe the
existing/nonexisting presynaptic spike as s � 1/0, and denote a vesicle
that is released/not released as r � 1/0, then the release probability is
Pr � P�r � 1 � s � 1�. In our calculations we will distinguish between
the term Pr, the synaptic release probability, and another probability
variable, p � P�r � 1�, which simply represents the probability of
synaptic response at a given time. The relation between these two vari-
ables is determined by the stimulation rate, p � R � Pr, where R is the
presynaptic firing rate P�s � 1�. The advantage of chosen STP formula-
tion is that it allows direct comparison to experimental measurements
(Kandaswamy et al., 2010) and provides a useful framework for the cal-
culation of the information transmission. Specifically, when an ensemble
of source spike trains with the same properties (e.g., constant rate) is used
as an input to the STP model, a resulting distribution of release proba-
bilities, f�p, t�, at each point in time can be calculated. The output of
individual synapses is determined by the release of a vesicle, which is
controlled stochastically by the release probability p at any given point in
time. Since the synapse either releases a vesicle or it does not, the synaptic
response (r) is thus a binary-state system at each point in time. Applica-
tion of Equation 1 to calculate mutual information for this simplified
binary-state system gives the following:

H � � plog2�p� � �1 � p�log2�1 � p�, (3)

where p is the probability to be in one state and (1 � p) is the probability
to be in the other (notice that the expression is symmetrical regarding
assignment of the two states �p3 1 � p�. Also note that the above
formulation is derived in assumption of a monovesicular release. Our
previous computational analyses (Kandaswamy et al., 2010) indicated
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that models of STP in hippocampal synapses described the experimental
data equally well in assumption of either a monovesicular release or
multivesicular release in case the number of active release sites does not
change significantly during elevated activity levels. Given these previous
results, and because the extent of multivesicular release in hippocampal
synapses and the quantitative relationship between multivesicular release
and release probability have not been established, we will limit our anal-
ysis to the monovesicular release framework.

For synaptic transmission, the entropy of vesicle release and thus of
synaptic response, H�r�, is determined by the release probability of the
synaptic ensemble, and is given by the following:

H�r� � � R�Pr�log2�R � �Pr�� � �1 � R � �Pr��

log2�1 � R � �Pr��, (4)

where �. . .� denotes the ensemble averaged value, and R is the input
stimulus rate.

To calculate the second term, H�r � s�, in Equation 2, we take into
account that for each individual response in a given train, a single value of
p is drawn from the distribution. Therefore, the expression for H�r � s� is
the average of Equation 3 with the distribution function f�p, t�. This
means that for each point in time a different distribution f� p, t� is
calculated, the release probability p is randomly selected for that time,
and then the binary-state entropy (Eq. 3) is calculated for that time
point. The resulting expression for conditional entropy is then given
by the following:

H�r � s� � � f� p, t�� � plog2�p� � �1 � p�log2�1 � p��dp.

(5)

Note that the averaging in Equation 5 is the ensemble averaging over
available input spike trains. Expression 5 can be further simplified by
noticing that if p � 0 is randomly selected, then H(r) in Equation 4 is
exactly 0; then we can exclude the case of no stimulation from Equa-
tion 5. Formally, this can be done by expressing the release probability
distribution function f� p, t� as a sum of two contributions given by
the following:

f� p, t� � �1 � R��p,0 � R � f̃ � p � s � 1, t�, (6)

where the first component represents a contribution when there is no
stimulation and the second component represents a contribution when
stimulation is present. From Equations 5 and 6 a simplified expression
for the conditional entropy can thus be derived as follows:

H�r � s� � � R � � f̃ � p, t�� plog2�p� � �1 � p�log2�1 � p��dp.

(7)

In an individual input train, there will be R stimuli per unit of time, and
each of these will contribute according to the release probability at that
time. In the case of ensemble entropy, each time point contributes
equally, because within the complete ensemble of inputs there is an equal
probability to randomly pick an input spike train that contains a spike at
that time point. The main difference between full ensemble entropy and
conditional entropy is then determined by the choice of specific firing
times. This means that in this calculation the main source of information
carried by the input train is determined by the spike timing within a train.

The mutual information, a measure of transferred information, can
now be simply calculated using Equations 4 and 7 as follows:

Im�t� � � R�Pr�log2�R � �Pr�� � �1 � R � �Pr��log2�1 � R � �Pr��

� R � � f̃�p, t��p log2�p� � �1 � p�log2�1 � p��dp. (8)

To verify this derivation, we can check our formalism for a few simple,
time-independent cases. For the perfectly reliable synapse (Pr � 1),

f̃�p, t� � ��p � 1�, which leads to zero conditional entropy. This is
exactly true for this simple case because the output is exactly determined
by the input, and although different trains produce different responses,
single stimulation produces only one and the same single response.
The mutual information is then the full entropy of the input given by
Im � H�r� � H�s� � � Rlog2�R� � �1 � R�log2�1 � R�.

