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Computation of Interaural Time Difference in the Owl’s

Coincidence Detector Neurons
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Both the mammalian and avian auditory systems localize sound sources by computing the interaural time difference (ITD) with submil-
lisecond accuracy. The neural circuits for this computation in birds consist of axonal delay lines and coincidence detector neurons. Here,
wereport the first in vivo intracellular recordings from coincidence detectors in the nucleus laminaris of barn owls. Binaural tonal stimuli
induced sustained depolarizations (DC) and oscillating potentials whose waveforms reflected the stimulus. The amplitude of this sound
analog potential (SAP) varied with ITD, whereas DC potentials did not. The amplitude of the SAP was correlated with firing rate in a linear
fashion. Spike shape, synaptic noise, the amplitude of SAP, and responsiveness to current pulses differed between cells at different
frequencies, suggesting an optimization strategy for sensing sound signals in neurons tuned to different frequencies.

Introduction
Many animals use both ears to determine the direction of sound
sources. The arrival time difference of sound between the two
ears [interaural time difference (ITD)] is a major cue for local-
ization in the horizontal direction (Konishi, 1993), and how ITDs
are computed in the brain is of general interest (for review, see
Grothe et al., 2010). The Jeffress model of sound localization uses
axonal delay lines and coincidence detector neurons to encode
ITDs (Jeftress, 1948). In the avian auditory system, axonal delay
lines from the cochlear nucleus magnocellularis (NM) synapse
on coincidence detector neurons in the nucleus laminaris (NL)
(Carr and Konishi, 1990). Although the existence of delay lines in
the mammalian brainstem is controversial (Grothe et al., 2010),
coincidence detection is regarded as universally significant. Fur-
thermore, the cellular mechanisms underlying coincidence de-
tection in the auditory systems of birds and mammals have long
been a subject of discussion and modeling because of their excep-
tional temporal precision (Gerstner et al., 1996; Agmon-Snir et
al., 1998; Cook et al., 2003; Grau-Serrat et al., 2003; Kuba et al.,
2006; Ashida et al., 2007).

Just how precise are auditory coincidence detectors? In owls,
NL neurons change their firing rates with changes in ITD of <10
s (Carr and Konishi, 1990; Pena et al., 1996), far below the spike
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duration of the neurons (e.g., ~1 ms). The data used for model-
ing these coincidence detection processes have so far come from
invitro studies in the chick’s NL (Reyes et al., 1996; Funabiki et al.,
1998; Kuba et al., 2005, 2006; Slee et al., 2010), extracellular stud-
ies of the barn owl’s NL neurons (Carr and Konishi, 1990; Pena et
al., 1996; Fischer et al., 2008), and the owl’s behavioral perfor-
mance (Knudsen et al., 1979). Specialized cellular mechanisms,
including extraordinary fast glutamate receptors (Reyes et al.,
1996; Trussell, 1999; Kuba et al., 2005), low threshold-activated
potassium conductance (KLVA) (Reyes et al., 1996), and remote
spike initiation (Carr and Boudreau, 1993b; Kuba et al., 2006;
Ashida etal., 2007), have been discussed as important elements of
this extraordinary precise coincidence detection. Information re-
garding the subthreshold responses of NL neurons to real sound
in vivo, however, has been lacking.

We designed coaxial glass electrodes that allowed us to obtain
in vivo intracellular recordings in the owl’s NL. Using this tech-
nique, we were able to record the synaptic input to these cells
during sound stimulation and measure their input—output prop-
erties. Here, we show that the postsynaptic response of the NL cell
is an analog waveform that closely resembles the sinusoidal stim-
uli and that its amplitude changes with ITD, which, in turn,
drives the neuron to generate spikes.

Materials and Methods

Animals and surgery

Data were obtained from 16 adult barn owls (Tyto alba) of both sexes.
Detailed descriptions of the surgery are available (Pefna et al., 1996,2001).
In brief, owls were anesthetized with an intramuscular injection of ket-
amine hydrochloride (25 mg/kg) and diazepam (1.3 mg/kg). Additional
ketamine injections were made as necessary. We tried recording from the
caudal third of NL where cell density is higher than other regions (Carr
and Boudreau, 1993a). For this purpose, we adjusted the angle of elec-
trode in the coronal plane (see Fig. 1 Ad). After experiments, the hole for
electrode insertion was covered with dental cement and the skin incision
was closed. Antibiotic and a local anesthetic in sterile solution were ap-
plied to the wound. Owls were returned to their individual cages and
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monitored for their recovery. The protocol for this study followed the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals and was approved by the Animal Care and Use Committee of the
California Institute of Technology.

Sound stimulation

All the experiments were performed in a double-walled acoustic chamber
(Industrial Acoustic Company). An earphone assembly consisting of a
Knowles 1914 receiver, a Knowles 1743 damping device, and a Knowles
1319 microphone (Knowles Electronics) delivered sound stimuli. These
components are encased in an aluminum cylinder that fits into the owl’s
ear canal. The gaps between the cylinder and the ear canal were filled with
silicon impression material (Gold Velvet II; Earmold and Research Lab-
oratory). At the beginning of each experimental session, both earphone
assemblies were automatically calibrated for sound pressure level (SPL)
and phase. The computer was programmed to equalize SPL and phase for
all frequencies within the frequency range relevant to the experiment.
The stimuli consisted of tones and noise bursts of 60—100 ms in duration
with a 3 ms rise—fall time, delivered one to two per second. The average
binaural intensity of the sound stimulus was set to 40 dB SPL, unless
otherwise mentioned. ITD was varied in steps of either 1/10th of the
period for tonal stimuli or 30 ws. Firing rate and membrane potential
changes as a function of ITD were typically measured for three repeti-
tions of each stimulus.

As in previous studies (Carr and Konishi, 1990), and because the du-
ration of recordings using sharp electrode did not allow for more precise
measurements, the best frequency (BF) of each neuron was estimated
with the aid of an audio monitor, by determining the stimulus frequency
that elicited the strongest response. These BF measurements were con-
firmed by measuring the periodicity of ITD tuning curves collected using
broadband noise. It has been shown that the period of broadband ITD
curves shows strong correlation with the best frequency of the cell (Pefia
etal., 2001).

