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Transformation from a Pure Time Delay to a Mixed Time
and Phase Delay Representation in the Auditory Forebrain
Pathway

Katrin Vonderschen and Hermann Wagner
Institut fiir Biologie IT, RWTH Aachen University, D-52056 Aachen, Germany

Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons,
ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the
midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results
have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency
channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does
not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure
tone and noise stimuli in neurons of the barn owl’s auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend
the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral
decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found
that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different
linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from
these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain
pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behav-

ioral output.

Introduction
The brain exploits interaural time differences (ITDs) of sound
waves for auditory orientation (Colburn etal., 2006; Grothe et al.,
2010). ITDs are first detected by brainstem coincidence detector
neurons (Carr and Soares, 2002), after which ITD processing
continues along a parallel midbrain and forebrain pathway.
Tuning to ITD emerges when binaural signals are delayed
such that the internal delay compensates for the external delay
(Fig. 1A). This was first suggested by Jeffress (1948) and is best
supported through the barn owl, where axonal delay lines com-
pensate for external delays creating an ITD map (Carr and
Konishi, 1990; Koppl and Carr, 2008). Because timing is com-
pared across narrow frequency channels, noise delay tuning is
cyclic and ambiguously signals ITD (Wagner et al., 1987, 2007;
Pefa and Konishi, 2000). This ambiguity is eliminated in the
external nucleus of the inferior colliculus (ICX), where frequency
channels converge, but neurons conserve the tuning to a single
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frequency-independent delay (Takahashi and Konishi, 1986;
Mazer, 1998; Pena and Konishi, 2000).

If a neuron responds maximally at a single ITD independent
of the stimulus frequency, it is said to exhibit a characteristic
delay (CD) (Fig. 1A,B).

In mammals, growing evidence suggests that ITD detection is
inconsistent with the Jeffress model (McAlpine etal., 2001; Brand
et al., 2002; Pecka et al., 2008). For instance, the Jeffress model
does not predict the emergence of frequency-dependent ITD
tuning, which is yet typical of mammalian brainstem and mid-
brain neurons.

If ITD tuning changes linearly across frequency, this could be
parametrized as a constant phase [characteristic phase (CP)] and
a constant time delay [characteristic delay (CD)] (Yin and
Kuwada, 1983) (Fig. 1C). The characteristic phase determines
a neuron’s relative firing level between minimal and maximal
response at its characteristic delay.

In the owl’s ICX, characteristic phases were close to zero, sug-
gesting a pure time delay representation (Fig. 1B). In contrast,
frequency-dependent ITD tuning was typically observed in
mammals both in single neurons as nonzero characteristic phases
(Yin and Kuwada, 1983; Batra et al., 1993; Spitzer and Semple,
1995; McAlpine et al., 1998) and across populations (McAlpine et
al., 2001; Joris et al., 2006).

While the anatomical and frequency organization of the in-
puts determines the frequency dependence of ITD tuning at the
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detection stage, it is unclear whether this
affects ITD representations at later pro-
cessing stages.

Interestingly, recent findings in the
owl indicated deviations from pure delay
representation in the thalamus (Pérez and
Penia, 2006) and the auditory arcopallium
(AAR; Fig. 1C) (Vonderschen and
Wagner, 2009).

The AAR represents the endpoint of
the auditory forebrain pathway projecting
directly to the midbrain ICX and to motor
nuclei (Cohen et al., 1998). Besides having
direct control of sound localization be-
havior, the forebrain pathway is involved
in top-down control and auditory atten-
tion tasks (Cohen and Knudsen, 1996;
Knudsen and Knudsen, 1996; Winkowski
and Knudsen, 2006; Reches and Gutfreund,
2008). AAR responses to varying ITD are
frequency-dependent and biased toward
contralateral-leading ITDs (Vonderschen
and Wagner, 2009).

Thus, ITD detection must be sepa-
rately considered from the later down-
stream representation of ITD, and the
representation of ITD may differ in the
different pathways leading to motor out-
put, the midbrain and the forebrain path-
ways. The mechanisms underlying the
creation of characteristic phases in the
AAR are not well understood. The data
presented in the following are a first at-
tempt to unravel the underlying neural
computations.

