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Acoustic information is conveyed to the brain by the spike patterns in auditory-nerve fibers (ANFs). In mammals, each ANF is excited via
a single ribbon synapse in a single inner hair cell (IHC), and the spike patterns therefore also provide valuable information about those
intriguing synapses. Here we reexamine and model a key property of ANFs, the dependence of their spike rates on the sound pressure level
of acoustic stimuli (rate–level functions). We build upon the seminal model of Sachs and Abbas (1974), which provides good fits to
experimental data but has limited utility for defining physiological mechanisms. We present an improved, physiologically plausible
model according to which the spike rate follows a Hill equation and spontaneous activity and its experimentally observed tight correlation
with ANF sensitivity are emergent properties. We apply it to 156 cat ANF rate–level functions using frequencies where the mechanics are
linear and find that a single Hill coefficient of 3 can account for the population of functions. We also demonstrate a tight correspondence
between ANF rate–level functions and the Ca 2� dependence of exocytosis from IHCs, and derive estimates of the effective intracellular
Ca 2� concentrations at the individual active zones of IHCs. We argue that the Hill coefficient might reflect the intrinsic, biochemical Ca 2�

cooperativity of the Ca 2� sensor involved in exocytosis from the IHC. The model also links ANF properties with properties of psycho-
physical absolute thresholds.

Introduction
All acoustic information relayed to the CNS is encoded in the
spike patterns of auditory-nerve fibers (ANFs). A thorough un-
derstanding of ANF response properties is therefore crucial for
understanding the auditory system as a whole. In mammals, each
ANF is excited via a single ribbon synapse in a single receptor cell,
the inner hair cell (IHC) (Liberman et al., 1990), and ANF re-
sponses therefore also provide insights into the operation of these
intriguing synapses (for review, see Fuchs, 2005; Moser et al.,
2006; Nouvian et al., 2006; Matthews and Fuchs, 2010).

A key feature of the responses of ANFs is the dependence of
their spike rates on the amplitude [sound pressure level (SPL)] of
auditory stimuli. Identification of the primary determinants
of these rate–level functions would enable better understanding
of the changes in them produced by, for example, acoustic
trauma and hearing loss (Heinz and Young, 2004) and of related
and clinically relevant perceptual phenomena.

Comprehensive models of the auditory periphery have been
developed which, among other features, produce ANF rate–level
functions similar to those observed experimentally (Zhang et al.,
2001; Meddis, 2006). However, the sheer number of model pa-

rameters makes it difficult to identify those that are most relevant
for producing a particular output and makes their fine-tuning to
experimental data impossible. A more tractable and highly influ-
ential model was developed by Sachs and Abbas (1974). It con-
sists of a mechanical stage, capturing the basilar membrane (BM)
vibration amplitude as a function of the sound amplitude, fol-
lowed by a “transducer” stage that describes the spike rate of an
ANF as a function of BM displacement as a saturating power
function. This model provides good fits to empirical rate–level
functions of ANFs in mammals, birds, and reptiles (Yates et al.,
1990; Eatock et al., 1991; Saunders et al., 2002), but has several
limitations: it does not predict the correlation of spontaneous
rate with ANF sensitivity observed in mammals and cannot
account for spike rates lower than the spontaneous rate. Fur-
thermore, the optimal value of the exponent in the model’s
transducer stage appears to vary systematically (between ap-
proximately 1 and 3) with spontaneous rate, implying differ-
ent mechanisms at different synapses (Eatock et al., 1991). The
model therefore has limited utility for identifying physiologi-
cal mechanisms.

Here, we develop an improved model which overcomes these
limitations. When this model is applied to our dataset, the opti-
mal value of the exponent is 3, suggesting a common synaptic
mechanism. We argue that this exponent might reflect the intrin-
sic cooperativity of the Ca 2� sensor involved in fast exocytosis
from the IHC. If this were the case, it would link the rate–level
functions to a key biochemical process in the IHC. Since the
exponent is the same as that derived independently from percep-
tual data (Heil and Neubauer, 2003; Neubauer and Heil, 2004),
our model also links ANF rate–level functions with psychophys-
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ics. A preliminary account of some of these data has been pre-
sented (Heil et al., 2010).

Materials and Methods
The data for this study were derived from a subset of the ANFs whose
interspike interval distributions during spontaneous activity were ana-
lyzed and modeled by us previously (Heil et al., 2007). All surgical and
recording procedures are described in detail by Heil et al. (2007) and are
therefore only briefly summarized here. All procedures were approved by
the Monash University Department of Psychology Animal Ethics
Committee.

Surgery
Four adult cats (two females, two males; weighing 3–3.5 kg) with clean
tympani were anesthetized with pentobarbitone sodium (40 mg/kg, i.p.)
and prepared for recordings from the left auditory nerve. Anesthesia was
maintained throughout the experiment by intravenous injections of pen-
tobarbitone mixed with physiological saline containing 5% glucose. The
electrocardiogram was continuously monitored, and rectal temperature
was held at �38°C by a thermostatically controlled DC blanket.

Recording procedures
Single ANFs were recorded with micropipettes or glass-insulated tung-
sten microelectrodes with impedances of 4 –7 M� at 1 kHz, with the cat
in an electrically shielded, sound-attenuating room. The electrode was
advanced in a dorsoposterior-to-ventroanterior and slightly medial-to-
lateral direction, similar to the approach of Liberman and Kiang (1978).
The nerve was contacted close to its exit from the internal auditory me-
atus to minimize the possibility of recording from the cochlear nucleus.
The progressions of characteristic frequency (CF; the frequency to which
an ANF is most sensitive) with depth of the electrode tip from the surface
of the nerve were similar to those reported by Liberman and Kiang (1978,
their Fig. 4 A–E). The range and distribution of spontaneous rates also
matched those reported previously for the cat (Liberman and Kiang,
1978), and the characteristics of the interspike interval distributions dur-
ing spontaneous activity matched those of ANFs (Gaumond et al., 1982;
Li and Young, 1993). Together, these observations indicate that we re-
corded from the auditory nerve and not the cochlear nucleus, and that we
sampled fibers from most areas of the auditory nerve.

The electrode signal was amplified, filtered, and passed through a
Schmitt trigger. Spike event times (defined as the time when the ampli-
fied and filtered electrode signal crossed the Schmitt-trigger level) were
stored on disc with 1 �s resolution. Acoustic stimuli were digitally pro-
duced (Tucker-Davis Technologies) and presented to the cat’s left ear via
a calibrated sealed sound delivery system consisting of a STAX SRS-MK3
transducer in a coupler (Sokolich, 1981). Noise and tone bursts were
used as search stimuli to increase the likelihood of detecting ANFs with
very low spontaneous discharge rates. Once a fiber was encountered and
well isolated, its CF was determined by manually varying the stimulus
frequency and amplitude. Next, up to 200 repetitions of tones with a
given frequency (initially at the CF) and duration and shaped with
cosine-squared rise and fall times were presented at a fixed rate, at SPLs
increasing from low to high values in small steps. This protocol was
followed by recording the ANFs’ spontaneous activity for a period of at
least 12.5 s. If the recording conditions were still stable, another tone
stimulus was selected and the protocol repeated. Most commonly, the
new stimulus had a frequency of 1, 0.75, 0.5, or 0.25 octaves below the CF.
Here, we report only data obtained with tone frequencies of at least 0.5
octaves below the CF, tone durations of 100 ms, rise and fall times of 4.2
ms, and a presentation rate of 4 Hz. Given the results of Saunders et al.
(2002), it is unlikely that the rate–level functions and estimated model
parameters would have been very different had we presented the tones of
different SPLs in a random fashion rather than in ascending order.

Data analysis
All computations and model fitting were performed in Excel 2000 using
the Newton procedure of the Solver module.

Response measure
In agreement with the common practice in the literature, we counted all
spikes elicited during the tone duration and over all repetitions and
computed a mean spike rate from this number. We chose to slightly
prolong the analysis window, by 10 ms, beyond the end of the tone bursts
to compensate for delays in the ANF responses, which can amount to a
few milliseconds, particularly in ANFs of low CF and low spontaneous
rate (Heil and Neubauer, 2001). The measure of mean spike rate ignores
the fact that the rate is not constant during the tone’s duration but adapts.
However, the characteristics of adaptation, such as the time constants, do
not seem to vary systematically with SPL (Chimento and Schreiner,
1991). Similarly, adaptation does not greatly affect the shape of the rate–
level function (Smith and Brachman, 1980; Yates et al., 1990; Winter et
al., 1990), and spike rate measures taken from different time spans after
tone onset, or obtained with different tone durations, simply result in
rate–level functions that are scaled versions of one another (Sachs and
Abbas, 1974; Smith, 1977; Winter et al., 1990). Thus, it seems justified to
neglect adaptation at this stage of modeling. The spontaneous rate was
computed from all spikes occurring during the silent interval of at least
12.5 s at the end of each recording protocol.