Electrophysiological recordings
Coaxial glass electrodes have been used to reduce the stray capacitance of
the microelectrode for better voltage clamp (Schwartz and House, 1970;
Sachs and McGarrigle, 1980). We adapted this configuration to obtain
intracellular recording from NL neurons in vivo. This configuration al-
lowed us to reach NL, which lies at a depth of ~10 mm below the cere-
bellum, with sharp electrodes. The system consisted of a microelectrode
[1B100F-4; outer diameter (0.d.), 1.0 mm; inner diameter (i.d.), 0.58
mm; WPI] inserted into a patch electrode-type capillary (PG52165-4;
o.d., 1.65 mm; i.d., 1.1 mm; WPL see Fig. 1Aa). The outer capillary
protected the tip of the microelectrode during penetration. The tip of the
outer electrode was filled with a small amount of oil (Zeiss immersion
oil) to reduce the capacitance of the electrode and also to help in prevent-
ing the CSF from filling the empty space between the capillaries. Also, for
the same reason, we applied a positive pressure to the outer capillary
through a plastic T-tube connected to the outer capillary (see Fig. 1Ab).
The inner electrode was filled with 3 M potassium acetate. We used two
close-loop motor actuators: motor 1 and controller 1 (850G and
ESP300), and motor 2 and controller 2 (850B-2 and PMC100; Newport;
see Fig. 1 Aa). The motor 1 advanced both the outer and inner capillaries
and the motor 2 advanced only the inner one (see Fig. 1Aa). Before
insertion into the brain, the inner electrode was inserted into the outer
electrode until the distance between the two electrode tips was ~300 wm
under microscope (Unitron Toolmaker’s microscope).

Using the motor 1, we drove both electrodes through the cerebellum to
a depth of 7-8 mm, where we began to advance the inner microelectrode
using the motor 2. The emergence of the inner electrode out of the outer
electrode was noticed by monitoring both the DC potential and the
electrode resistance. After the inner tip emerged, we advanced the inner
electrode further up to ~60 um (see Fig. 1 Ac). Too much protrusion
would break the outer capillary. Subsequently, the motor 1 only was used
to advance inner and outer electrodes together to obtain intracellular
recordings in NL. High-impedance microelectrodes (>80 M()) were
required to obtain stable intracellular recordings from NL cells. There-
fore, we restricted applied currents to a range in which the microelec-
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trode does not show much rectification (=1 to =2 nA) when measuring
changes in membrane potentials by current injection.

Voltage and current data were recorded with a Neurodata IR-183
(Cygnus Technology) or an Axoclamp 2A amplifier in bridge mode (Mo-
lecular Devices), and were stored on disk (through an AD converter;
TDT system 2; Tucker-Davis Technologies; sampling frequency, 48 kHz)
and tape (through a PCM encoder; Neurodata DR-484; Cygnus Tech-
nology; sampling frequency, 44.1 kHz). The data from current inputs
and voltage outputs around penetration such as the one shown in Figure
1 B were stored on tape.

We applied short current pulses (0.2—0.3 nA, 15-30 ms) periodically
to monitor electrode and/or membrane resistance (see Fig. 1Ba). Small
negative holding currents (0.2-0.4 nA) were used to facilitate penetra-
tion and help stabilize the membrane potential after penetration. The
DC-potential drop at penetration (see Fig. 1Bb) was calculated after
removing the effect of changes in electrode resistance occurring upon cell
penetration. Resting potentials were measured without holding current.
We used both DC drops and resting potentials to judge whether or not
recordings were intracellular. Data from cells with resting potential lower
than —50 mV, and DC drop >15 mV (determined by comparing data
from putative axonal recording of NM and NL cells) were used for fur-
ther analyses (mean resting potential, —58 = 17 mV; mean DC drop,
33 £ 13 mV;n = 35).

The input resistances of NL cells, calculated from the change in membrane
potential induced by small negative currents (around —0.3 nA) applied at
resting potential, was low (10.4 * 8.2 M{2) and sometimes <5 M() for
positive current steps. All the statistical results are shown in terms of mean *+
SD. When analyzing correlation, we used Pearson’s product-moment cor-
relation in case the variables showed normal distribution (Kolmogorov—
Smirnov test, p > 0.05). Otherwise, Spearman’s rank correlation coefficient
was used. When Pearson’s product-moment correlation was used, we added
aregression line in the corresponding figures.

Spike analysis

All the data were analyzed with custom-written MATLAB scripts (ver-
sion 6.5R13; MathWorks). Spikes were analyzed as follows: First, voltage
traces were bandpass filtered (30-3000 Hz), and spikes were detected by
visually adjusting the threshold. In determining this threshold, care was
taken so that both spontaneous and sound-induced spikes were detected
(see Figs. 1Bb,C, 5A). We discriminated spikes from large EPSPs by
checking the presence of refractory period in the interspike interval his-
togram (an example was shown in Fig. 1 E) and increase in event rate by
injecting depolarizing currents (see Figs. 1C, 6 A). The program filed the
spike timings and cut out the corresponding spike waveforms from orig-
inal (non-bandpass-filtered) voltage traces. Next, spontaneous spikes
(spikes occurring when neither sound nor current stimuli were applied)
were collected and averaged over 10 events or more. This averaged spike
waveform was used to determine the spike duration (i.e., when potential
returns to the baseline level, ~0.9 ms). We used this duration in analyz-
ing compound potential response against tonal stimuli (see next section).
The height and the width at half-amplitude of spontaneous spikes were
also measured.

Analysis of sound analog potential
Tonal stimuli induced periodic membrane-potential oscillations that
closely resembled the stimulus waveform (see Results). These oscillations
will be referred to as “sound analog potential” (SAP). To analyze SAPs,
the times when spikes occurred (as determined in spike analysis; see Fig.
1C, gray) were first removed from analysis. The residual voltage data
points during tonal stimuli (see Fig. 1C, black and under bold line) were
plotted against the phase angle of the stimulus tones (see Fig. 1 D). We
fitted these points with a sinusoidal function: y = (Ag,p/2) * sin(6) +
DC, with 6 being the phase of the stimulus tone. We used the value of
Ag,p as the amplitude of SAPs (peak-to-peak value of the fitted curve)
and the difference between averaged membrane potential 5-15 ms before
sound stimuli (when no spikes were observed) and this DC value as a
sound-evoked DC shift.