Materials and Methods

Owl handling. Data from eight barn owls (Tyto
alba) taken from the institute’s breeding col-
ony were included in this study. The animals
were of either sex. Surgical procedures have
been described in detail previously (Vonder-
schen and Wagner, 2009). Briefly, owls were
implanted before experiments with a head
piece for stereotactic control. Owls were kept
under anesthesia during all surgical interven-
tions (15 mg/kg of ketamin, 1 mn/kg of diaze-
pam, 0.065 mg/kg of atropine sulfate) and
received analgesics (0.06 mg/kg of buprenor-
phine). During recordings, anesthesia was kept
light. In each owl, stereotactic coordinates for
the auditory arcopallium were established with
respect to the optic tectum (Cohen and Knud-
sen, 1995). Electrolytic lesions were made in
two owls to verify the recording area (cf.
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Figure 1. ITD processing in the brainstem and along the parallel midbrain and forebrain pathways. 4, Schematic of ITD pro-

cessing stages. NL, nucleus laminaris; Ov, nucleus ovoidalis (thalamus). For clarity, only the nuclei marking start and endpoints of
the pathways are shown. i), ITD detection is achieved by a system of axonal delay lines and coincidence detector neurons in NL,
whichis consistent with the Jeffressmodel (1948). Their output as a function of ITD cycles with the period of the stimulus frequency.
ii), 1CCneurons are organized in dorsoventral arrays along which their best frequency changes, while all neurons in an array share
tuning to a common ITD (Wagner et al., 1987). jii), Neurons in ICX receive convergent inputs from arrays in ICC. As the inputs
respond maximally to one ITD across all frequencies, ICX neurons respond maximally at that ITD only. B, Across-frequency integra-
tion as observed in the ICX with CP = 0 resulting from a CD. Tone-delay functions in response to different frequencies share one
peak ITD (top, gray line indicates the (D).The noise-delay function modeled as sum of the tone-delay curves is symmetric around
the peak ITD (center). The phase-frequency relation is linear with the slope representing the (D and the offset the CP (bottom).
Note that in this special case the CP is zero. , In general, across-frequency integration may involve nonzero characteristic phases.
Note that the tone-delay curves share a common point on the slope (top), the noise-delay function features a steep slope and
higher responsiveness to positive (contralateral leading) [TDs (center), and the linear phase-frequency relation cuts the y-axis at a
phase different from zero (bottom).

Electrophysiological signals were preamplified (custom-built device),

Vonderschen and Wagner, 2009). After the experiments, owls were kept
in a monitoring box for 12 h and then returned into their home aviaries.
They were allowed to recover for 10-14 d between experiments. All
procedures were approved by the Landesprasidium fiir Natur, Umwelt
und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Ger-
many, and complied with the National Institutes of Health guidelines for
animal experimentation.

Electrophysiology. Extracellular recordings in the AAR were obtained
with epoxylite-insulated tungsten microelectrodes (9-12 M{), FHC).
Electrodes were advanced into the brain with a custom-built microdrive.

amplified, and bandpass-filtered (300-5000 Hz, M Walsh Electronics),
digitized (25 kHz, AD1, Tucker-Davis Technologies), and stored on a
PC. Semiautomatic spike sorting based on cluster analysis (BrainWare,
Jan Schnupp, Tucker-Davis Technologies) was performed on-line and
refined for analysis off-line. In 87%, clusters could be attributed to single
units. In the remainder of units, we could not exclude contributions from
multiunits. Multiunits were pooled with single units, since we did not
observe physiological differences. It has been suggested that neurons in
the AAR are organized in clusters of neurons with similar physiological
properties (Cohen and Knudsen, 1999). Experiments were conducted in
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an anechoic chamber (IAC 403A, Industrial Acoustic). We used white
noise bursts (0.1-20 kHz) and tone pips of 100 ms length with 5 ms
cosine start and end ramps for dichotic stimulation. Signals were sam-
pled at 50 kHz, digital-to-analog converted, attenuated, antialias-filtered
(DA3-4, PA4, FT6, System II, Tucker-Davis Technologies), power-
amplified (AX-590, Yamaha), and presented through calibrated ear-
phones (MDR-E831LP, Sony).