Model fitting
Competitive curve fitting. We needed to compare the well-established
Sachs and Abbas (1974) model with the new model proposed here
[termed the rate–additivity (RA) and amplitude–additivity (AA) models,
respectively; see Results]. The two models were fitted to each data set
using two variants of a multistep competitive curve fitting (CCF) proce-
dure, which ensured that the Solver would converge on the best solution
possible with each model. The CCF procedure works as follows. In one
variant, a given data set was first fitted with the RA model using a multi-
step procedure as described below. Then the AA model was fitted, but
initially to the RA model function obtained from the previous step rather
than to the data. The parameters obtained from this approximation
were then used as the starting parameters to fit the AA model again,
but now to the data. In an analogous way, the RA model was then
fitted again, using the parameters from the first fit of the RA model as
the starting parameters. Again, the fit of the RA model was first to the
AA model function obtained from the previous step, and the param-
eters obtained from this approximation were then used as the starting
parameters to fit the RA model again, now to the data, but only if the
starting condition was better than the results obtained from the first
round fit of the RA model. Otherwise, those parameters were taken. In
this way, it was assured that the fits could only improve (or remain the
same) from one round to the next. This alternation continued until
both models had been fitted three times to a given data set. In the
second variant, the CCF procedure started with the AA model and
proceeded analogously. The better fit of each model across these two
CCF variants was then selected.

Starting values of model parameters. The starting values of the four
parameters of each model (see Results) for the first round of the CCF
procedure were selected based on the data to be fitted. The starting value
for the parameter capturing the maximum rate, Rmax, in either model
was 1.1 times the maximum spike rate observed in the data set; that for
the parameter capturing the spontaneous rate, Rspont, in either model was
0.9 times the minimum spike rate observed. In the AA model, the starting
value for P0 was determined indirectly via an estimate of Rspont (Eqs.
5–11). The starting values for the sensitivity parameter, KRA and KAA

in the RA and AA models, respectively, were derived from an estimate
of the point of inflection, taken as the tone amplitude where the
observed (interpolated) spike rate was halfway between its minimum
and its maximum. The starting value of the exponent � in the RA
model was set to the value most commonly used in the literature, 2,
while that of the exponent � in the AA model was set to 3, the value
that provided the best fit across the population in initial exploratory
fits. However, the CCF procedure was robust against changes in the
starting values of � and �.

Multistep fitting procedure. Each of the two sets of six rounds of the
CCF procedure consisted of four successive fitting steps. In the first step,
only parameters KRA and Rspont for the RA model and KAA and P0 for the
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AA model were allowed to vary. In the second step, Rmax was also a free
parameter, and in the final two steps all four parameters were allowed to
vary. In fits of the data, where � and � were fixed (see Results), all steps
were run with � and � fixed.

Choice of cost functions. We minimized two different cost functions: (1)
the sum of the squared differences of spike rates between data and model
and (2) the sum of the squared differences of the logarithms of the spike
rates between data and model. The first, linear cost function is that most
commonly used in the literature. The second, logarithmic cost function
minimizes the relative rather than the absolute errors. Particularly in
fibers with low spontaneous rates and at low to medium SPLs, the vari-
ance of the number of spikes per tone was approximately equal to the
mean number of spikes per tone (a Poisson process predicts equality), as
has been observed previously (Teich and Khanna, 1985). Consequently,
a given difference in spike rates of, for example, 5 spikes per second
between model and data constitutes a significant error when the expected
rate is low, say, 1 spike per second, but a nonsignificant error when the
expected rate is high, say, 200 spikes per second . These considerations
argue for minimizing the relative error. However, when no spikes were
elicited by any of the repetitions of a particular stimulus, usually low-
amplitude tones, or when no spike occurred spontaneously, these
response measures, although valid, had to be excluded from the logarith-
mic fits, since the logarithm of zero is undefined. This exclusion not only
reduces the reliability of the fit, but introduces systematic bias. Also, after
exploring the issue of heteroscedasticity in detail, it became obvious that
the results obtained with the linear cost function were superior. We
therefore focus on the results obtained with the linear cost function, but
note that the results obtained with the logarithmic cost function were
similar. We explored the issue of heteroscedasticity by first computing
the (linear and logarithmic) differences between each fitted model and
the data. For each rate–level function, these differences were computed
not only for the actual SPLs tested and for the spontaneous activity, but
also for SPLs in between, for 101 SPLs (supporting points) altogether. For
this purpose, the spontaneous rate was assigned an SPL below that of the
lowest SPL used, at a distance matching the spacing between tested levels.
The 101 supporting points were then equally spaced between the SPL
assigned to the spontaneous rate and the highest SPL used for a given
rate–level function. The differences between model and data at these
supporting points were obtained by interpolation, either on a linear or a
logarithmic rate axis, and then squared. These squared differences were
then averaged across all 156 rate–level functions at corresponding sup-
porting points. These averaged squared differences fluctuated along the
level axis, peaking at the 21 points corresponding to the tested SPLs. With
the linear cost function, the amplitude of these fluctuations increased
slightly with increasing SPL, as expected, while with the logarithmic cost
function, it decreased with increasing SPL. With the logarithmic cost
function, the amplitude of the fluctuations at low SPLs was much
larger than that of those at the high SPLs with the linear cost function,
probably as an unavoidable consequence of the discrete nature of the
ultimate response measure (spike counts) and its pronounced relative
changes when the counts are low (a single spike more can double the
response rate estimate). To quantify the heteroscedasticity, we aver-
aged the squared differences obtained from the 50 low-SPL support-
ing points (� low

2 ), those obtained from the 50 high-SPL supporting
points (�high

2 ), and those obtained from all 101 supporting points (�all
2 ).

The measure of heteroscedasticity, H, was then calculated as follows:

H � � �� low
2 � �high

2 �� �all
2 �. (1)

The ratio of these measures for the linear and the logarithmic fits was
smaller than 1 (Hlin/Hlog was �0.54 for the RA model and �0.65 for the
AA model), thus favoring the linear fits.

To compare the quality of the fits across different rate–level functions,
which may have been based on different numbers of rate–level combina-
tions (n; usually 21 but in some cases fewer than that), and model variants
with different numbers of free parameters (nfp; either 3 or 4), we calcu-
lated a deviation measure D, which takes this into account and which is
defined as follows:

D �
1

�n � n fp)
� �

l

n

�2. (2)

Here, � is the difference between the empirical spike rate and that pre-
dicted (or between their logarithms), and n is the number of data points.
The lower the value of D, the better the fit.

Results
In the following, we first present the Sachs and Abbas (1974)
model and our new model and then evaluate them on real data.
Several functions generated with both models are illustrated in
Figure 1. A focus will lie on the exponent in the new model and
the questions of whether a single value suffices to account for all
ANF rate–level functions and how this value links to known
physiological and biochemical processes in the IHC.

The Sachs–Abbas or rate–additivity model
The model proposed by Sachs and Abbas (1974) comprises a
mechanical stage, essentially capturing the BM mechanics as a
function of the stimulus amplitude, followed by a saturating non-
linearity, termed the “transducer” stage by Sachs and Abbas
(1974). This transducer stage describes the spike rate of an ANF as
a function of the BM displacement. At frequencies around the
fiber’s CF, BM displacement grows in a nonlinear (“compres-
sive”) manner with stimulus amplitude (for review, see Robles
and Ruggero, 2001; Hudspeth, 2008), and at least two model
parameters are required to describe this function. Here, we con-
sider only responses to frequencies well below the CF, where BM
displacement can be well approximated as a linear function of
stimulus amplitude P (in pascals) (Robles and Ruggero, 2001).
This avoids the complications of BM nonlinearities, simplifies the
model considerably, and reduces the number of model parame-
ters from six to four. In essence, the model reduces to its trans-
ducer stage. Sachs and Abbas (1974) further assumed that the
total firing rate R(P) of an ANF can be expressed as the sum of the
stimulus-driven rate Rd(P) and a spontaneous rate Rspont; we will
therefore refer to it as the rate–additivity model. R(P) according
to this model is therefore given by the following:

R�P� � Rd(P) � Rspont �
Rmax d � P�

KRA
�1 � P� � Rspont. (3)

Here, Rmax d is the maximum driven rate (in s�1), and � is a
dimensionless exponent. Therefore, the first summand in this
equation is often referred to as a saturating power function. The
parameter KRA is a measure of sensitivity (in units of pascals (Pa)
raised to the power of ��, Pa��). Sachs and Abbas (1974) used a
measure of insensitivity, �, instead of KRA

�1. KRA
�1/� denotes

the stimulus amplitude (in pascals) where Rd(P) � Rmax d/2.
With increasing P, the total firing rate approaches Rmax � Rmax d

� Rspont. Figure 1, a and b, shows several functions generated
with this model.