The change in SAP amplitude as a function of ITD was fitted to a
cosine function: y = |H - cos(mf, *ITD + 6,)|, where H is the amplitude,
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Table 1. Model parameters used for synapticinput in NL
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Table 2. Equations of the NL neuron model

Parameter Value Reference Variable Equation
EPSC half-peak width 0.1 ms Kuba et al. (2005, 2006): Compartment ¢ = soma or node

chick (adjusted to match experiment) ~ Membrane potential d o . .
EPSCamplitude (spontaneous) 2.0 nS (Adjusted to match experiment) C 7V 0 = R+ R + Kovn + e +
EPSCamplitude (with sound) 1.3nS (Adjusted to match experiment) ls(ynapn( Lsvon
Convergence number of NM fibers 150 (each side) Carr and Boudreau (1993a): owl Na current INa = & - Mche s (Ey, — Vo)
NM firing rate (spontaneous) 220 Hz Koppl (1997a): owl KHVA current leva = xrrva *Ne (B¢ — Vo)
NM firing rate (with sound) 500 Hz Pefia etal. (1996): owl KLVA current lun = Sxiva " dc (Bc— V)
NM vector strength 0.6 Koppl (1997b): owl Leak current leak = Greak * Erea — Vo)
This table summarizes the parameters used for modeling the synaptic input between NM and NL. Relevant refer- Synapticinput Iscynaptlc = gscynaptic ' (Esynaptic )
ences are also shown. The half-peak width and the amplitude of the excitatory postsynaptic conductance (EPSC) ~ Axonal current Lot = Gavon * Viode — Vsoma) Jnode — _ jsoma
were adjusted to match our experimental results. Channel variable dx Jdt = pla (V) - (1 = BV.)-x}

(x=m,h,n,d)
Temperature dependence b= QU B0, = 2.5, T=40°0)

f, is the sound frequency, and 6, is the phase shift. The value of H was
used as the maximal SAP induced by changing ITD.

In the analysis of SAP changes before and directly after penetration, we
did not remove the times when spikes occurred, because spike amplitude
and shape changed largely at the time of penetration. Instead, we mea-
sured changes in the spectral power corresponding to the stimulus fre-
quency. The spectral power of spikes was mostly <1.5 kHz (see Figs. 1 B,
2C) and thus did not greatly affect the analysis in the majority of cells
recorded.

Extracellular recordings

Using the same electrodes, it was also possible to record NL neurons
extracellularly (n = 102). Unlike the intracellular recordings, the DC
drop at the start of the unit recording was minimal (—1.4 * 8.3 mV;n =
70). Field potentials, which also followed the waveform of sound stimuli
(“neurophonic”), were also recorded on these voltage traces. Unlike the
intracellular recordings, the neurophonic amplitude did not increase
much at the beginning (1.2 = 0.4; n = 50). Interestingly, extracellular
spikes were rarely observed before penetration in intracellular recordings
(see Fig. 1Bb), whereas penetration of membrane was never obtained
when large (e.g., >2 mV) extracellular spikes are observed (n = 70),
suggesting that extracellular recordings may have originated from NL
axons.

Modeling

Synaptic input from NM to NL. The modeling procedure has been de-
scribed in detail (Ashida et al., 2007). Briefly, we calculated phase-locked
synaptic inputs from ipsilateral and contralateral NM fibers into the NL
neuron using known physiological data from owls and chicks (Table 1).
The firing probability, which changes periodically with the stimulus fre-
quency, was described by the von Mises distribution with a given vector
strength (VS). Excitatory postsynaptic conductances (EPSCs) induced by
each presynaptic NM spike were modeled by an « function f(t) = (At/1)
exp(1 — #/7). The half-peak width W of the « function is linear to the time
scale 7; namely, W = k7, where the proportionality constant k = 2.446. In
our simulation, W was set to 0.1 ms, unless otherwise noted. The peak
height of the « function f(7) = A was determined to be 2.0 nS (without
sound) or 1.3 nS (with sound) so as to reproduce the AC amplitudes and
the DC shifts observed in experiments. The 35% reduction (2.0 to 1.3 nS)
in the EPSC amplitude by sound stimulus (see Results) may correspond
to synaptic depression (Kuba et al., 2002; Cook et al., 2003) and/or shunt-
ing effects of inhibitory inputs to NL (Funabiki et al., 1998; Yang et al.,
1999). In simulations in which the number of the half-peak width W of
the EPSC was altered (see Fig. 7C,D), EPSC height A was readjusted to
conserve the total conductance.

Calculation of binaural synaptic input and SAP. After calculating two
monaural (ipsilateral and contralateral) synaptic conductances ( g;,; and
Zeontra) 38 described above, we obtained binaural synaptic ( g,y napiic) in-
puts by summing the two conductances with different phase delays &
[i-e. Eoymaptic (1) = Gipsi(H) T Zeontra(t + T), where T is the time dif-
ference between ipsilateral and contralateral inputs and is described as

= (1/f,) - (8/360°), where f is the signal frequency].

A single compartment passive-soma model of the NL neuron was used
to calculate the SAP amplitudes and DC shifts (see Tables 2 and 3 for

Na channel activation a, (V) = 3.6exp((V + 34)/7.5),
B, (1) = 3.6exp(—(V + 34)/10.0)
(V) = 0.6exp(—(V + 57)/18.0),
By(V) = 0.6exp((V + 57)/13.5)
a, (V) = 0.11exp((V + 19)/9.1),
Ba(V) = 0.103exp(— (V + 19)/20)
ay(V) = 0.2exp((V + 60)/21.8),
Ba(V) = 0.17exp(—(V + 60)/14)
This table summarizes the equations used in our simulation. In the single-compartment model, /2% = /5om2 =
and only the somatic compartment was considered.

Na channel inactivation

KHVA channel activation

KLVA channel activation

Table 3. Parameters used for the NL neuron model

Parameter Value
Membrane capacitance density C,=1puF/m?
Surface of soma Asyma = 2400 um
Surface of node Avoge = 20 um’?
Capacitances Cooma = CrAsoma = 24 PF, Croge = CrAnoge = 0.2 pF
Reversal potential of Na current Fy, = +35mV
Reversal potential of K current Ec=—75mV
Reversal potential of leak current Fea = —60mV
Reversal potential of EPSC Eqynapric = 0mV
Sodium conductance densities Gma = 0, Gade = 7500 mS/cm 2
KHVA conductance densities woma = 0mS/cm?, Grae = 2250 mS/cm
KLVA conductance densities Goma = 8 mS/cm?, Grode = 40 mS/cm?
Leak conductance densities ,g;ga =2mS/cm?, G4 = 10 mS/cm 2
Maximum Na conductances soma — (), ghode — 1500 g
Maximum KHVA conductances _IQ’,Q“\?A =0,
IéOHd\iA = GE;')!(\‘IeAAnode = 450n$
Maximum KLVA conductances v = GiyrAsoma = 19215,
K(I"%/CA = GRES:Anode 8ns
Leak conductances Jieak = Cleak Asoma = 4815,
[ Ineoa(:(e Glneoaf(eA node — =12n$
Axonal resistance Paxon = 100 Qcm
Axonal size Length (between soma and node), L,,,, = 60 um;
diameter, Daxon =3um
Axonal conductance axon = (D20 (AP onlsson) = 11815

This table summarizes the parameters used in our simulation.

equations and parameters). The model neuron consisted of a single so-
matic compartment with leak and low-voltage-activated potassium con-
ductances but without sodium or other active conductances. The
amplitudes of SAP and DC shifts were calculated similarly as in the
analyses of the experimental data.