For the opposite case of Pr � 0, the response entropy is zero since there
is only one response to any input. When �Pr� � 0 is used in Equation 4,
the resulting entropy is 0.

For any other constant release probability Pr � p0, we can calculate
the rate-dependent entropy as H�r� � � �p0 � R�log2�p0 � R� �
�1 � p0 � R�log2�1 � p0 � R�. The conditional entropy has a sim-
plified expression in this case, because the integration of Equation 7 can
be performed exactly as follows: H�r � s� � � R	�p0�log2�p0� � �1 �
p0�log2(1 � p0�].

Because all of the above analysis was performed for a single point in
time (binned time), the resulting Equation 8 thus measures the mutual
information per unit time. We can also define mutual information per
spike by dividing Equation 8 by the stimulation rate R and define the
average cumulative mutual information as the following:

Icumulative �
1

T � R�
0

T

Im�t�dt, (9)

which measures the average information transfer per unit time,
within a period of time from 0 to T. It is important to point out that in
the case of a static, constant Pr synapse mutual information and av-
erage cumulative mutual information are exactly the same because
they are time independent.

Note that the exact values of bits of information transmitted are de-
pendent on the chosen bin width of time and the release probability, so
that if we assume a more precise Pr or spike-timing measurements, their
information contents will increase. We will therefore consider relative
changes in functional behavior due to the presence of STP by comparing
information transmission in a model of a dynamic synapse to informa-
tion transmission by a synapse with a constant Pr (i.e., no STP); both are
analyzed using exactly the same procedures.

In addition, the chosen model does not consider multivesicular release
or the natural variability in the amount of released neurotransmitter by a
single vesicle. Because there are no clearly established mechanisms that
control these processes, they can only be modeled as randomly distributed
effects. All such processes therefore would not contribute to information
transfer, and in the information theory formalism their contribution will be
subtracted as part of H�r � s�.

Computational analysis. For simulation of the effects of STP on the
information transfer of the CA3–CA1 excitatory synapse, we used our
recently developed realistic model of STP, which shows a close agreement
with experimental measurements at this synapse in rat hippocampal
slices (Kandaswamy et al., 2010). This model accounts for three compo-
nents of short-term synaptic enhancement (two components of facilita-
tion and one component of augmentation) and depression, which is
modeled as the depletion of the ready releasable vesicle pool using a
sequential two-pool model. To determine the model parameters in a
wide frequency range, we performed an extensive set of recordings of
synaptic responses in the CA1 neurons in mouse hippocampal slices at
stimulus frequencies of 2–100 Hz. Model parameters were then deter-
mined by fitting this expanded experimental dataset as described by Kan-
daswamy et al. (2010). The model was then able to successfully predict
synaptic responses for arbitrary stimulus patterns.

In the first part of our study, constant-rate Poissonian spike trains
were used. An ensemble of 6400 short trains was simulated for each rate.
Train duration was chosen to achieve the ensemble average number of
spikes in the train equal to 100. This timescale was chosen to match the
existing experimental data on constant frequency and natural spike train
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responses (Klyachko and Stevens, 2006a; Kandaswamy et al., 2010). Since
the quantitative information theory analysis requires discretization of
continuous parameters, we chose release probability steps of 0.1 and time
steps of 3 ms. Time steps were chosen to limit the minimum allowed ISI
to experimentally and physiologically realizable cases.

Results
Analytical calculation of information transmission by a
dynamic synapse
Careful experimental analysis of synaptic information transmis-
sion requires testing a prohibitively large number of possible in-
put spike trains. As a result, direct experimental measurements of
information transfer are not currently feasible. Rather, studies of
synaptic information transmission are performed mostly by com-
puter simulations using models of synaptic dynamics (Markram et
al., 1998b; Zador, 1998; Fuhrmann et al., 2002; Silberberg et al.,
2004b; Lindner et al., 2009; Yang et al., 2009). Computationally,
synaptic information transmission can be estimated within the
information-theoretic framework by calculating the mutual infor-
mation (Shannon, 1948) that reflects how much information the
output spike train provides about the input train. To examine the
contributions of STP to synaptic information transfer, we developed
an analytical approach to calculate both the rate and time depen-
dence of mutual information in a dynamic synapse in terms of the
entropy of the synaptic response itself H(r) (Eq. 4) and the condi-
tional entropy of the synaptic response given the input (Eq. 7). This
approach is an extension of the earlier formalism originally devel-
oped by Zador (1998).