Sachs and Abbas (1974) also defined a normalized firing rate,
Rnorm[RA](P), as the ratio of the driven rate to the maximum
driven rate, and derived the following by rearranging Equation 3:

Rnorm [RA]�P� �
R�P� � Rspont

Rmax d
�

P�

KRA
�1 � P� �

1

1 � KRA
�1 � P��.

(4)

Rnorm[RA](P) varies between 0 and 1. Equation 4 is equivalent to
the logistic equation, which may be more obvious when P is
written as exp(ln P), and describes a sigmoidal function that is
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symmetric when Rnorm[RA](P) is plotted along a linear axis and P
along a logarithmic axis.

This is the most widely accepted model of the transducer stage
shaping the rate–level functions of primary auditory afferents in
various species (Sachs and Abbas, 1974; Winslow and Sachs,
1988; Sachs et al., 1989; Yates, 1990, 1991; Yates et al., 1990, 2000;
Eatock et al., 1991; Müller and Robertson, 1991; Müller et al.,
1991; Winter and Palmer, 1991; Richter et al., 1995; Köppl and

Yates, 1999; Saunders et al., 2002; Lütkenhöner, 2008; Taberner
and Liberman, 2005; Wen et al., 2009; Buran et al., 2010; Tem-
chin and Ruggero, 2010). Nizami and Schneider (1997) and
Nizami (2002) proposed the logistic equation, with threshold (in
decibels SPL) and dynamic range (DR; in decibels) as explicit
parameters instead of KRA and �, without acknowledging its
equivalence to the saturating power function proposed by Sachs
and Abbas (1974). Ohlemiller et al. (1991) used the same type of
equation but with P replaced by the difference between stimulus
level and ANF threshold (both in decibels SPL).

Limitations of the rate–additivity model
Despite its wide use and the good fits to empirical sigmoidal ANF
rate–level functions, the RA model has a number of limitations.
First, because spontaneous rate (parameter Rspont) and sensitivity
(parameter KRA) are independent in the model, it provides no
explanation of differences in spontaneous activity or of why
ANFs should be spontaneously active at all. The model also pro-
vides no explanation of the tight positive correlation in mammals
between spontaneous rate and what we will term “intrinsic sen-
sitivity.” Differences in intrinsic sensitivity refer to differences in
ANF rate–level functions that cannot be accounted for by the
frequency dependence of the middle ear transmission, the BM
vibration, etc., i.e., by differences in what may be referred to as
“stimulus-specific gain.” A tight positive correlation between
spontaneous rate and intrinsic sensitivity, however, is universally
observed in mammalian ANFs (Winter et al., 1990; Winter and
Palmer, 1991; Tsuji and Liberman, 1997; Taberner and Liber-
man, 2005). Thus, to reproduce this empirical correlation in a set
of artificial rate–level functions generated according to the RA
model, the independent parameters Rspont and KRA in Equation 3
must be chosen so that they covary among the modeled func-
tions. This was done when generating the functions shown in
Figure 1, a and b (see Fig. 1 legend).

The model’s second limitation is that it cannot account for
spike rates lower than the spontaneous rate. Spike rates below the
spontaneous rate can occur after tone offset (Relkin and Doucet,
1991) and during one half-cycle of low-frequency tones (Rose et
al., 1967; Palmer and Russell, 1986). For the model to achieve
firing rates below the spontaneous rate, the driven rate, Rd, would
have to be negative.

A third limitation of the RA model is the difficulty of inter-
preting it physiologically. The difficulty becomes apparent when
one formulates Equation 3 in terms of intervals rather than rates.
No physiologically plausible expression of the mean interval as a
sum of subintervals can be found, in contrast to the new model
proposed here (Eq. 7).

It should also be noted that there is disagreement between
different studies with respect to the value of the exponent � in the
RA model, along with the lack of any physiological explanation of
its value(s). A value of 1.77 was proposed by Sachs and Abbas
(1974), on the basis of analysis of 20 ANFs tested at frequencies
well below the CF, and was used by Winslow and Sachs (1988)
and Sachs et al. (1989). Temchin and Ruggero (2010) used a value
of 1.6, whereas Yates (1990) suggested a value of 2. This value has
been used most frequently (Yates et al., 1990, 2000; Yates 1991;
Müller and Robertson, 1991; Winter and Palmer, 1991; Richter et
al., 1995; Köppl and Yates, 1999; Saunders et al., 2002; Lütken-
höner, 2008) and has been claimed to be the optimal value for all
ANFs (Müller et al. (1991). Some authors have suggested, how-
ever, that � might not be constant, but might vary with ANF
spontaneous rate. For example, Eatock et al. (1991), in their study
of alligator lizard primary afferents, proposed an � of 3 for low-

Figure 1. Hypothetical rate–level functions generated according to the RA model (left) and
the new AA model (right). For the RA model, the five functions were generated according to
Equation 3 with a common Rmax � Rmax d � Rspont � 400 spikes per second and common ��
2. The sensitivity KRA differs by one order of magnitude between neighboring functions, thus
increasing from the black to the red function by four orders of magnitude. Rspont is set to covary
over nearly four orders of magnitude, from 0.01 to 80 spikes per second, to reproduce the
empirical correlation between sensitivity and spontaneous rate. For the AA model, the five
functions were generated according to Equation 5 with a common Rmax � 400 spikes per
second, �� 3, and P0 � 1 mPa. Only the sensitivity parameter KAA increases from the black to
the red function over four orders of magnitude. a, d, Functions with rate and amplitude plotted
on linear axes and providing a high resolution of low rates and low amplitudes. In a, only the
three functions with the lower values of Rspont are visible. In d, the vertical dashed line marks
P � 0, and the intersections of the functions with that line allow the resulting values of the
spontaneous activity, Rspont, to be read off; Rspont varies over nearly four orders of magnitude
and in nearly direct proportion to the sensitivity KAA (inset). b, e, Full changes in rate plotted
against stimulus amplitude on the conventional logarithmic axis (covering a 100 dB range). c, f,
Growth of the driven component of the rate, i.e., of Rd(P) � R(P) � Rspont, with stimulus
amplitude in double-logarithmic coordinates. With the RA model (c), the steepest slopes are
essentially identical to the value of �, independent of spontaneous rate, whereas for the AA
model (f ), the steepest slopes are less than the value of �, the more so the higher the sponta-
neous rate.
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spontaneous-rate afferents from the tectorial region and an � of 2
or less for high-spontaneous-rate afferents from the free-
standing region of the papilla. Geisler et al. (1985) and Geisler
(1990) examined the slopes of cat ANF log rate–level functions,
which are linked to the value of � (Fig. 1c,f). Although their slope
measure was criticized (Yates, 1990; Müller et al., 1991), the
steepest reliable slopes were �3 for low-spontaneous-rate ANFs.
With increasing spontaneous rate, the slopes decreased system-
atically [Geisler (1990), his Fig. 1]. Nizami (2002) did not present
values for �, but we calculated � from the parameters listed in his
paper and found a negative correlation between � and the loga-
rithm of spontaneous rate in those data (n � 15; r � �0.441; p 	
0.05). We also obtained a negative correlation from the data for
the present study (n � 156; r � �0.178; p 	 0.05). Variation of
the exponent would suggest different mechanisms operating in
synapses supplying ANFs of different spontaneous rates (Eatock
et al., 1991). Finally, all of the reported values of �, with the
exception of those for low-spontaneous-rate ANFs in some stud-
ies (Geisler, 1990; Eatock et al., 1991), are at variance with the
value of 3 derived by us from analyses of ANF first-spike latencies
(Heil et al., 2008; Neubauer and Heil, 2008).

The amplitude–additivity model
Here we propose an alternative, physiologically more plausible
model. Rather than adding Rspont to the driven rate, we assume
that Rspont is produced by a physiological stimulus that is present
at rest and that is identical in nature to that produced by the
sound. The stimulus at rest, like the sound stimulus, can therefore
be expressed in terms of amplitude. The model assumes that these
amplitudes are additive. We therefore refer to it as the amplitude–
additivity model. In this scenario, the total rate R(P) is given by
the following:

R�P� �
Rmax � �P � P0�

�

KAA
�1 � �P � P0�

� for P � � P0, (5)

R�P� � 0 for P 	 � P0.