Two-compartment NL neuron model. The spiking activity of the NL
neuron was simulated by a two-compartment passive-soma model as in
our previous study (Ashida et al., 2007). The model neuron has two
compartments, an unexcitable soma and a spike-initiating node, con-
nected with an axonal resistance (see Tables 2 and 3 for equations and
parameters). The membrane potential and ionic currents in each com-
partment are modeled by Hodgkin—Huxley-type equations (Hodgkin
and Huxley, 1952; Koch, 1999). In brief, the large somatic compartment
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Figure 1.  Invivointracellular recording in NL cells using a coaxial glass electrode. A, a, Schematic drawing of a coaxial glass electrode advanced by two motors. A plastic T-tube and small silicon
tubes used for pressure control were not drawn for simplicity. b, A photograph of two glass electrodes before inserting inner capillary into the outer one. Although a plastic T-tube was prepared for
bothinner and outer electrode, we only used one for the outer capillary to apply pressure. ¢, A photograph of the electrode tip after protruding the inner tip from the outer one. One large division on
the scale beside the electrode corresponds to ~20 um. d, A photograph of brain slice at the AP level where recording was performed. We adjusted the angle of insertion of electrodes in the coronal
plane to access the caudal third of NL with minimal craniotomy. Two broken lines indicate examples of the electrode path passing through the cerebellum. Scale bar, 2 mm. B, a, Current trace. Short
0.3 nA pulses were delivered to monitor the electrode and input resistance of the cell. b, Voltage changes during penetration. Tonal stimuli (3.9 kHz; 40 dB SPL; 60 ms) were delivered at reqular
intervals (bars). ¢, Spectrogram of voltage traces. d, Expanded trace of intracellular recording at the onset of tonal stimuli. €, Voltage traces with current injection. Tonal stimuli (3.4 kHz; 40 dB SPL;
binaural) were delivered (bar) and spikes (gray) were detected by thresholding and removed from the analysis of SAP amplitude. Currents applied (in nanoamperes) are shown in parentheses. D,
Membrane voltage data plotted against the phase angle of tones. The bold line s a fitted sine function. The amplitude of the SAP was defined as a peak-to-peak value of the fitted curve. E, An example
of interspike interval histogram confirming an isolation of spikes.
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sell, 1998). Numerical integration was per-
formed by using the forward Euler method
with a time increment of 0.1 us.

Calculation of AC—rate curves. AC—rate curves
(see Fig. 8 F, G) were obtained by injecting sinu-
soidal input together with background synaptic
noise into the model neuron (g miic =
gac * SIn(2ft) + g0 Where f; is the signal fre-
quency). SAP amplitude and spiking rate were
calculated with varying g, . Synaptic noise g, ;e
was constructed from the same model of NM ac-
tivity described above assuming VS = 0. SAP—
firing rate curves without noise was obtained by
varying AC and maintaining DC inputs constant

ynaptic = 8ac " SN2 + gpe)- g Was fixed
to the averaged input level of the simulated noisy
synaptic input g, ;...

Results

Intracellular responses of NL neurons
We obtained in vivo intracellular data
from 35 NL cells in 9 of 16 owls. In the
other seven owls, only extracellular unit
recordings were obtained. Since we re-
corded from the caudal third of NL, where
cell density is higher than in other regions
(Carr and Boudreau, 1993a), best fre-
quencies (frequency of sounds where cells
respond most) were centered around 3

Frequency [kHz]

100 160
Time [msec]

SAP amplitude [mV]
oo

s

,000

500

DC shift [mV]
Rate [spikes/sec]

300 200 100 0 100 200 300

0.4

SAP amplitude [mV]

r=-0.13

kHz (ranging 0.8 -5.6 kHz; 3.2 + 1.0 kHz;
n = 35).

NL neurons produced somatic spikes
of unusually small amplitude (9 * 3 mV;
n = 35), and membrane potentials resem-
bling the waveform of the tonal stimulus
even during the falling phase of spikes
(Fig. 1Bd). We called these potentials
sound analog potentials or SAPs. Indica-
tive of an intracellular origin for the oscil-
latory potentials, spectral analysis of the
voltage traces showed a peak at the stimu-

0.8 12

ITD [usec] N

Figure 2.

[TD-dependent changes in membrane potential in high-frequency NL neuron. 4, ITD was varied for a tone burst

0.5 1
DC shift [mV]

lus frequency, whose power suddenly in-
creased after penetration (2.2 times larger
on average; 2.2 * 1.2; n = 30; Fig. 1 Bc).

stimulus (3.9 kHz; 60 ms duration; bar above traces). a, Most favorable ITD (192 s). b, An intermediate ITD (128 ws). ¢, Least

favorable ITD (64 ws). B, Expanded traces from A (Aa, short bar below trace). , Spectral analysis of membrane potentials shown
inA. D, Spike rates plotted against ITD. The solid line marks a fitted sine curve (also in F and Fig. 3 D, F). The asterisk (*) shows the
spontaneous spike rate (also in E-H and Fig. 30—H). E, SAP amplitude plotted against ITD. The solid line is a fit by an absolute
cosine function. F, DC shift evoked by sound plotted against ITD. The horizontal axis is shared with D and E. G, Spike rate plotted
against SAP amplitude. The asterisks indicate spontaneous firing rate. Also in H and Figure 3, G and H. H, Spike rate plotted with

respect to DC shift.