To examine synaptic dynamics that closely approximate the
experimental data, we derived the entropy terms as a function of
the input spike rate and synaptic release probability (Eq. 8). The
release probability during input spike trains was determined
based on a realistic model of STP that we developed previously for
excitatory hippocampal synapses (Kandaswamy et al., 2010). To

determine the model parameters in a wide
frequency range, we performed a set of
recordings of synaptic responses in the
CA1 neurons in mouse hippocampal
slices at stimulus frequencies of 2–100 Hz.
The observed synaptic dynamics closely
followed our previous recordings in the
rat slices (Klyachko and Stevens, 2006a,b)
(data not shown). Parameters of the
model were determined as we previously
described (Kandaswamy et al., 2010).
With this optimal set of parameters, the
model has been shown to accurately pre-
dict all key features of synaptic dynamics
during natural spike trains recorded in ex-
ploring rodents (Kandaswamy et al.,
2010). The basal Pr value in the model
was set to 0.2, which represents the
mean release probability in these synapses
(Murthy et al., 1997). It is important to
note that although Pr is typically low in
these synapses, it is distributed across a
significant range of values in the popula-
tion of hippocampal synapses. We there-
fore assumed the average value of Pr � 0.2
in our first set of calculations, but then
performed a detailed robustness analysis
of the information transmission and of
our results as a function of all major
model parameters, including the range of

Pr values from 0.05 to 0.4, which includes a large proportion of
the synaptic population (Dobrunz and Stevens, 1997; Murthy
et al., 1997) (see text and Fig. 4).

Previous analyses of synaptic information transfer considered
the steady-state conditions that synapses reach after prolonged
high-frequency stimulation (Lindner et al., 2009; Yang et al.,
2009) and were thus time independent. Because such steady-state
conditions might not be fully representative of the state in which
synapses operate during natural activity levels, the contribution
of STP could have been obscured in such time-independent anal-
yses if this contribution has a strong temporal component. We
thus focused on deriving and using a time-dependent formalism
to capture such time-dependent effects.

The role of STP in information transfer during constant-rate
Poisson spike trains
We first applied our time-dependent formalism to examine
information transmission by a dynamic synapse during
constant-rate, Poisson-distributed spike trains. As expected,
the information transmission showed a clear dependence on the
input rate (Fig. 1) similarly to the previous report (Zador, 1998).
Most importantly, we found that information transfer was
greater in the presence of STP than for the constant basal Pr (i.e.,
no STP present) for a wide range of input rates, �1– 40 Hz (Fig.
1). This is the case for both the mutual information per spike (Fig.
1A) and the mutual information per unit of time (Fig. 1B). At
low input rates, 0.01 � R � 0.1, at which STP contribution is
small and does not significantly alter release probability, infor-
mation transmission follows the same line as that for constant
basal Pr � 0.2 value; however, as input rate increases, information
transfer grows faster in the presence of STP, reaching levels that
nearly double information transmission at basal Pr value. The
range of input rates at which STP contributes to information

Figure 1. Information transmission for constant-rate Poisson-distributed input spike trains. A, B, Mutual information per spike
(A) or per unit of time (B) for a static synapse for a range of Pr values shown (black traces) and the average cumulative mutual
information Icumulative for a dynamic synapse with a basal Pr � 0.2 (red traces). Icumulative was determined for 100-spike-long trains
at each rate (see Materials and Methods for details). Note that in the case of a static, constant Pr synapse, mutual information and
Icumulative are exactly the same since they are time independent. The presence of STP increases information transferred by the
dynamic synapse in a wide frequency range above that of a static synapse with the same basal release probability.
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transfer is comparable to the range of fre-
quencies found in natural spike trains
(Fenton and Muller, 1998; Leutgeb et al.,
2005). Thus, STP clearly increases infor-
mation transfer in a rate-dependent man-
ner, unlike the findings in previous
reports (Lindner et al., 2009; Yang et al.,
2009). This result arises in part from using
a realistic model of STP that closely ap-
proximates synaptic dynamics in excit-
atory hippocampal synapses and in part
from performing time-dependent analy-
sis. The latter has shown that the steady-
state synaptic response commonly
analyzed in information transmission
studies may not be representative, at least
in the case of the hippocampal excitatory
synapses, of the state that synapses assume
during physiologically relevant activity.