Here, P0 represents the amplitude of the resting stimulus (also
measured in Pa), which sets the point of operation and to which
the effects of the sound amplitude add. A physiological correlate
of the resting stimulus could be the standing current flowing
through the mechanoelectrical transducer channels near the tips
of the IHC stereocilia, which in the absence of sound have a
nonzero open probability (Wangemann and Schacht, 1996; Kros,
1996). This current gives rise to the resting membrane potential
of the IHC, which is relatively depolarized at approximately �45
mV or more (Russell and Sellick, 1978; Goodman et al., 1982;
Russell and Cowley, 1983; Palmer and Russell, 1986; Ashmore,
2009). This resting membrane potential in turn results in a non-
zero open probability of voltage-gated CaV1.3 Ca 2� channels
associated with the individual active zones of the IHC (Robertson
and Paki, 2002; Brandt et al., 2003; Zampini et al., 2010), and
hence in Ca 2� signals mediating exocytosis. The AA model as-
sumes that this resting stimulus and the equivalent physiological
stimulus generated by the sound sum arithmetically. Rmax is the
total maximum rate, and � is the exponent. We use the symbol �
here instead of � to distinguish the exponents of the two models.
Analogously, we use KAA instead of KRA. The term KAA

�1/� denotes
the sum of the stimulus amplitude and the value of P0 at which
the total rate is equal to half the maximum rate, i.e., where
R(P) � Rmax/2.

We define a normalized firing rate Rnorm[AA](P) by rearrang-
ing Equation 5:

Rnorm [AA]�P� �
R�P�

Rmax
�

�P � P0�
�

KAA
�1 � �P � P0�

�

�
1

1 � KAA
�1 � �P � P0�

��. (6)

Equation 6 describes a sigmoidal function which is symmetric,
when Rnorm[AA](P) is plotted along a linear axis against a loga-
rithmic axis of (P � P0). For P0 
 0, the function is asymmetric
when Rnorm[AA](P) is plotted along a linear axis against a loga-
rithmic axis of P.

Key properties of the amplitude–additivity model
First, we note that Equation 6 is formally equivalent to the Hill-
equation, which describes, for example, the fraction of binding
sites of a macromolecule occupied by a ligand as a function of the
ligand concentration. Since we will raise the possibility here that
a biochemical process underlies Equation 6, we point out the
analogies. R(P)/Rmax corresponds to the fraction of occupied
binding sites, (P � P0) to the ligand concentration, KAA

�1 to the
apparent dissociation constant, and � to the Hill coefficient.

A second important feature of the AA model is brought out
when it is expressed in terms of intervals. Rearranging Equation 5
in this way yields the following:

1�R�P� � 1��KAA
�1 � Rmax � �P � P0�

�� � 1�Rmax. (7)

Hence, according to this model, the mean interval between
spikes, 1/R(P), is the arithmetic sum of two subintervals. The
subinterval 1/[KAA � Rmax � (P � P0) �] decreases as the stimulus
amplitude, P, increases, whereas the subinterval 1/Rmax is con-
stant. Such a sum can be interpreted physiologically (Young and
Barta, 1986; Heil et al., 2007). The constant subinterval can be
conceived of as a rate-limiting mean dead time. Notably, it can
also be viewed as a sum of several mean dead times from different
subprocesses of the cascade leading from sound to spikes. Thus,
prolonging or adding dead times only leads to scaling of the rate
(i.e., changes of Rmax), but, importantly, leaves the other param-
eters and hence the shape of the rate function unchanged.

Third, we note that Equation 6 can be formulated such that the
intrinsic sensitivity of an ANF is separated from the stimulus-specific
gain (as defined above). This is achieved by rewriting it as follows:

R�P� �
Rmax

1 � S�1 � �P�P0 � 1���, (8)

where

S � KAA � P0
� �

Rspont

Rmax � Rspont
(9)

and

Rspont � R�P � 0�. (10)

Hence, the intrinsic sensitivity, S, is the dimensionless ratio of the
spontaneous rate to the difference between the maximum and the
spontaneous rates. The term (P/P0 � 1) can be conceived of as
the factor or gain by which the physiological stimulus has
changed relative to that at rest due to the sound of amplitude P.
Since P0 is stimulus specific (i.e., P0 depends on the stimulus
frequency; see below, Dependence of the parameters of the
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amplitude-additivity model with � � 3 on stimulus frequency),
that gain is also stimulus specific (frequency dependent).

Fourth, and remarkably, spontaneous activity and its hitherto
unexplained tight correlation with the intrinsic sensitivity of
ANFs are emergent properties of the AA model. It follows from
Equations 8 –10 that if Rmax 

 Rspont, then

Rspont � Rmax � KAA � P0
� � Rmax � S. (11)

Thus, Rspont will vary in nearly direct proportion to the fibers’
intrinsic sensitivity, S. When � and P0 are the same, variation in S
is due to variation in KAA. The tight covariation of Rspont and S is
also illustrated in Figure 1, d and e, which plots five rate–level
functions generated according to the AA model, with identical
Rmax, �, and P0. Only KAA varies, over four orders of magnitude.
The vertical dashed line in Figure 1d marks P � 0, and the inter-
sections of the rate functions with that line allow the resulting
values of the spontaneous activity, Rspont, to be read off; Rspont

varies over nearly four orders of magnitude, from 0.01 to 80
spikes per second, and in nearly direct proportion to KAA (Fig. 1d,
inset), and hence to the intrinsic sensitivity. This predicted covaria-
tion agrees well with what is seen in real data after compensating for
the differences in the stimulus-specific, i.e., frequency-dependent,
gain (Winter and Palmer, 1991; Tsuji and Liberman, 1997; Heil
and Neubauer, 2001; Neubauer and Heil, 2008). According to the
AA model, therefore, ANFs are spontaneously active unless P0 �
0 or unless KAA � 0. In the latter case, however, they could not be
driven by sound either, so this case can be ruled out. Further-
more, when ANFs differ in intrinsic sensitivity, they must also
differ in spontaneous rate. Finally, variation in only a single pa-
rameter, KAA, suffices to account for the empirical correlation
between spontaneous rate and intrinsic sensitivity, whereas the
RA model requires two parameters.

Fifth, the AA model can also readily account for spike rates
lower than Rspont. It merely requires P to be negative (Fig. 1d). On
this view, P0 defines the point of operation about which R(P) can
be modulated up to Rmax or down to 0 by positive and negative
amplitudes, respectively (e.g., by positive and negative instanta-
neous pressures at low frequencies).

Sixth, the AA model also explains the observed negative cor-
relation between the exponent � of the RA model and the spon-
taneous rate (Geisler, 1990; Eatock et al., 1991) [see above, our
analysis of Nizami’s (2002) data]. Assume that rate–level func-
tions behave according to the AA model and are characterized by
a common value of the exponent � (
1) across all ANFs, regard-
less of their spontaneous rates. If these functions were fitted with
the RA model and the exponent � were a free parameter, the
estimates of � would decrease systematically with increasing
spontaneous rate. This is apparent from Figure 1, c and f. Figure
1c plots, for the hypothetical rate–level functions of Figure 1, a
and b, which were generated according to the RA model, the
stimulus driven rate Rd(P) � R(P) � Rspont, against stimulus
amplitude P in double-logarithmic coordinates. The maximum
slope of these functions is independent of Rspont and closely ap-
proximates the value of � � 2 used to generate the rate–level
functions. Figure 1f shows the equivalent plot for the hypothetical
rate–level functions of Figure 1, d and e, which were generated
according to the AA model and with � � 3. Figure 1f reveals that
the maximum slopes of the functions relating Rd(P) to P in
double-logarithmic coordinates are smaller than � (except when
Rspont � 0) and that they decrease systematically with increasing
spontaneous rate. Consequently, if the rate–level functions were
fitted with the RA model and � free, the estimates of � would be

close to � only when the spontaneous rate is low, and they would
decrease with increasing spontaneous rate.

Database
This study is based on 156 ANF rate–level functions obtained
from 84 ANFs in four cats. The CFs of these ANFs ranged from
0.3 to 39.3 kHz, and their spontaneous rates from near zero up to

100 spikes per second, covering the wide range of spontaneous
rates reported in the cat and other mammalian species (Liberman
and Kiang, 1978; Müller and Robertson, 1991; Relkin and
Doucet, 1991; Taberner and Liberman, 2005). Each rate–level
function is based on an ANF’s responses to generally 50 repeti-
tions of 100 ms tones, presented at up to 20 different SPLs, and an
estimate of its spontaneous rate. The tones had frequencies be-
tween 0.5 and 1 octave below the CF. In 50 of the 84 ANFs,
rate–level functions were obtained at two or three different fre-
quencies within this range and separated by 0.25 octaves. The 156
functions are based on a total of 
1.4 million spikes.

The amplitude–additivity model better captures empirical
ANF rate–level functions
The AA model provided fits which, across all 156 rate–level func-
tions, were as good as those provided by the RA model when all
four parameters of each model (Rspont, Rmax, KRA, and � of the RA
model; P0, Rmax, KAA, and � of the AA model) were free (Fig. 2a).
The logarithms of the deviation measures for the two models,
D[RA] and D[AA], did not differ significantly (Wilcoxon
matched-pairs signed-rank test; z � 0.90; p 
 0.18). However,
when the exponent of each model is fixed at the optimal value for
each model (� at 2 and � at 3), the AA model was significantly
better (Fig. 3d) (see below, Determination of the best integer
value of �).