with high-threshold potassium (KLVA) and leak conductances receives
synaptic inputs, while the small axonal node compartment with sodium,
high-threshold potassium (KHVA), KLVA, and leak conductances gen-
erates spikes (see Tables 2 and 3 for equations and parameters). The
nodal sodium conductance was determined so that the modulation
depth (i.e., difference in spiking rate between best and worst ITDs) would
be maximal (see Fig. 8 F). The value of the nodal KHVA conductance was
chosen so that the membrane potential would repolarize rapidly after
spikes. The somatic KLVA and leak conductances were set so that the
membrane resistance of the soma at —62 mV would be ~4.7 M() (mem-
brane time constant was ~0.1 ms), which is similar to the experimental
data. The kinetics of the sodium conductance was determined from the
previous report on chick NM (Koyano etal., 1996). The kinetics of KLVA
and KHVA were taken from the study of chick NM (Rathouz and Trus-

Response to ITD
We recorded ITD-dependent changes in
membrane potential and spike rate with
tonal stimuli in 24 neurons. The ITD that
elicited the largest number of spikes al-
ways elicited the largest SAPs (Fig. 2 A—E).
The firing rate of NL neurons varied lin-
early with the amplitude of SAPs (r = 0.91; p < 0.0001; Fig. 2G).
Recordings from low BF cells (<1.5 kHz; Fig. 3) were qualita-
tively similar to those for high BF cells except that spikes occurred
in almost every tonal cycle during the first half of sound stimuli
with favorable ITDs (Fig. 3Ba, 0.9 kHz). For the least favorable
ITD (the ITD with which cells generate the least spikes), SAPs
were hardly visible in the spectrogram of voltage traces (Fig. 2Cc).
Sound-evoked DC shifts (Fig. 2 Acand Materials and Methods for
definition) did not show a similar clear ITD dependency (Fig.
2F,H;r=—0.13;p > 0.1).

In all the cells recorded, the spike rate of NL neurons was
highly correlated with the amplitude of SAPs (r = 0.88 % 0.07;
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n = 24), whereas a significant correlation
was rarely observed between sound-

0.9 kHz tone
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60msec

evoked DC shifts and spike rate (r =
0.09 = 0.34; n = 24; Fig. 4A). Both NL
spike rates and the amplitude of SAPs
exhibited strikingly similar relation-
ships to ITD (Fig. 2D,E). When rate—
ITD and SAP-ITD curves were fitted
with a sinusoidal function matching the
stimulus frequency, the phase difference
between the two ITD curves was small
(7.5 = 6.3% n = 24; Fig. 4B). However,
DC shifts as a function of ITD failed to
show a clear relationship with rate-ITD
curves. When rate-ITD and DC-shift ITD
curves were fitted with sinusoidal func-
tions matching the stimulus frequency,
the phase difference between the two ITD
curves was large (84.7 £ 58.4°% n = 24).

60

)

A large extracellular field potential, g o0
called the neurophonic, characterizes ex- E T 500
tracellular recordings in NLs (Sullivan g 400 3
and Konishi, 1986; Kuokkanen et al., e < 250
2010). Interestingly, during extracellular £ 4 i -
recording of NL neurons, the phase differ- E e ol
ence between rate-ITD curves and neuro- Z 6
phonic amplitude-ITD curves recorded S 4 0 2 4
at the same time was sometimes large 2 SAP amplitude [mV]
(41.3 = 40.3% n = 75). This phase mis- E 2 H o
match may be due to recording from NL % o . X s00 | | 0.15 é)%go ©
axons at some distance from their cell 3 © Foq  °
bodies. Since the axons of NL cells run F 0 % ° o %
along the gradient of ITDs in the nucleus s 4 ’ %9 o008 0 3 250 O\O%
(Sullivan and Konishi, 1986; Carr and £ Nﬁﬂe\g—g}@ © o o
Boudreau, 1993a), the ITD selectivity of £ 0 2 00 R 0 < « ¥ o ©
NL axons may differ from that of the local Q £o0 £ CC 05°
field potential. However, the negligible Al ' : S 4 0
phase difference between the SAP and the -1000  -500 0 500 1000 DC shift [mV]
spike rate suggests that intracellular re- 7D [nsec]
cordings were obtained from the cell bod- Figure 3.  ITD-dependent changes in membrane potential in low-frequency NL neuron. A, ITD was varied for a tone burst

ies of NL neurons.

stimulus (0.9 kHz; 60 ms duration; bar above traces). a, Most favorable ITD (—270 ys). b, An intermediate TD (0 ws). ¢, Least

favorable ITD (270 ws). The broken line shows the level of —75 mV. B, Expanded traces from A (Aa, short bar below trace). (,

Difference between high and low best
frequency cells
The amplitude of SAPs decreased with in-
creasing BF (p = —0.45; n = 24; p =
0.035; Spearman’s rank correlation; Fig.
4C). The maximum amplitude was ~2
mV (1.74 = 0.93 mV; n = 24). The sound-evoked DC shift
(0.87 £ 1.1 mV) did not show significant correlation with BF
(p = 0.16; n = 24; p = 0.44; Spearman’s rank correlation). The
shape of curves of firing rate as a function of SAP amplitude
differed between low BF (<1.5 kHz; n = 4; Fig. 4D, solid lines)
and high BF cells (>1.5 kHz; n = 20; Fig. 4 D, broken lines). Low
BF cells did not show large increases in firing rate for small
changes in SAP (e.g., <1 mV). In contrast, high BF cells were
surprisingly sensitive to small changes in SAPs. The slope of firing
rate versus SAP amplitude curves showed significant correlation
to the BFs of the cells (p = 0.48; n = 24; p = 0.023; Spearman’s
rank order correlation; Fig. 4E).

The spike shape of low BF NL cells differed from that of high
BF cells (Fig. 5A). The spike height was not correlated with the BF
of the cells (r = 0.03; n = 35; p = 0.87; Fig. 5B); however, the

with respect to DC shift.

Spectral analysis of membrane potentials shown in A. Findings are in principle the same as high-frequency NL cells (Fig. 2),
although small spectral powers of second and third harmonics of the stimulus tones are visible especially at the onset of sound
stimuli with favorable ITD. D, Spike rates plotted against ITD. E, SAP amplitude plotted against ITD. F, DC shift evoked by sound
plotted against ITD. The horizontal axis is shared with D and E. G, Spike rate plotted against SAP amplitude. H, Spike rate plotted

half-width of spikes was significantly correlated (r = 0.34; n = 35;
p = 0.045; Fig. 5C). High best frequency cells showed broader
spikes than low best frequency cells.