Optimization of information
transmission by STP
in unreliable synapses
If STP plays a role in information process-
ing, then the time dependence of the in-
formation transfer may determine the
optimal length and structure of the input
spike train. Indeed, analysis of short input
train lengths (Fig. 2A) showed a clear peak
of information transmission for trains of
�4 –20 spikes (with a peak at 4 to 6 spikes)
at all rates above �16 Hz. Lower rates
showed an increase toward the steady-
state mutual information value, but under
these conditions mutual information
grew with rate independently of the train
length. Higher rates and long train lengths showed convergence
to a common universal value, suggesting that under the condi-
tions approaching the steady state the mutual information is
broadband, as previously reported (Yang et al., 2009). The same
results were also obtained when cumulative information transfer
was examined for different input rates (Fig. 2B). For cumulative
information transfer, the peak shifted to 9 –12 spikes (Fig. 2B,D),
as expected when we factored in the added contribution from
the several initial spikes that occurred when information
transfer was low.

To evaluate the benefits of such optimization, we compared
mutual information for the optimal train length at a given firing
rate for dynamic synapses versus static synapses with a range of Pr

values. In the case of dynamic synapses with a basal Pr � 0.2,
information transmission for the optimal length spike train was
equivalent to that of a static synapse with twice higher Pr � 0.4
(Fig. 2C). Together, these results show that STP in low release
probability excitatory synapses not only increases information
transmission in a rate-dependent manner, but it also leads to
optimization of information transfer for short spike bursts that
are indeed commonly observed in excitatory hippocampal neu-
rons (Leutgeb et al., 2005).

Information transmission during natural spike trains
To examine whether these information transmission principles
play a role in a more realistic situation, we examined information
transmission in a model of excitatory hippocampal synapses dur-

ing natural spike patterns recorded in hippocampal place cells of
freely moving and exploring rodents (Fenton and Muller, 1998).
These spike trains represent the patterns of inputs that the
excitatory hippocampal synapses are likely to encounter in vivo
(Leutgeb et al., 2005). To be able to apply our formalism to an
arbitrary spike train with varying rates, we needed to transform
the input train into a time-dependent rate r(t) and produce a
corresponding ensemble of input spike trains, making the precise
analysis of information transfer very time intensive. The analysis
of information transfer can be simplified, however, by eliminat-
ing the need for ensemble measurements if the expression for
mutual information can be formulated only as a function of mea-
sured values, such as Pr. We thus used an approximation for the
conditional entropy expression in Equation 7 by replacing the
averaging over values of release probability p, by its average, i.e.,
�Pr�, as follows:

H�r � s� � � R	�Pr�log2��Pr�� � ��1 � �Pr��log2�1 � �Pr���
.

(10)

We then determined the accuracy of this approximation by com-
paring the exact amount of information transfer (given by Eq. 8)
for constant-rate trains using the precise expression for H�r � s� in
Equation 7 versus its approximation in Equation 10. This ap-
proximation resulted in 95% accuracy or better in estimating
information transfer for stimulus trains shorter than �40 spikes
at all rates tested (0.01–72 Hz), and for 100-spike-long trains at all

Figure 2. Time dependence of synaptic information transmission. A, Time-dependent mutual information for a dynamic
synapse with a basal Pr � 0.2 is plotted versus spike number in the train. Information transmission is optimal for the short
high-frequency spike bursts and converges to a universal steady-state value at longer train durations. Numbers shown above each
trace represent the rate of synaptic input. B, Same as in A for the average cumulative mutual information Icumulative. The peak of
optimal train length shifted toward the larger number of spikes, but the same overall optimization behavior is seen. Numbers
shown above each trace represent the rate of synaptic input. C, The benefit of optimizing the train length for the chosen firing rate.
If optimal train length is chosen, the dynamic synapse with a basal Pr � 0.2 can transfer information as efficiently as a static
synapse with Pr � 0.4. D, Peak position and width (calculated as a half-width above the steady-state level) of the average
cumulative mutual information Icumulative. The peak location corresponds to optimal burst length and the width determines the
specificity of this optimization.
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rates �56 Hz (Fig. 3A). The only input regimes in which larger
deviations were seen were outside the physiologically relevant
range of stimuli for these synapses. The accuracy of this approx-
imation suggests that the entropy held in the distribution f�p, t�
of p values is relatively small with respect to the main contribu-
tion to entropy, which is due to the spike timing in the train. This
is not surprising considering that the probability of an action
potential firing at any given time point is very small. This notion
can be seen more easily using a simple example at a 1 Hz rate.
Since we chose time steps of 3 ms for our analysis, there were 333
time points in 1 s and therefore 333 possible different spike trains
all having the 1 Hz rate. The synapse can release with 1 of 10
possible values of release probability (since it is quantized with
0.1 steps), and in reality the values are constrained by the model
so the actual spectrum is even smaller. This explains why in our