Another goodness-of-fit criterion takes into account the na-
ture of the deviations. To determine how well the models capture
the true shape of a rate–level function, we examined how accu-
rately the two models would predict the spontaneous rate if that
measure were excluded from the fits. To do so, we again allowed
all four parameters of each model to vary, but this time excluded
the spontaneous rate from the fits. We then calculated the pre-
diction errors, i.e., the difference between the spontaneous rate
predicted by each model and the rate measured. Figure 2b plots
the distribution of the ratios of the absolute values of these pre-
diction errors by the AA and the RA models. Overall, these ratios

Figure 2. The AA model provides fits that are as good as or better than those of the RA model.
a, Plot of the deviation measures obtained with the AA model, D[AA], against those obtained
with the RA model, D[RA], when all four parameters were free to vary. The deviation measures
do not differ. Solid line represents the diagonal. b, Cumulative distribution of the ratio of the
absolute prediction errors for the spontaneous rate when omitted from the fits obtained with
the AA model to those obtained with the RA model. Most ratios are smaller than 1 (points left of
vertical line), indicating a superiority of the AA model.
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are significantly 	1 (Wilcoxon test; z � 4.98; p 	 0.00001), fa-
voring the AA model.

Determination of the best integer value of �
Here, we show that the best integer value for the exponent � in the
AA model is 3, while that for the exponent � in the RA model is 2.
We also show that when the exponent is fixed across ANF rate–
level functions, at the optimal value for each model, the AA
model provides the better fits.

The estimates of � are consistently higher than the corre-
sponding estimates of � (Fig. 3a). The estimates of � are also
more widely distributed than those of � (median of �, 2.92; in-
terquartile range of �, 1.55– 8.60; median of �, 1.84; interquartile
range of �, 1.29 –2.38). The broad distribution of � is caused in
part by mutual compensation of � and P0 (data not shown; but
see Eq. 5). In the RA model, such compensation is not possible
(Eq. 3). Estimates of � obtained from individual ANFs but with
tones of different frequencies could also scatter widely (Fig. 3b),
suggesting that the variation of � is due to noise in the data rather
than to differences between ANFs or their associated ribbon syn-
apses. We reasoned that the reliability or accuracy with which �

can be estimated should be higher when the relative range over
which R(P) varies with changes in SPL is high, i.e., when the ratio
of the lowest to the highest rate, Rmin/Rmax, is small. We therefore
sorted the rate–level functions according to Rmin/Rmax and com-
puted the running geometric mean across 26 estimates of � (Fig.
3c, black continuous line). For small Rmin/Rmax, the running geo-
metric mean hovers unsystematically around a value of � � 3
(Fig. 3c, dashed horizontal line) and increases with increasing
Rmin/Rmax. This is also reflected in the geometric means of �
computed across nonoverlapping Rmin/Rmax bins containing 26
functions each (Fig. 3c, filled squares). Also, the geometric mean
of � computed across all rate–level functions falling into the
lower half of Rmin/Rmax ratios was close to 3, viz., 2.94, while that
computed from the remaining functions was 5.73. The geometric
means of the estimates of �, derived from the fits of the RA model
to the same data, varied little as a function Rmin/Rmax (Fig. 3c; gray
continuous line, open symbols).

To further explore the issue of the best values for � and �, we
next fitted each of the 156 rate–level functions with both models,
but this time fixing � and � at specific values. For each model, we
tested 127 different values between 1 and 6 and examined the
deviation measures. Figure 3d plots the geometric means of the
156 values of D[AA] and D[RA] as functions of � (black line and
filled symbols) and � (gray line and open symbols), respectively.
For the AA model, the geometric mean of D[AA] decreases sub-
stantially as � increases, reaches a minimum at 2.99, and then
increases slightly as � increases further. The integer value of �,
which provides the best fits overall, is � � 3. The geometric mean
of D[AA] for � � 3 lies only 31% above that obtained when � is
a free parameter (Fig. 3d, horizontal dashed black line). In other
words, the fits are not much worse when � is fixed at 3 as when �
is a free parameter. In the AA model, in contrast to the RA model,
large exponents can yield reasonable approximations of a given
function. This property accounts for the asymmetric behavior of
the deviation measures D[AA] to changes in � away from its
optimum (Fig. 3d) and for the skewed, and broad, distribution of
� when it is a free parameter (Fig. 3a,c).

For the RA model, the geometric mean of D[RA] also de-
creases substantially as � increases, reaches a minimum at a value
of � � 1.93, and then increases rapidly as � increases further (Fig.
3d). The integer value of �, which provides the best fits overall, is
� � 2, confirming earlier suggestions (see above, Limitations of
the rate-additivity model). Notably, however, the minimum
reached by the geometric mean of D[RA] at the integer value of
� � 2 lies 14.5% above that reached by the geometric mean of
D[AA] at � � 3. This difference is significant (Wilcoxon
matched-pairs signed-rank test; z � 3.23; p 	 0.001). Thus, when
the exponents in the two models are fixed at their optimal integer
values across our sample, the AA model clearly fits the data better.

Applying the amplitude–additivity model with � � 3 and the
rate–additivity model with � � 2
Figure 4 shows 10 examples of rate–level functions from ANFs
differing widely in CF and in spontaneous rate, along with fits of
the AA model with � � 3 (gray lines; the fits of the RA model are
not shown for clarity). The quality of the fits is obvious. The
quality across the entire sample can be further appreciated by
superimposing all individual spike rate measures from all 156
rate–level functions onto a common model function (Fig. 5a– d).

For the AA model, superposition is achieved as follows. Note
that Equation 6 with � � 3 can be reformulated as follows:

Figure 3. Determining the best integer values for the exponents � and �. a, Plot of the 156
estimates of � from fits of the AA model against those of � from fits of the RA model. Note that
� is generally larger and more widely distributed than �. b, Estimates of � obtained from
individual ANFs with tones of different frequencies (connected by lines) scatter widely, suggest-
ing that the variation of � is due to noise and not to differences among IHC active zones. c,
Running geometric means across 26 estimates of � (black continuous line) and of � (gray
continuous line) after sorting rate–level functions according to the ratio Rmin/Rmax. That of �
asymptotes with decreasing Rmin/Rmax toward � � 3 (dashed horizontal line). Geometric
means and geometric SDs of the estimates of � (filled symbols and vertical bars) and � (open
symbols and vertical bars) calculated for six groups of 26 rate–level functions are also shown. d,
Geometric means of the 156 deviation measures, D[AA] and of D[RA], as functions of � (black
line and filled symbols) and � (gray line and open symbols), respectively. All rate–level func-
tions were fitted with both models with parameters � and � fixed at 121 values equally spaced
on a log axis between 1 and 6, at the remaining integer values, and at 1.5 (symbols). The integer
values that provide the best fits overall are � � 3 and � � 2 (black and gray dashed vertical
lines, respectively). The geometric means of D[AA] and D[RA] obtained when � and � are free
parameters are also shown (black and gray dashed horizontal lines, respectively).
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Rnorm [AA]�P� �
R�P�

Rmax
�

1

1 � �KAA
1/3 � �P � P0��

�3 (12)

Equation 12 describes a function of the type y � 1/(1 � x�3),
where y � R(P)/Rmax and x � [KAA

1/3 � (P � P0)]. Thus, superpo-
sition of all measured rate–level functions onto this function is
achieved by plotting the normalized rate R(P)/Rmax against
[KAA

1/3 � (P � P0)], where R(P) is the measured spike rate, and P
is the stimulus amplitude. The parameters Rmax, KAA, and P0 are
taken from the fits of the AA model with � � 3 to the rate–level
functions. These parameters differ for different functions (see
below, Dependence of the parameters of the amplitude–additiv-
ity model with � � 3 on stimulus frequency).

Figure 5c provides such a plot and shows that all 3183 individ-
ual spike rate measures underlying the 156 fits scatter closely and
apparently unsystematically around the model function. We also
minimized a logarithmic cost function (see Materials and Meth-
ods). The superposition of the data points onto the model func-
tion (Eq. 12) resulting from these fits is shown in Figure 5d, of
course in double-logarithmic coordinates. The scatter of the data
around the model function is rather homogeneous and also
small.

For comparison, the equivalent plots obtained from fits of the
RA model and with � � 2 are also shown (Fig. 5a,b). Here,
superposition is achieved by plotting the normalized rate,
Rnorm[RA] � (R(P) � Rspont)/Rmax d against [KRA

1/2 � P]. Here, the
normalized rate can be negative when the measured R(P) hap-
pens to be lower than the estimate of Rspont obtained from the fit.
This happened frequently for low-amplitude tones, with both the
linear fits (Fig. 5a) and the logarithmic fits, but of course those
data points cannot be shown in the double-logarithmic plot of
Figure 5b.

Overall, following the transformations required for super-
position, the scatter of the data points around the common
model functions is appreciably smaller for the AA model than
for the RA model, particularly for the lower spike rates (Fig. 5,
compare a,b, c,d).