To estimate the excitability of the neuron, we measured the
increase in firing rate evoked by small positive currents (0.3 nA,
15-20 ms) and plotted against their BFs (Fig. 6B). The firing rate
increase was significantly correlated with the BF of the cell (r =
0.41; p = 0.025; n = 30). None of the low BF cells (<1.5kHz; n =
4) showed clear increase in spike rate with this amount of current;
however, most high BF cells (>1.5 kHz; n = 26) showed a clear
increase. Thus, high BF cells showed higher excitability to in-
jected current than low BF cells.

Spontaneous voltage traces of low BF cells showed large fluc-
tuations (Figs. 3A, 5Ac, 6 Ac,d). We measured the SD of mem-
brane potentials when neither sound nor current pulses were
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Figure4. Soundanalogand DCpotentialsin NL neurons. 4, Correlation coefficient measured
for plots of SAP amplitude versus spike rate (SAP, as in Figs. 2G, 3G), and sound-evoked DC shift
versus spike rate (DG, as in Figs. 2 H, 3H), for 24 cells. B, Measured phase differences between
the recorded SAP amplitude and spike rate (SAP; e.g., Fig. 2, compare D, £) when fitted with a
sine curve with the same frequency of the stimulus tone. Phase differences between the sound-
evoked DC potential and the spike rate ITD curve (DG; e.g., Fig. 2, compare D, F), and phase
differences between the neurophonicamplitude curve and the extracellular spike rate ITD curve
(neurophonic). ¢, Maximum SAPs (SAP, filled squares) and averaged sound-evoked DC shifts
(DC, open circles) plotted with respect to the BF of the cell. D, SAP versus firing rate curves
(rate—SAP curve) for all 24 neurons. Each line shows a linear regression line of rate—SAP curve
for each cell. The four solid lines are from the lowest frequency neurons (BF << 1.5 kHz). The
dotted lines are from higher frequency neurons (BF > 1.5 kHz). E, Slope of rate—SAP curve
plotted with respect to the BF of the cell.

applied and removing periods of spontaneous spikes. The SD of
membrane voltages showed clear negative correlation with the BF
of a cell (Fig. 6C; r = —0.61; p < 0.0001; n = 35). Thus, putative
synaptic noise in low BF cells is larger than that in high BF cells.

Reproduction of experimental findings in an NL model
Our recordings from owl’s NL cells in vivo have revealed charac-
teristic sound-induced responses, including SAPs, small spikes,
and linear conversion from SAPs to spikes. To investigate their
underlying biophysical mechanisms, we modeled NL neurons.
First, we used a single-compartment model representing the
NL cell body to reproduce SAP and DC potentials by synaptic
integration (Fig. 7A, B). We have already shown that spike gen-
eration at the small first node does not significantly affect the
formation of SAP and DC potential in the somata (Ashida et al.,
2007). Convergence of phase-locked NM inputs can give rise to
SAP and DC potential in NL (Fig. 7A). The “volley theory” gives
an underlying principle to the emergence of a copy of the sound
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Figure 5.  Voltage traces and spike analyses of different BF NL cells. 4, Voltage traces from
three NL cells with different BFs. Tonal stimuli at BF were delivered during periods indicated by
a bold bar. a, BF = 3.9 kHz. b, BF = 2.5 kHz. ¢, BF = 0.9 kHz. Note that spontaneous spike
shapes are considerably different among these cells. B, Spike height plotted with respect to the
BF of the cell. €, Spike width at one-half the peak amplitude (spike half-width) plotted with
respect to the BF of the cell.

waveform in the membrane potential of NL cells. Thus, high-
frequency sounds of >1.5 kHz can be reproduced by many
phase-locked inputs coming in volleys (Wever and Bray, 1930).

In our simulation, we set the spontaneous firing rate of NM at
220 spikes/s (Koppl, 1997a), and the evoked firing rate at 500
spikes/s (Pena et al., 1996). The stimulus sound frequency was
arbitrarily set to 4 kHz, because the experimental data around this
frequency is abundant and because, at this relatively high fre-
quency, the task of generating SAPs becomes more demanding
(Ashida et al., 2007). The vector strength (a parameter indicating
the degree of phase-locking) of NM axons was set to 0.6 (Képpl,
1997b), and the number of converging NM axons from either
side to one NL was fixed to 150 (Carr and Boudreau, 1993a).
Detailed descriptions of the parameters used in the simulation are
listed in Table 1. As a starting point, we considered only binaural
inputs with perfect coincidence (i.e., there is no phase delays
between ipsilateral and contralateral inputs). Note that the model
neuron receives 300 (150 fibers from each side) X 500 (spikes/s)/
4000 (Hz) = 37.5 phase-locked inputs (on average) for each cycle
of the stimulus. Since our experimental observations revealed a
few millivolts of SAPs around 4 kHz at favorable ITD and slightly
smaller DC depolarization with binaural tonal stimuli, we looked
for parameter sets in which the model showed similar amplitudes
of SAP and DC potential. When the DC amplitude was kept
constant (1.8 mV in this case), the model required very fast ex-
citatory inputs to create SAPs of a few millivolts at 4 kHz (Fig.
7C,D). If the half-peak width (W) of an unitary EPSC coming
from a NM axon is set to 0.25 ms, which is close to the reported
experimental data recorded in young chicken NL cells with high
BFs (Kuba et al., 2005; Slee et al., 2010), SAPs did not exceed 1 mV
on average. An even shorter Wof ~0.1 ms was required to create
SAPs of a few millivolts. We therefore used a value of 0.1 for Win
further simulations.

The small DC potential shift (1.8 mV in this case; Fig. 7C,D) was
determined by several parameters of the model. One of the most
influential parameter was the spontaneous firing rate of NM axons,
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which is high in owls (Koppl, 1997a). Since
the DC shift was defined as the difference
between the membrane potentials before
and during sound stimulation (Fig. 2A, B),
an increase in the spontaneous input can di-
rectly reduce the amplitude of the DC shift
(Fig. 7E,F). We also incorporated a sound-
induced suppression mechanism of synap-
tic inputs (Fig. 7G,H; potential candidates
are discussed later). Suppression in the syn-
aptic input decreased both the DC shift and
SAP amplitude. The DC shift, however, is
more likely to decrease because of the spon-
taneous inputs (Fig. 7G,H ). With the spon-
taneous NM spike rate (220 Hz) roughly
one-half of the sound-induced one (500
Hz), and sound-induced suppression (to
65% when sound is on) of synaptic inputs,
the DC shift was reduced from 9.8 mV (nei-
ther spontaneous NM activity nor sound-
induced suppression were incorporated) to
1.8 mV (Fig. 7I).