approximation the variability arising from the spike timing is
much greater than that of the release probability distribution.
Estimation of information transfer during a natural spike train
using this simplification is based on the assumption that the
properties of a specific natural spike train used are representative
of an ensemble of natural spike trains and that variability within
this ensemble is relatively small. Under this assumption, our
analysis shows that information transfer by a dynamic synapse
increases several-fold during spike bursts in the presence of STP
(Fig. 3B,C). The synaptic information transfer due to STP in
dynamic synapses with the basal Pr � 0.2 is comparable to that of
a static synapse with Pr � 0.4. This effect of STP is very similar to
the results seen for the optimal length spike train (Fig. 2C), sug-
gesting that natural spike trains in hippocampal neurons may be
optimized to transmit maximal information given the specific
dynamics of their synapses. It is important to point out that a real
synapse with a basal release probability of Pr � 0.4 is more likely
to have depression-dominated STP (Dobrunz and Stevens, 1997;
Murthy et al., 1997), leading to an overall decrease of transferred
information (see Fig. 5 and text below). It is thus the tuning
between the natural spike train structure and the dynamic prop-
erties of excitatory hippocampal synapses that allows the en-
hancement of information transfer during natural spike trains.

Robustness of information transfer optimization
Although hippocampal excitatory synapses have a low average
release probability, it has a wide distribution in the synaptic pop-
ulation (Murthy et al., 1997). The expression of individual STP
components is interdependent with the release probability and
varies in amplitude as a function of Pr (Zucker and Regehr, 2002;
Abbott and Regehr, 2004). It is therefore important to determine
to what extent our findings are robust regarding changes in re-
lease probability as well as in individual model parameters. We
thus performed the same analysis as described above for a range
of model parameters within a 100% range of changes (from �0.5
to �2) in facilitation amplitude, augmentation amplitude, the
time course of RRP recovery that effectively controls depression
amplitude, and the size of the RRP (Fig. 4A–C). We found that all
of our observations regarding the role of STP in increasing infor-
mation transfer, as well as the optimization of information trans-
fer for spike bursts, were not strongly dependent on the model
parameters within these ranges and held true for all values tested.

This analysis also allowed us to examine the roles of different
forms of STP in optimization of information transfer. Specifi-
cally, we used three metrics to quantify information transfer op-
timization: the peak position (Fig. 4A), the peak width (Fig. 4B),
and the peak height (Fig. 4C). We found that the largest decrease
in both the peak position and width occurred when facilitation
amplitude was increased. This effect was presumably due to faster
use of synaptic resources (vesicles) leading to faster and stronger
depression. Opposite of these effects of facilitation, we found that
the largest increase in peak width occurred when vesicle recycling
time was decreased (Fig. 4A), increasing vesicle availability and
leading to much slower onset of depression. Similarly, increasing
the size of the RRP produced the largest increase in peak position
(Fig. 4B) by effectively extending vesicle availability and thus
delaying the onset of depression. We further considered the con-
tributions of STP components to the peak height (Fig. 4C), which
represents one way of quantifying optimization strength. Our
analysis revealed that peak height received its largest contribution
from the facilitation amplitude. This effect of facilitation is ex-
pected since the peak occurs early during the stimulus train, when
synaptic dynamics is indeed dominated by facilitation.

Figure 3. Information transmission for a natural spike train. A, Relative deviation of approx-
imation for mutual information from exact numerical calculations. The approximation pre-
sented holds true with 95% accuracy for all firing rates between 0.01 and 56 Hz and train
durations of 100 spikes, as well as for spike trains shorter than �40 spikes at all rates tested. For
spike trains longer than �40 spikes at rates of 64 Hz and above, significant deviations appear.
The approximation accuracy is reduced when the model is stressed to the point when the
release probability during prolonged high-rate stimulation approaches zero. B, The average
cumulative mutual information Icumulative for a natural spike train. Icumulative shows rapid
changes during natural spike trains with peaks corresponding to spike bursts and decays corre-
sponding to periods of low activity. Information transfer in a dynamic synapse based on mea-
sured data starts as low as for a static synapse with a Pr � 0.2, but then increases during bursts,
due to STP, to reach the performance of a static synapse with a Pr � 0.4. C, Mutual information
per unit time for the first 70 spikes in the train plotted for a dynamic synapse with a basal Pr �
0.2 and static synapse with Pr from 0.2 to 0.4. The dynamic synapse expresses a wide range of
transferred information values during the natural spike train from that similar to a static Pr �
0.2 synapse to above that of static Pr � 0.4 synapse.