To detect neural activity, we played noise bursts of varying ITD while
slowly advancing the electrode. For each neuron, we first sampled the
ITD range typically between 270 ws in steps of 30 s using an interaural
level difference (ILD) of 0 dB. Via on-line analysis, we obtained a first
estimate of the noise-delay curve. We call the ITD at which the neuron
responded maximally the best ITD. The neuron’s interaural level differ-
ence tuning was assessed between —20 and 20 dB in steps of 1 dB at the
best ITD. If the neuron’s best ILD was different from zero, we recorded
the noise-delay curve again, holding the ILD at the neuron’s preferred
value. The neuron’s frequency tuning was probed by playing tones of
frequencies between 500 and 9500 Hz in steps of 500 Hz while keeping
the ITD and ILD constant at the neuron’s preferred values. We refer to
this curve as the isolevel frequency tuning or, briefly, the frequency-
tuning curve. Stimuli were presented between 5 and 10 times in block-
wise random order. Because AAR neurons were more responsive to noise
than to pure tones, five trials were normally used with noise stimuli and
7-10 with pure tones. Intertrial interval was 1 s. In addition to the noise-
delay curves, tone-delay curves were obtained from some neurons in an
analogous way. Tone pips were interaurally delayed using ITDs that reg-
ularly sampled one stimulus period. Typical stimulation frequencies had
periods that were integer multiples of 30 us: 2381, 2564, 3030, 3333,
3704, 4167, 4762, 5555, 6666, or 8333 Hz. For very high (>6667 Hz) or
very low (<2381 Hz) frequencies, a more adequate ITD sampling step
was chosen. The sampled ITD range for tones included a minimum of
one period of the stimulation frequency. All stimuli were tested at ~30
dB above the neuron’s response threshold as assessed from binaural rate
level functions obtained with noise stimuli.

Analysis. All off-line analysis was done using self-written Matlab
routines (MathWorks). Baseline firing rates were assessed by averag-
ing the spike rates recorded in a 400 ms window before stimulus onset.
Noise-delay and tone-delay curves as well as frequency-tuning curves
were obtained by averaging the spike counts across trials in a 100 ms
response window after stimulus onset. The window was time-shifted by
the response latency defined as the time lapse between stimulus onset and
half maximal response level in a peristimulus time histogram with opti-
mized binwidth. The optimal binwidth was defined as the one that
caused minimal variation in latency estimates computed from surrogate
peristimulus histograms obtained through bootstrap resampling of the
original spike arrival times (Friedman and Priebe, 1999).

Characteristic phase and characteristic delay. Characteristic delay and
characteristic phase are parameters widely used in auditory research to
describe the across-frequency ITD sensitivity of neurons (Yin and Ku-
wada, 1983).

Classically, CD and CP estimates have been derived from neural re-
sponses to varying I'TDs obtained with pure tone stimuli (i.e., tone-delay
curves). Tone-delay curves tend to be cyclic due to the periodic nature of
the sinusoidal signal and the binaural coincidence detection mechanism
that performs a cross-correlation of the binaural signals. The resulting
periodic curves can be represented in a simple model as cosine functions
of ITD and frequency according to the following: #(ITD, f) = cos[27f
(ITD — delay)], where r is the neural response measured as average spike
count across trials, ITD defines the interaural time difference at which
the stimulus is presented, and f refers to the frequency of the pure tone
stimulus.

An illustration of a family of ITD tone-delay curves generated from
this equation for different frequencies is shown in Figure 1 Aii for a fixed
delay. The delay describes a shift of the curves along the ITD axis, which
can be further subdivided.

Delays can be composed of a pure time delay (Fig. 1B), the CD, and a
delay that can be derived from the CP (Fig. 1C) as follows: r(ITD, f) =
cos[27f (ITD — CD) — CP].
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The ITDs causing maximal responses are a linear function of the
period:

Best ITD(f) = CP#* 1/f + CD, (1)

where CP is in units of cycles and best ITD denotes the ITD at which the
response is maximal. Thus, in a unit in which ITD tuning to different
frequencies can be described by a CP # 0 and a CD, the best ITDs are a
hyperbolic function of fas can be seen in Figures 2A, 6 A, and 9A. If CP =
0, best ITDs are equal to the CD across all frequencies (Fig. 1B).