We added a spike generator (ie., Na
channels in the first node of Ranvier) to the
model neuron to model linear conversion of
SAPs to spikes [Fig. 8 A, B; described in de-
tail by Ashida et al. (2007)]. Keeping the
simulated binaural inputs the same as in
Figure 7, the model showed ITD-dependent
firing rate modulation as the nodal Na chan-
nel density increased (Fig. 8C-F). When the
nodal Na channel density was 1.5 uS, the
model showed 470 spikes/s for the favorable
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Figure 6.  Biophysical parameters and the best frequency of the cell. A, Examples of membrane potential traces in response to
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different BF. Capacitative artifacts are retouched for clarity. Calibration: 10mV, 10 ms. B, Spike rate increase with 0.3 nA short pulse
plotted with respect to BF of the cell. C, SDs of resting membrane potentials plotted with respect to BF of the cell.

ITD (6 = 0% SAP = 2.4 mV), and 180
spikes/s for the unfavorable ITD (& = 180°%
SAP = 0 mV) (Fig. 8C,E,F).

The firing rate-SAP curve showed a smooth monotonic in-
crease (Fig. 8G, “in vivo range”). We further tested the AC sensi-
tivity of the model by artificially increasing the amplitude of
sound analog signals (AC, 4 kHz) without altering other fre-
quency components (Fig. 8G, with noise; see Material and Meth-
ods). A model with smaller nodal Na channel density (nodal
gna = 1.2 uS; Fig. 8G, thin line) could change spike rate when AC
amplitude exceeded 3 mV, which was larger than the in vivo range
for high BF cells. These results indicate that the required Na
conductance is less for sensing large AC signals (i.e., large SAP).
This result may explain the lower excitability of low BF cells in
vivo, which show large SAPs (Figs. 4C, 6 B).

Synaptic convergence from hundreds of NM neurons to one NL
neuron creates not only SAPs and DC potentials but also other fre-
quency components, which appear as “noise” (Fig. 7D). When these
additional components were removed from the inputs (Fig. 8G,
“without noise”), the model with 1.5 uS nodal Na conductance lost
responsiveness to AC changes <5 mV, indicating that the synaptic
noise may lower the threshold for sensing the SAP (AC) by lineariz-
ing the rate—SAP curve. This result indicates that synaptic noise is
one of the underlying mechanisms of the linear conversion (Figs. 2G,
3G, 4D) from SAP to firing rate in NL.

Discussion

In vivo intracellular recording using coaxial electrode

We used coaxial glass electrodes to obtain intracellular recording
in NL. This configuration permitted repeated intracellular re-

cordings from a deep brain area (deeper than 5 mm from the
brain surface) in the same animal. With this technique, it was
unnecessary to perform more invasive, terminal, procedures
such as removing the cerebellum to access NL.

Signal coding ITD

We found that the signal that determines spike rate is not a DC
potential, but a sound analog, AC potential in NL cells in vivo. To
our knowledge, there are no other examples of in vivo recordings
ofneurons that encode AC signals in the kilohertz range, far faster
and shorter than the duration of a spike, to trigger spikes. Prob-
ably cochlear hair cells are similar, because they also show sound
analog receptor potentials in the kilohertz range with tonal stim-
uli, although hair cells do not generate spikes (Russell and Sellick,
1978).

In general, we rarely saw large second and third harmonic
components of SAPs in the spectrogram of membrane responses
except during the period of onset bursting that we occasionally
observed in response to favorable ITDs (Figs. 2C, 3C). In some of
the low-frequency cells, we sometimes saw second harmonic
components with unfavorable ITDs, although their amplitude
was not large (Fig. 3Cc). It is possible that the reason we did not
see substantial second harmonics of SAPs in the membrane po-
tential may be due to the fact that high-frequency components of
the response, such as second and third harmonics, are attenuated
by the low-pass filter properties of the soma (Ashida et al., 2007).
If neurons were to tuned to show larger second harmonic com-
ponents, this could disturb ITD computation, because second
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Figure 7.  Reproduction of SAP and DC potential in a single-compartment NL neuron model. A, Schematic drawing for the

formation of SAP. The convergence of phase-locked synaptic inputs from NM generates both SAP and DC potential in NL. B, Circuit
diagram of the model. Note that no somatic Na channels are included. ¢, Amplitude of SAP and DC potential plotted with respect
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simulated sound frequency = 4 kHz unless otherwise mentioned). D, Examples of voltage traces of the model with three different
Walues (0.1,0.25,0.4 ms). Note that very small value of W (0.1 ms) is needed to reproduce similar amplitudes of SAP observed in
vivo experiments. E, Schematic drawings for the effects of spontaneous inputs of NM. Left, Low spontaneous NM spiking rate.
Right, High spontaneous NM spiking rate. As the spontaneous rate increases, sound-induced DC shift decreases, while SAP is not
affected. F, SAP (solid line) and DC (broken line) potentials plotted with respect to NM spontaneous spike rate. @, Schematic
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harmonic components at unfavorable ITDs can be as large as the
responses at favorable ITDs (Reyes et al., 1996; Slee et al., 2010).

Analysis of SAP

In measuring SAP amplitude, we removed spikes from analysis (see
Materials and Methods; Fig. 1). As shown in Figures 1 Bd, 2 Ba,and 3,
Ba and Bb, the SAP amplitude showed some fluctuation. The prob-
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ability of firing will be affected by the ampli-
tude of the voltage oscillations during each
cycle of the SAP. Thus, the voltage fluctua-
tions in cycles where spikes are not gener-
ated may be smaller than those with spikes,
which are removed from analysis. There-
fore, the actual SAP amplitudes generated in
NL cells in vivo might be larger than those
shown in Figures 2 E, 3E, and 4C.

Comparison with other biophysical
studies of auditory

coincidence detectors

The owl’s NL neurons produced only small
somatic spikes (9 £ 3 mV; n = 35) in vivo.
This phenomenon has been observed in in
vitro studies of NL cells in posthatch chicks
(Kuba et al., 2006), neurons of the medial
superior olivary nucleus (MSO) of the gerbil
(Scott et al., 2005), and octopus cells of the
anteroventral cochlear nucleus (Golding et
al., 1999), but was not previously confirmed
in vivo.