Rotman et al. • Information Transfer by Synaptic Dynamics J. Neurosci., October 12, 2011 • 31(41):14800 –14809 • 14805



We also examined the robustness of
information transmission regarding
changes in basal release probability in a
range from 0.05 to 0.4 (Fig. 4D), which
includes the majority of excitatory hip-
pocampal synapses (Murthy et al., 1997).
While the optimization of information
transmission was observed at all Pr values
within this range, we found strong inverse
dependence between optimization and Pr

such that the optimal length of the bursts
decreased rapidly with increasing Pr (from
35 spikes at Pr � 0.05, to 11 spikes at Pr �
0.2, to 6 spikes at Pr � 0.4). It is important
to note that this analysis represents the
lower bound approximation in the sense
that in real synapses this dependence be-
tween the optimal peak position and Pr is
likely to be even stronger. This is because
most of the current STP model parame-
ters have been determined from experi-
mental data that represent the averaged
behavior of CA3–CA1 synapses, i.e., the
synapse with a Pr � 0.2. Since functional
interdependences between Pr and STP pa-
rameters are not currently known, per-
forming this analysis at significantly
higher Pr values would require determin-
ing a new set of model parameters based
on the experimental data recorded at
these increased Pr. As Pr value increases,
the experimentally determined amplitudes of facilitation and
augmentation would decrease and amplitude of depression
would increase. These indirect effects of increasing the Pr would
further accentuate the dependence of optimization on release
probability, but they are not taken into account in our current
analysis, because we vary only one parameter (in this case Pr) at a
time. Based on these considerations, we limited our analysis to a
lower range of Pr values (0.05– 0.4, the range within which syn-
aptic dynamics remains qualitatively similar) before it shifts from
facilitation- to depression-dominated mode at higher Pr values
(Dobrunz and Stevens, 1997).

Together, these results indicate that STP-mediated optimiza-
tion of information transmission in unreliable synapses is robust
within a relevant range of model parameters and within a lower
range of release probabilities that are predominant in excitatory
hippocampal synapses.

Prediction for information transmission in high release
probability synapses and its verification
The above analysis suggests that STP-mediated optimization of in-
formation transmission for spike bursts holds for unreliable syn-
apses, but might not be present in high release probability synapses,
which are expected to have a dominant short-term depression. In-
deed, analysis of depression-dominated dynamic synapses with a Pr

� 0.5 (and no facilitation/augmentation) shows strong monoto-
nous decay of average cumulative mutual information with the in-
put rate (Fig. 5A). Even at 2 Hz, depressing synapse with a Pr � 0.5
transfers less information during a 150-spike-long train than the
static synapse with Pr � 0.4, and at 40 Hz the dynamic synapse
transfers less information than a static synapse with a Pr � 0.2.

Based on the above analysis, we predicted that in high release
probability synapses single spikes rather than bursts would be

expected to carry maximal information as the optimal burst
length would approach a value of 1 (Fig. 4D). To verify this
prediction, we took advantage of the fact that a large proportion
of inhibitory hippocampal synapses in the CA1 area have a high
release probability (Mody and Pearce, 2004; Patenaude et al.,
2005) and express dominant short-term depression (Maccaferri
et al., 2000). To examine information transfer in these synapses,
we used a series of measurements we previously performed in
CA1 inhibitory hippocampal synapses with constant-frequency
stimulation (Klyachko and Stevens, 2006a). The actual measured
values of synaptic strength during trains were used in these cal-
culations. We found that the average cumulative mutual infor-
mation decreased monotonically with the length of the train, and
no optimization peak was observed at all frequencies examined
(Fig. 5B). This result confirms the prediction of our analysis and
suggests that for inhibitory hippocampal neurons, optimal infor-
mation transfer would take place when the train is composed of
single spikes rather than bursts. This fits well with the observation
that inhibitory hippocampal interneurons, unlike excitatory py-
ramidal cells, do not typically fire spike bursts (Connors and
Gutnick, 1990).

Discussion
We have examined the role of synaptic dynamics in information
transmission by estimating the mutual information between syn-
aptic drive and the output synaptic gain changes in a realistic
model of STP in excitatory hippocampal synapses. Our analysis
shows that the presence of STP leads to an increase in informa-
tion transfer in a wide frequency range. Furthermore, consider-
ations of the time dependence of information transmission
revealed that STP also determines the optimal number of spikes
in a train that maximizes information transmission. Specifically,