Dependence of the parameters of the amplitude–additivity
model with � � 3 on stimulus frequency
In 50 ANFs, rate–level functions were obtained at two or three
frequencies, all well below the CF, allowing an examination of the
changes in parameter estimates for individual fibers with
frequency. As expected, for any given ANF, estimates of the emer-
gent parameter Rspont and of Rmax varied little, and unsystemati-
cally, with stimulus frequency compared to variation across
ANFs (Fig. 6a,b). On the other hand, estimates of P0 decreased
systematically while those of KAA increased systematically, with
increments in frequency from �1 to 0.5 octaves below the CF
(Fig. 6d,e); over this frequency range, P0 decreased by approxi-
mately two-thirds of an order of magnitude, and KAA increased
by approximately two orders of magnitude. Figure 6f plots the
estimates of KAA against those of P0 connecting data points
from the same ANFs. It is obvious that the data points from
any given ANF would scatter very closely around lines with a
slope of �3 in this double-logarithmic plot. In other words,
the product of KAA and P0

3, which defines the intrinsic sensi-
tivity S (Eqs. 8 –10), can be considered constant for a given
ANF. In fact, for a given ANF, it varies little and unsystemat-
ically with stimulus frequency (Fig. 6c).

Figure 4. Representative rate–level functions and their fit with the AA model with � � 3.
a–d, The 10 functions are from different ANFs and were selected to represent a wide range of
CFs, stimulus frequencies, and spontaneous rates. The CF and stimulus frequency (F; in kilo-
hertz) are identified. Symbols represent measured spike rates. The spontaneous rate is plotted
near the ordinate, at an arbitrary abscissa value. Solid lines and dashes (for the spontaneous
rate) represent the fits of each data set with the AA model with � � 3.

Figure 5. Superposition of data onto model functions. a– d, Superposition of all rate–level
combinations from all 156 rate–level functions onto the RA model with � � 2 (a, b) and onto
the AA model with � � 3 using the appropriate transformation (Eq. 12 for the latter model).
The model functions are shown as continuous lines. a and c show the results obtained with the
linear fits, and b and d show those obtained with the logarithmic fits. Normalized rates of 
0
had to be omitted from the logarithmic plots. Eight very low normalized rates in d are not shown
for better resolution of the remaining points. Note the much closer scatter of the data points
around the AA model function.
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These findings, in combination with
Equations 8 –10, reveal that it must be
possible to fit the rate–level functions of
a given ANF obtained with tones of dif-
ferent frequencies with a single value of
S and a single value of Rmax, and with
� � 3. Furthermore, since the fitted
functions from a given ANF will overlap
when plotted as a function of (P/P0 �
1), the data points representing the
measured spike rates should scatter
closely around this model function.
This is indeed the case, as shown for four
examples in Figure 7. With the RA
model, the separation of intrinsic sensi-
tivity and frequency-dependent gain is
not possible.

The dynamic range and threshold of
ANF rate–level functions
The DR of individual ANF rate–level
functions has been of considerable inter-
est in light of the wide range of sound lev-
els to which animals and humans are
exposed and over which they are able to
discriminate sound levels (Nizami, 2002
and references therein). The DR com-
prises the range of sound levels (in deci-
bels) giving rise to spike rates between a
threshold and a saturating rate. In many
of the rate–level functions here, the spike
rate did not clearly saturate (Figs. 4, 7), because we recorded them
using frequencies well below the CF and the highest sound level
tested was 100 dB SPL or less. Nevertheless, our AA model, like
the RA model, allows estimation of a saturating rate, Rmax, based
on the shape of the rate–level function in its steep portion, spe-
cifically from the deviations of the shape from that of a nonsatu-
rating power function. Consequently, and even though our AA
model, like the RA model, does not bear upon why the spike rate
saturates (but see the following section), it does allow calculation
of the DR of ANFs in the absence of BM nonlinearities. The DR
depends only on the intrinsic sensitivity S and, of course, on the
experimenter’s criteria for defining the DR. Recall that S is deter-
mined by Rspont and Rmax (Eqs. 8 –10). According to both models,
there is no hard threshold: any stimulus within an ANF’s recep-
tive field should modify the spike rate, although this may be
difficult to demonstrate with experimentally feasible numbers of
stimulus repetitions. Hence, any assignment of a threshold is
somewhat arbitrary. The same reasoning applies to the upper
bound of the DR. Nevertheless, operational definitions of thresh-
old and DR can be useful for comparative purposes. The DR may,
for example, be defined as the difference (in decibels) between the
SPL at which the spike rate exceeds the spontaneous rate by some
factor, 1 � a, and the SPL where it falls short of the maximum rate
by some factor, 1 � b. With such multiplicative definitions, it can
be shown that the DR (in decibels) is given by the following:

DR � 20 � log���1 � b

b � S
�

1

3

� 1��
�� 1 � a

1 � a � S
�

1

3

� 1�	 (13)

The DR decreases with increasing S. Most ANFs in our sample
had S values of �1 (high spontaneous rates) or between 0.001 and
0.01 (low spontaneous rates) (Fig. 6c). For the reasonable criteria
of a � b � 0.1, these S values yield DRs of �20 dB and of 45 to 55
dB, respectively. For a � b � 0.2, the DR values would be 1ower
by 8 to 15 dB. For additive criteria, a different formula must be
used. The DR would be larger if the BM were compressively non-
linear. According to the RA model, and in the absence of BM
nonlinearities, the DRs of all rate–level functions would be iden-
tical if the exponent � were fixed [a point made by Nizami
(2002)].

ANF rate–level functions parallel the dependence of
whole-cell exocytosis on the intracellular Ca 2� concentration
in inner hair cells
There is general consensus that all spikes of ANFs, spontane-
ous and driven, are caused by synaptic release events from the
ribbon synapses of IHCs (Glowatzki et al., 2008). Fusion of
synaptic vesicles with the presynaptic membrane of an IHC
depends critically on the presence of Ca 2� (Goutman and
Glowatzki, 2007), as is the case at all other chemical synapses.
Beutner et al. (2001) measured this dependence in IHCs from
apical cochlear locations of mature mice (postnatal days 14 –
25), using a Ca 2�-uncaging technique that gives rise to a pre-
sumably homogeneous intracellular Ca 2� concentration,
[Ca 2�]in. Simultaneous measurements of changes in the IHC
membrane capacitance served as an indicator of exocytosis.
Such measurements are generally believed to reveal the intrin-
sic, biochemical cooperativity of the Ca 2� sensor(s) involved
in exocytosis. A double exponential function was fitted to the
rising phase of each capacitance response, with fast and slow
components differing in their time constants by approxi-

Figure 6. Variation with stimulus frequency of the parameters of the AA model with � � 3. a– e, Emergent parameter Rspont

(a), Rmax (b), S � KAA � P0
3 � Rspont/(Rmax � Rspont) (c), P0 (d), and KAA (e). f plots KAA against P0. Data from the same ANF are

connected by lines. Since most parameters spread over several orders of magnitude, they are plotted along logarithmic axes, and
we therefore show those derived from the logarithmic fits.
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mately an order of magnitude. A rate constant, defined as the
inverse of the time constant, was derived from the fast com-
ponent of the capacitance changes and plotted as a function of
[Ca 2�]in [Beutner et al. (2001), their Fig. 3a]. Figure 8a replots
these results, which clearly reveal a supralinear dependence of
exocytosis on [Ca 2�]in. Beutner et al. (2001) modeled their
data by assuming that five cooperative Ca 2�-binding steps
precede an irreversible fusion step. This five-site model has
also been used with other preparations (Voets, 2000; Thoreson
et al., 2004; Duncan et al., 2010; Kochubey et al., 2011) and

requires the estimation of four free parameters (on- and off-
rate constants, a cooperativity factor, and a maximal fusion
rate). However, we showed recently that the data of Beutner et
al. (2001) can also be fitted very well with a simple Hill equa-
tion (or Boltzmann equation), requiring just three parameters
(Heil and Neubauer, 2010). Furthermore, the best integer
value for the exponent (i.e., the Hill coefficient) was � � 3.
Fixing � at this value leaves only two free parameters to be
estimated:

Rfusion�[Ca2�]in� �
Rfusion max

1 � K �1 � ��Ca2�]in�
�3 (14)

From the fit of Equation 14 to the data of Beutner et al. (2001)
(Fig. 8a, gray line), we obtained estimates of the maximum fusion
rate, Rfusion max � 1404 s�1, and of the apparent association con-
stant, K � 1.12 � 10�5 �M

�3 (Heil and Neubauer, 2010). From K
we can derive the [Ca 2�]in at which the rate of exocytosis is
half-maximal, �45 �M. Our estimate of Rfusion max was similar to
the maximal fusion rate of 1695 s�1 obtained by Beutner et al.
(2001) with their five-site model. However, saturation of the rate
constant in the data of Beutner et al. (2001) is not pronounced,
and it is conceivable that the rate constant would have continued
to rise with increasing [Ca 2�]in before saturating, had higher
[Ca 2�]in been tested. In that case, higher estimates of Rfusion max

and of the [Ca 2�]in for half-maximal exocytosis (lower estimate
of K) would have been obtained.