The initial segment of NL axon is my-
elinated (Carr and Boudreau, 1993b), sug-
gesting that action potentials may be
initiated at the first node of Ranvier, located
60 wm away from the soma. SAPs were ob-
served even during the falling phase of
spikes (Figs. 1 Bd, 2 Ba). This indicates that
conductance for spike generation does not
override synaptic conductances (Hausser et
al., 2001). This is also consistent with a re-
mote spike initiation site. Remote spike ini-
tiation may allow for alower spike threshold
at the spike initiation site, by filtering DC
potentials that could inactivate Na channels
(Kubaetal., 2006). This configuration could
also amplify high-frequency signals at the
spike initiation site (Ashida et al., 2007), de-
creasing backpropagation (Golding et al.,
1999; Scott et al., 2005, 2007), and reducing
the metabolic cost of high-frequency firing
(Ashida et al., 2007).

The input resistance of NL cells was
low (10.4 = 8.2; n = 33). A low input
resistance contributes to the short mem-
brane time constant, which is thought to
be necessary for ITD computation (Gerst-
ner et al., 1996). Similar low input resis-
tance has also been reported in other
auditory coincidence detectors such as the
NL neurons of posthatch chicks (Kuba et
al., 2005, 2006) and the mammalian MSO
(Scott et al., 2005).

Small positive-current injections (e.g.,

0.3 nA) generated repeated firing in NL cells with high BFs (Figs.
1Bb, 6 Aa,b). Phasic firing with current injection has long been
regarded as one of the important features of time-coding audi-
tory neurons (Oertel, 1983; Reyes et al., 1996). The major differ-
ence between our in vivo observation and the in vitro observations
are the frequency range that NL cells cover, and the existence of
spontaneous inputs. No matter how many low-voltage activated
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Conversion of SAP to spikes in a two-compartment NL model. 4, Schematic drawing of two-compartment NL model. B, Circuit diagram of the two-compartment NL model. , Example

of voltage traces of the model with three different simulated phase differences (6 = 0, 90, 180°). D, Spectral profile of the voltage response shown in C. Note that the model reproduces the range
of ITD modulation of SAPs and spike rates similar to experimental observations. E, Spike rate modulation with simulated interaural phase differences. The dashed line indicates spontaneous spike
rate of the model. F, Spike rate of the model at best (8 = 0°) and worst (6 = 180°) ITDs plotted with respect to the nodal Na conductance. G, Spike rate plotted with respect to artificial sound analog
ACinputs at two different nodal Na conductances (bold line, 1.5 wS; thin line, 1.2 wS). The bold broken line (without noise) indicates changes in the spike rate of the model (nodal g, = 1.5 )

to the inputs with only sound analog AC (4 kHz) and DC.

potassium channels (KLVA), long been supposed to be a key for
phasic firing (Manis and Marx, 1991; Svirskis et al., 2004), were
incorporated, the model cells generated multiple spikes to cur-
rent injection as nodal Na channels were increased (Ashida et al.,
2007). Also, even in models with phasic firing, adding noise or
high-frequency components sometimes induces multiple spikes
(Higgs et al., 2006).

To reproduce a few millivolts of SAP at 4 kHz and slightly less
DC potentials in our model, it was necessary to incorporate ex-
traordinarily fast EPSCs and suppressing mechanisms, which is

“on” during sound stimulation (Fig. 7; see below). The duration
of unitary EPSC hypothesized (W = 0.1 ms) is less than one-half
of those reported previously in chicken NL (Kuba et al., 2005; Slee
etal., 2010). Since the frequency range that the owl’s NL neurons
respond is much larger than that of the chicken NL [owls, up to 8
kHz (Carr and Konishi, 1990; Koppl and Carr, 2008); chickens,
up to 3.8 kHz (Rubel and Parks, 1975)], owl NL EPSCs might be
specially tuned to higher frequency signals. I vitro measurement
of actual EPSCs in owl’s NL will be necessary to test the prediction
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of our model. GABAergic inhibition (Carr et al., 1989; Lachica et
al., 1994; Funabiki et al., 1998; Yang et al., 1999; Burger et al.,
2005) and synaptic depression (Kuba et al., 2002; Cook et al.,
2003; Slee et al., 2010) are candidates for sound-induced suppres-
sion mechanisms of synaptic inputs in NL. In our experimental
observation, sound-evoked DC shifts did not change with ITD
(Figs. 2F, 3F), although NL spike rates changed with the level of
steady depolarization (Fig. 1C). This suggests that, although
sound-evoked DC shifts do not play a major role in ITD coding,
they could disturb ITD computation, if they are large and fluctu-
ating. Furthermore, sound-evoked DC shifts did not increase
with increasing BF (Fig. 4C), although this has been expected asa
consequence of temporal summation (Kuba et al., 2006). The
modeling results (Fig. 7E-I) suggest that the combination of the
high spontaneous rate of NM neurons and the sound-induced
suppression mechanisms of EPSC can account for the DC sup-
pression in vivo.

Difference between high and low best frequency NL cells
Although spike height did not correlate with the BF of the cell, the
spike width did (Fig. 5). Spike initiation sites are reported to show
a change with the BF of the cell in the chicken NL (Kuba et al.,
2006). The shapes of spontaneous spikes in the owl’s high-
frequency NL cells (Fig. 5A) resembled those of antidromically
evoked spikes in the chicken NL (Kuba et al., 2006). Thus, the
distance between the cell body and the spike initiation site might
differ between high and low BF NL cells in barn owls.

Spontaneous voltage traces of high BF cells are less noisy than
those of low BF cells (Fig. 6). Although synaptic noise can lower
the threshold for detecting small AC (SAP) signals (Fig. 8G), too
much noise would interfere with the computation because of the
higher excitability of high BF NL cells (Fig. 6 B). Thus, not only
the excitability but also the strategy of optimization of synaptic
noise may differ between cells with different BF.

The reproduction of sound waveforms in membrane poten-
tial of NL neurons is consistent with several biophysical parame-
ters. The large somatic capacitance acts as a low-pass filter,
whereas several types of outward currents act as high-pass filters
(Ashida et al., 2007; Slee et al., 2010). Remote spiking at a small
compartment, such as the first node of Ranvier, will also act as a
high-frequency amplifier (Ashida et al., 2007). The width of the
unitary excitatory input and the number of converging inputs
will also affect the spectral profile of the synaptic potential. In the
chicken NL, dendritic length (Smith and Rubel, 1979), width of
EPSCs (Kuba et al., 2005; Slee et al., 2010), intrinsic membrane
properties (Kuba et al., 2005; Slee et al., 2010), and spike initia-
tion sites (Kuba et al., 2006) show gradual changes along the
frequency axis. Reviewing these facts with regard to the genera-
tion and computation of SAPs will become an important issue for
further observation.
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