Figure 4. Robustness of information transmission optimization. A, Changes in peak width of average cumulative mutual
information with the 2� change of model parameters (augmentation amplitude, facilitation amplitude, number of vesicles in RRP
and recycling (depression) timescale). The peak half-width above the steady-state level was taken as a measure for peak width. The
stimulus rate of 32 Hz was used in this robustness analysis. B, C, Same as A for the changes in peak location (B) and height (C). D,
Changes in peak width with the changes of basal release probability.
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in these low release probability synapses, information transmis-
sion is optimal for the short high-frequency spike bursts that are
indeed common in the firing patterns of excitatory hippocampal
neurons. When an optimal spike pattern is used as an input, the
information transfer by the dynamic synapse is equivalent to that
of a static synapse with twice greater basal release probability. Our
analysis further showed strong dependence of this optimization
on the basal release probability and predicted that this optimization
will reach unity (so that a single spike is optimal for information
transmission) at large values of Pr, when synaptic dynamics is dom-
inated by short-term depression. We verified these key observations
using analyses of experimental recordings in low release probability
excitatory and high release probability inhibitory hippocampal syn-
apses in brain slices. Our findings thus demonstrate that STP con-
tributes significantly to synaptic information processing and works
to optimize information transmission for specific firing patterns of
the corresponding neurons.

The role of STP in information transmission
The function of STP in information processing has been sug-
gested by numerous studies of visual and auditory processing
(Chance et al., 1998; Taschenberger and von Gersdorff, 2000;
Chung et al., 2002; Cook et al., 2003; DeWeese et al., 2005;
MacLeod et al., 2007) and of cortical/hippocampal circuit oper-
ations (Abbott et al., 1997; Markram et al., 1998a; Silberberg et
al., 2004a; Klyachko and Stevens, 2006a; Kandaswamy et al.,
2010). Specific computations performed by STP are often based
on frequency-dependent filtering operations and include, but are
not limited to, detection of transient inputs, such as spike bursts
(Lisman, 1997; Richardson et al., 2005; Klyachko and Stevens,
2006a) and abrupt changes in input rate (Abbott et al., 1997;

Puccini et al., 2007), synaptic gain control
(Abbott et al., 1997), input redundancy
reduction (Goldman et al., 2002), and pro-
cessing of population bursts (Richardson
et al., 2005).

Information theory provides a robust
quantitative framework to analyze the
role of STP in information transmission at
synapses and has been successfully used in
several studies of synaptic processing
(Tsodyks and Markram, 1997; Varela et
al., 1997; Markram et al., 1998b; Tsodyks
et al., 1998; Zador, 1998; Maass and
Zador, 1999; Natschläger et al., 2001;
Fuhrmann et al., 2002; Goldman et al.,
2002; Loebel and Tsodyks, 2002). The
main complication of applying infor-
mation theory to address physiological
questions is its reliance on the analysis
of large ensembles of input spike pat-
terns, which require either prohibitively
large sets of measurements or a commit-
ment to simplifying assumptions. In the
pioneering work of Zador (1998), calcu-
lations based on ISI distribution were
used to significantly reduce the number
of simulations needed. This simplifica-
tion assumes the time independence of
synaptic responses and works well in ap-
proximation of steady-state synaptic
conditions. This methodology, how-
ever, does not allow the correct analysis

of time-dependent information transmission by dynamic syn-
apses with rapidly changing release probability. By developing
an extension of this previous information theory formalism to
include time-dependent analysis, we were able to clearly demon-
strate the role of STP in increasing information transfer in a wide
range of input frequencies (Fig. 1).

This result would not be apparent in analyses of the steady-state
conditions that were used in previous studies of information trans-
mission by dynamic synapses (Lindner et al., 2009; Yang et al., 2009)
and indeed led to different conclusions. Both studies, however, as-
sumed time-independent information transfer, an assumption that
we found obscured the contributions of STP, which have a strong
temporal component. In fact, we have shown, in agreement with
Yang et al. (2009), that for the significantly long trains, when syn-
apses reach a steady state, information transmission indeed con-
verges to the same unifying level, and there is a wide range of
stimulation rates that all exhibit the same information transfer.
Analysis of synaptic dynamics during natural spike trains (Fig. 3)
revealed that this regime is not common during physiologically rel-
evant activity levels, at least in the case of excitatory hippocampal
synapses. In addition, performing simulations under steady-state
conditions reduces the dynamic range of synaptic strength, which
might contribute to the lack of frequency dependence.