The simplest interpretation of Equation 14 is that exocytosis
requires the concerted, highly cooperative binding of 3 Ca 2� ions
to the Ca 2� sensor (Bisswanger, 2000; Yifrach, 2004), although
other schemes involving the less cooperative binding of more
than three Ca 2� ions, such as the five-site model of Beutner et al.
(2001), are also possible.

Equation 14 is formally equivalent to the function describing
the AA model for the rate–level functions of ANFs. To highlight
the equivalence, Equation 6 is reproduced here in the same form
as Equation 14 and with � � 3:

R�P� �
Rmax

1 � KAA
�1 � �P � P0�

�3. (15)

This equivalence allows superposition of the rate versus [Ca 2�]in

data from Beutner et al. (2001) with the rate versus (P � P0) data
from the present study. This is done in Figure 8b, which replots
the data from Figures 5c and 8a, with the model functions super-
imposed. The close match of these independent data suggests that
the Hill-equation-like dependence of ANF spike rates on (P � P0)
with a Hill coefficient of 3, as demonstrated here, might have its
basis in the intrinsic, biochemical Ca 2� cooperativity of the Ca 2�

sensor(s) involved in exocytosis.
This proposal requires that two conditions be met: first, that

during acoustic stimulation, as well as during spontaneous activ-
ity, the possibly complex Ca 2� signal at an individual active zone
can be equated with, i.e., is as effective in triggering fast exocytosis
as, a corresponding homogeneous [Ca 2�]in. We refer to this sig-
nal as the effective local [Ca 2�]in; and second, that this effective
local [Ca 2�]in is linearly related to (P � P0), at least over some
range. Scrutiny of the literature reveals the feasibility of a (satu-
rating) linear relationship. First, BM displacement grows linearly
with stimulus amplitude for frequencies well below the CF (Rob-
les and Ruggero, 2001), at which we measured the rate–level
functions. Second, the DC component of the IHC membrane
potential changes linearly with sound amplitude before it satu-

Figure 7. The intrinsic sensitivity of an ANF can be considered constant. a– d plot for four
examples the measured rates as a function of tone amplitude, P. The stimulus frequencies (in
kilohertz) are identified. For each example, all measured rates were fitted with the AA model
with a common value of Rmax and of S � KAA � P0

3 � Rspont/(Rmax � Rspont). e– h plot the same
rates (normalized by the fitted Rmax) as a function of (P/P0 � 1). The data points scatter closely
around the model function (Eqs. 8 –10 with � � 3; gray). The values of Rmax and of S obtained
from the fits are also identified. For the examples shown, S varies over nearly four orders of
magnitude.
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rates (Russell and Sellick, 1978; Russell
and Cowley, 1983; Palmer and Russell,
1986; Dallos, 1985) (but see Goodman et
al., 1982). From these studies, we estimate
a physiological range of the membrane
potential of �15 mV, from approximately
�45 to �30 mV or slightly more positive.
Third, the dependence of the open prob-
ability of the voltage-gated CaV1.3 chan-
nels at IHC active zones on voltage is well
described by a Boltzmann equation, ac-
cording to which the channels reach half-
maximum open probability at
approximately �34 mV, with a slope of
6.1 mV [Zampini et al. (2010), their Fig.
3F]. Thus, over the estimated physiologi-
cal range of the IHC membrane potential,
the changes in the open probability of
these channels are rather linear. Fourth,
changes in the whole-cell Ca 2� current
with membrane potential over the physi-
ological range can also be well approxi-
mated by a linear relationship [Johnson et
al. (2005), their Fig. 3C; Goutman and
Glowatzki (2007), their Fig. 3A1]. To-
gether, these data suggest an approxi-
mately linear relationship between sound amplitude and the
macroscopic Ca 2� current flowing through the CaV1.3 channels,
for low to medium SPLs. It is thus conceivable that the effective
local [Ca 2�]in also changes linearly with increasing sound ampli-
tude before saturating.

From comparison of the upper and lower abscissae in Figure
8b and from Equations 14 and 15, we can derive that [Ca 2�]in

should be directly proportional to (P � P0) and given by the
following:

�Ca2�]in � �KAA/K�
1

3 � �P � P0�. (16)

Of course, we can assume this linear relationship only over that
range of sound amplitudes where the corresponding spike rates
are essentially unaffected by saturation. Once the spike rate has
saturated, the Ca 2� signal may also have saturated (this is the
reason for the cropping of the upper abscissa in Fig. 8b). In fact,
since the membrane potential saturates (within �10 –15 mV, or
even less, of the resting potential), the open probability of the
CaV1.3 channels, the macroscopic Ca 2� current, and likely also
the effective local [Ca 2�]in cannot increase further, despite in-
creasing SPL, suggesting that saturation of the IHC membrane
potential is the major factor responsible for the rate saturation of
ANFs. The sound amplitude P at which rate saturation occurs
depends on the stimulus frequency and on the ANF’s intrinsic
sensitivity S (i.e., on KAA and P0), but for values of KAA

1/3 � (P �
P0) 	 1, so that also S 	 1, the assumption of linearity is justified,
since the resulting spike rates are less than half the maximum rate
(Figs. 5c,d, 8b). Since the spontaneous rate in our sample was
nearly always less than half the maximum rate (i.e., S 	 1) (Fig.
6c), we thus estimate the effective local [Ca 2�]in at individual
active zones for this special case. Here, Equation 16 reduces to the
following:

�Ca2��in � �KAA/K�
1

3 � P0 � �KAA � P0
3

K �
1

3

� �S

K�
1

3

. (17)

According to the above reasoning and Equation 17, the differ-
ences in the intrinsic sensitivity S � KAA � P0

3 among ANFs reflect
differences in the effective local [Ca 2�]in, since K is a constant.
For each ANF rate–level function, parameters KAA and P0 are
taken from the fits of the AA model, as described above, and K
from the fit of the Hill equation to the data of Beutner et al. (2001)
(Fig. 8a). Figure 8c plots the estimates of the effective local
[Ca 2�]in derived in this way for P � 0 against the estimates of the
spontaneous rate of the ANFs. A few very low estimates of local
[Ca 2�]in and Rspont are not shown for better resolution of the
remaining data points. For the bulk of the data points, the esti-
mated effective local [Ca 2�]in varies between approximately 2
and 60 �M among ANFs, and thus active zones, and tightly cor-
relates with Rspont.

A meaningful comparison of the rate constants provided by
Beutner et al. (2001), after conversion into vesicles per second,
with the spike rates in the present study is difficult for several
reasons. First, the rate constants were measured at room temper-
ature and the spike rates at body temperature. Second, the rate
constants include fusion of vesicles at all active zones. In addition,
an unknown proportion of fusion could occur at extrasynaptic
sites of the IHC. Spike rates, on the other hand, were obtained
from single ANFs supplied by single active zones. Third, the rate
constants were derived from the fast component of the release,
whereas the spike rates represent the means across the entire
analysis window, and due to adaptation, spike rates at sound
onset are much higher than the mean rates. Thus, we refrain here
from attempting to draw further information from the ratio of
rate constant to spike rate.

Discussion
The AA model, proposed here for ANF rate–level functions, re-
sults in a Hill-equation-like dependence of spike rate on the sum
of stimulus amplitude and a resting amplitude. It overcomes the
limitations of the model of Sachs and Abbas (1974) and yields
significantly better fits to empirical rate–level functions. We also
provide a formula that allows the dynamic range of rate–level

Figure 8. Relating ANF spike rates to intracellular Ca 2� concentrations at individual active zones of inner hair cells at their
resting potential. These concentrations can be estimated from the AA model applied to ANF rate–level functions in combination
with measurements of IHC exocytosis as a function of the homogeneous intracellular Ca 2� concentration, [Ca 2�]in (Beutner et al.,
2001). a, Rate constants of exocytosis of adult mouse IHCs as a function of the homogeneous [Ca 2�]in. The open symbols show the
data points from Beutner et al. (2001), their Figure 3a. The gray line represents a fit of these data with a Hill equation and a Hill
coefficient of � � 3 (Heil and Neubauer, 2010). b, Alignment of the data from a (upper abscissa and right ordinate) with those of
the normalized firing rates of ANFs from Figure 5d (lower abscissa and left ordinate) by superposition of the common model
function (gray line). This suggests the linear relationship between [Ca 2�]in and tone amplitude over the range of amplitudes
where spike rates are unaffected by saturation as captured by Equations 16 and 17. c, Plot of the estimates of Rspont, derived from
fits of the AA model with � � 3, against the estimates of the local [Ca 2�]in at the individual active zones supplying these ANFs
derived from Equation 17. Note the third power relationship. For further explanation, see Results.
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functions to be calculated as a function of the ANF’s intrinsic
sensitivity, in the absence of BM nonlinearities. Finally, we high-
light the parallels between the dependence of ANF spike rate on
the sound amplitude, specifically (P � P0), and the dependence of
whole-cell exocytosis by IHCs on the intracellular Ca 2� concen-
tration. These major findings are independent of the correctness
of the suggestions made in the following section concerning the
possible physiological correlates of the model. The AA model
could also be extended to describe rate–level functions at and
near CF, where the BM mechanics are nonlinear.