It is also important to note that our calculations were simpli-
fied by avoiding a postsynaptic neuron firing model, which is
usually introduced as a final stage of calculations. Our goal was to
keep our calculations as close to the experimental data as possi-
ble. The most commonly used model in similar studies is the
leak-integrate-and-fire neuron, which introduces a large number
of free parameters, avoids the nonlinear properties of dendritic
integration, and is difficult to verify experimentally (Burkitt,

Figure 5. Time and rate dependence of mutual information in high release probability depressing synapse. A, Mutual informa-
tion per spike for a static synapse for a range of Pr values shown (black traces) and the average cumulative mutual information
Icumulative for a depression-dominated high release probability synapse (Pr � 0.5) (red trace) plotted as a function of the input rate.
Icumulative shows a strong decay as input rate increased. At all rates above 1 Hz depressing synapse with (Pr � 0.5) transfers less
information during a 150-stimuli-long train than the static synapse with Pr � 0.4. B, Average cumulative mutual information was
calculated directly from the previous experimental measurements of synaptic dynamics in CA1 inhibitory hippocampal synapses
(Klyachko and Stevens, 2006a). This mutual information is plotted as a function of spike number in the train and shows a steep
decrease with the train length. No optimization for spike bursts is observed at any of the frequencies tested (2– 40 Hz) and maximal
information transmission is achieved at the first spike in the train.
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2006; Brette et al., 2007; Paninski et al., 2007). A more realistic
approach to generating output neuron spiking could be based on
a previous study of dendrite-to-soma input/output function of
the CA1 pyramidal neurons, demonstrating that this input– out-
put relationship could be modeled as a linear filter followed by
adapting static-gain function (Cook et al., 2007). Application of
such an approach would also require precise knowledge of how
multiple heterogeneous synaptic inputs interact and are spatially
integrated in the dendrites. Given the intricate spatiotemporal
dendritic processing (Spruston, 2008) and complexity of inter-
synaptic interactions over various timescales (Remondes and
Schuman, 2002; Dudman et al., 2007), the problem of linking
individual synaptic dynamics to the actual spiking output of a
neuron remains largely unresolved. We therefore chose not to use
a neuronal-spiking model. Moreover, if any neuronal-spiking
model changes information-transfer properties in a rate- or time-
dependent manner, it would be advantageous to study these ef-
fects independently of the choice of synaptic STP model. It thus
remains to be determined how information transmission at indi-
vidual synapses is modified by complex dendritic processing in
the postsynaptic neuron. However, given that an STP-dependent
increase in synaptic information transfer is observed over a wide
frequency range and is highly robust, we predict that the effects of
STP we observed at the level of synaptic output will also be qual-
itatively present at the level of actual spiking output of a neuron,
unless dendritic filtering strongly attenuates synaptic signals over
this entire frequency range.

Optimization of information transfer
The key finding of our study is the optimization of information
transmission by STP. In low release probability synapses, informa-
tion transmission is maximal for short high-frequency spike bursts
(Fig. 2). This result demonstrates that the short timescale, �30
spikes, during which the synapse reaches its steady state, has a non-
trivial time- and rate-dependent contribution of STP to information
transfer. Our numerical calculations show that synapses can modu-
late the information they transfer with respect to the length and the
rate of the input spike pattern. This may lead to the optimization of
information transfer for variable rate trains, such as natural spike
trains, if they are composed of constant-rate trains of a length that
maximizes information transfer at that rate. Our calculations thus
predict that a mixture of input rates would be optimal for informa-
tion transmission when low-frequency trains of any length are
mixed with short bursts of high-rate firing to maximize the informa-
tion transfer of a synapse. This is indeed in agreement with the ex-
perimentally observed firing patterns of excitatory hippocampal
neurons (Fenton and Muller, 1998; Leutgeb et al., 2005).

Based on the same optimization considerations, our analyses
predicted that high release probability synapses would have max-
imal information transmission when single spikes rather than
bursts are used as synaptic input. This effect arises from the
switch in synaptic dynamics from facilitation/augmentation to
depression at high release probabilities (Figs. 1, 5). This interpre-
tation is in agreement with a previous study (Goldman et al.,
2002) showing that depressing synapses reduces information re-
dundancy in spike trains. Indeed, when natural spike trains were
used as an input to depressing stochastic synapses, they exhibited
reduced autocorrelation of spike timing, which is equivalent to
our finding of optimization by single spikes. It is tempting to
speculate that STP expression might have evolved in part to op-
timize information transmission in the firing patterns of the cor-
responding neurons, as seems to be the case for both excitatory
and inhibitory hippocampal synapses. Alternatively, it is possible

that the adaptation properties of neurons, which determine their
bursty firing patterns, might have evolved in part to optimize
information transfer given the existence of STP. Future studies of
information transmission using more detailed models of synaptic
dynamics in other neural systems will reveal the extent to which
this principle applies to other types of synapses, or whether it is
specific to a subset of circuits or to certain types of information
transmitted. These analyses will also require a better understand-
ing of information encoding, which currently limits application
of information theory to a wider variety of synapses and circuits.
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