The physiological correlate of the exponent � of the
amplitude–additivity model
The central parameter of the AA model is the exponent, or Hill
coefficient, � with its integer value of 3. In principle, various
nonlinearities between sound and ANF spike rate could underlie
this value. However, based on Figure 8b, we favor the view that it
reflects the intrinsic, biochemical cooperativity of the Ca 2� sen-
sor(s) involved in fast exocytosis from the IHC. As noted in Re-
sults, this proposal assumes a linear relationship between sound
amplitude and effective local [Ca 2�]in, over the range of sound
amplitudes where the spike rate is unaffected by saturation. The
literature (cited in Results) suggests an approximately linear re-
lationship between sound amplitude and the macroscopic Ca 2�

current flowing through CaV1.3 channels, for low to medium
SPLs, and it is thus conceivable that the effective local [Ca 2�]in

also increases linearly with increasing sound amplitude before
saturating. If this were the case, then the close match of the Hill
coefficients in our AA model and in our fit of the dependence of
whole-cell exocytosis on the homogeneous [Ca 2�]in (� � 3) (Fig.
8b) suggests that the coefficient reflects the intrinsic, biochemical
Ca 2� cooperativity of the Ca 2� sensor for fast exocytosis.

However, other possibilities must be acknowledged. For ex-
ample, if the resupply of vesicles to the release sites were also
Ca 2� dependent and were the rate-limiting step in exocytosis
during prolonged (100 ms) acoustic stimulation, then our mea-
sure of the mean spike rate could be governed by processes with
potentially different Ca 2� cooperativities. Analysis of spike rate
adaptation, though beyond the scope of the present study, might
help shed light on this issue.

Goodman et al. (1982) reported that the DC component of the
(gerbil) IHC membrane potential grew with the square of the
sound amplitude before saturating. If this, rather than the linear
growth reported by others, were the case, an additional exponent
of 1.5 would be required to explain our observation of � � 3 and
would rule out the intrinsic Ca 2�-cooperativity hypothesis.

The intrinsic sensitivity of ANFs likely reflects the effective
local [Ca 2�]in

According to our view, as elaborated above, the intrinsic sensitiv-
ity, S, of an ANF ultimately reflects the effective local [Ca 2�]in at
its individual active zone. The differences among ANFs in S (and
the associated differences in the rate–level functions, including
dynamic range or threshold) reflect differences in the effective
local [Ca 2�]in for a given stimulus amplitude P. We derived pre-
dictions of these concentrations from Equations 17 and 18, which
for the case of P � 0 varied between approximately 2 and 60 �M

and were tightly correlated with Rspont. These concentrations ul-
timately constitute the resting condition. Stimuli that depolarize
or hyperpolarize the IHC relative to its resting potential will cause
an increase or decrease, respectively, in the effective local
[Ca 2�]in via changes in the open probability of the CaV1.3 chan-
nels. Since ANFs with different spontaneous rates likely innervate

the same IHC (Liberman, 1982), the effective local [Ca 2�]in at
individual active zones of a given IHC must differ. In line with
this suggestion, Frank et al. (2009) and Meyer et al. (2009) re-
ported a substantial variability in the magnitude of submicrom-
eter, transient Ca 2� hotspots at the base of individual IHCs. The
authors interpret these hotspots as Ca 2� microdomains associ-
ated with presynaptic active zones and argue that their variability,
which was similar to that of the effective local [Ca 2�]in estimated
here, is due to differences in the number or density of CaV1.3
channels near the different ribbon synapses of an individual IHC.
It seems plausible then, that in response to a given change in IHC
membrane potential, such differences give rise to differences in
Ca 2� entry and in effective local [Ca 2�]in at the different active
zones of a given IHC (Heil and Neubauer, 2010). With a mi-
crodomain control of exocytosis, where Ca 2� entering through
multiple channels spatially summates (Augustine et al., 2003),
these differences could then account for, or contribute to, the
differences in the intrinsic sensitivity of ANFs. Note that 10-fold
differences in effective local [Ca 2�]in at the different active zones
of an IHC would suffice to account for 1000-fold (60 dB) differ-
ences in the intrinsic sensitivity of the ANFs. Of course, this rea-
soning does not rule out the possibility that other factors, such as
differences in ribbon size or in postsynaptic receptor composi-
tion (Liberman et al., 2011), contribute to the differences in the
intrinsic sensitivity of ANFs.

Our data are difficult to reconcile with the assumption of a
nanodomain control of exocytosis (Neher, 1998; Augustine et al.,
2003; Brandt et al., 2005; Goutman and Glowatzki, 2007; Ya-
mashita et al., 2010), at least in its extreme form. According to this
assumption, the vesicle with its Ca 2� sensors is in such close
proximity to a Ca 2� channel that it senses the gating of essentially
this single channel only, and Ca 2� influx through this single
channel suffices to trigger the vesicle’s fusion. In this scenario, the
spike rate should increase in direct proportion to the open prob-
ability of the Cav1.3 channels. As explained above, this probabil-
ity increases linearly over the physiological range with the
membrane potential of the IHC. The potential in turn is likely
linearly related to tone amplitude before saturating. Hence, the
spike rate would be expected to increase with tone amplitude
according to a Hill equation with an exponent of �1 or less.
Instead, we find an exponent of � � 3, more consistent with a
microdomain control of exocytosis from the IHC. A nanodo-
main control of exocytosis at the IHC ribbon synapse was sug-
gested by Brandt et al. (2005) on the basis of different “apparent
Ca 2� cooperativities” (derived from the relationships between
whole-cell exocytosis and whole-cell Ca 2� entry) that were ob-
tained when Ca 2� entry was manipulated by varying the number
of open Ca 2� channels as opposed to varying single-channel
Ca 2� currents. Others, however, have observed very similar ef-
fects of these two manipulations, more consistent with a mi-
crodomain control of release (Johnson et al., 2005, 2010). The
quasi-linear apparent Ca 2� cooperativities reported for adult
IHCs in the latter studies were interpreted to reflect an altered
biochemical cooperativity of the Ca 2� sensor. However, they can
also be explained as an epiphenomenon of capacitance measure-
ments that sum over numerous, variable active zones (Heil and
Neubauer, 2010). Goutman and Glowatzki (2007) also presented
data suggestive of a nanodomain control (but see discussion in
Heil and Neubauer, 2010). They made simultaneous whole-cell
recordings of Ca 2� currents into IHCs and EPSCs of individual
primary afferent terminals in prehearing rats. In one set of paired
recordings, they tested the intrinsic Ca 2� cooperativity of the
sensor by relating the (integrated) EPSCs to the Ca 2� current
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when the IHCs were depolarized from a holding potential of �84
mV to positive potentials. Here, they found an exponent of �3,
consistent with the data of Beutner et al. (2001) and with our
reasoning. However, from another set of paired recordings, in
which IHCs were depolarized to more physiological levels (�49
to �29 mV), they derived exponents of 1.1 and 1.4 (for noninte-
grated and integrated EPSCs, respectively). These exponents are
difficult to reconcile with our reasoning. However, the exponents
were estimated from fits of a nonsaturating power law to normal-
ized data based on only three cell-pair recordings, five to seven
voltage steps per recording, and two to four repetitions per volt-
age step and recording, and associated with relatively large error
bars [Goutman and Glowatzki (2007), their Fig. 3, compare A2,C,
B2,D]. Nevertheless, if this finding were supported by more de-
tailed data, it would pose a serious challenge to the mechanism
proposed here.

Conclusions
Our AA model provides an improved, Hill-equation-like de-
scription of ANF rate–level functions. A common exponent of 3
appears sufficient, suggesting that all ribbon synapses in all IHCs
operate in a similar way, a conclusion also supported by analyses
of interspike interval statistics (Heil et al., 2007). The exponent
matches that obtained from a Hill equation applied to data mea-
suring the intrinsic Ca 2� cooperativity of the Ca 2� sensor(s) for
fast exocytosis from IHCs. The model therefore suggests a link
between the rate–level functions and a key biochemical reaction
in IHCs. Since the exponent is also the same as that derived from
the analysis of absolute thresholds (Heil and Neubauer, 2003;
Neubauer and Heil, 2004), it also links the biochemical reaction
to psychophysics and perception.
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