By multiplying both sides with the stimulus frequency, we obtain an
equivalent expression for the interaural phase difference (IPD). It follows
that the best IPD is a linear function of frequency with the characteristic
delay corresponding to the slope and the characteristic phase represent-
ing the offset, as represented in the following equation:

Best IPD(f) = CP + CD *f 2)

Linear phase-frequency relations are illustrated for the cases CP = 0 in
Figure 1 B (bottom) and CP # 0 in Figure 1C (bottom).

In cases where the best interaural phase differences are not a linear
function of frequency, the characteristic delay and phase are not defined.

Characteristic delay and characteristic phase from tone-delay curves. To
estimate the neuron’s characteristic phase and delay, we used circular
statistics to calculate the best interaural phase difference (best IPD) from
each tone-delay curve (Batschelet, 1981) as follows:

> H(IPD)sin(IPD) )

S H(IPD)cos(IPD) (3)

best IPD = arctan(

where IPD is the stimulus ITD divided by the stimulus frequency and
r(IPD) represents the response at each IPD. IPD data points were only
incorporated in the unit’s phase-frequency curve if phase tuning was
significant by the Rayleigh test (p < 0.001) (Mardia, 1972; Batschelet,
1981). Based on Equation 2, we performed a regression through the IPD
data points, which yielded the CD and CP estimate, respectively. The
linear model was judged suitable if the root mean squared error (RMSE)
was unlikely to occur by random data based on a bootstrap method (p <
0.005) (cf. Yin and Kuwada, 1983). We note that, while this test criterion
has been used in many follow-up works (Takahashi and Konishi, 1986;
Yin and Chan, 1990; Joris, 1996; Batra et al., 1997; Pecka et al., 2008) and
will be used here, it does not preclude other relations than linear rela-
tions, a point we consider in more detail later.

Composite curves. We used composite curves to test whether inputs
from different frequency channels were linearly combined. Composite
curves were computed as the average across frequencies of all signifi-
cantly tuned tone-delay curves recorded in a neuron (Yin et al., 1986; Yin
and Chan, 1990). Similarity of the composite curve with the noise-delay
curve was assessed by the Pearson correlation coefficient r, and r? was
used to express how much of the variation could be explained by a linear
model of across-frequency integration.

Characteristic delay and characteristic phase from noise-delay curves.
Assuming a linear system, the noise-delay function can be explained
entirely as a linear combination of tone-delay curves. In this case, the
phase—frequency curve measured by tone-delay curves would be equiv-
alent to the phase spectrum of the noise-delay curve. Hence, we used
discrete Fourier transforms of noise-delay curves as an alternative
method to estimate the phase—frequency relation. Fast Fourier trans-
forms (FFT) of noise-delay curves were calculated using the Matlab al-
gorithm (fft) after offsetting the curve to zero mean. Noise-delay curves
were zero-padded to a 64 sample signal, which allowed approximating
the frequency resolution of 500 Hz steps used to assess the amplitude
spectrum in frequency-tuning curve recordings. Amplitude spectra were
offset by each unit’s mean spontaneous rate and scaled to the maximum
response in the unit’s frequency-tuning curve. Phase spectra were cor-
rected by a constant to account for the part of the signal that extended
into the negative range of ITDs. As the Rayleigh test was inadequate here
as a test for the significance of the phase tuning, we simply excluded
phases of frequencies that contributed <30% of the maximum ampli-
tude. Other thresholds between 20 and 40% yielded similar results (data



5914 - J. Neurosci., April 25, 2012 - 32(17):5911-5923

Vonderschen and Wagner e A Mixed Time and Phase Delay Representation

A 222 I
2564 1667
S0S0 : 1754
3333
I 2222
4167 3 2564
4167
4762 ' 4762
w
5556§ ] 5556
o
6667 2 1 6667
B 3 i ’=0.8 8
N @ N O
58 58
£ 205 E g8
28 238
0 kd L
-250 0 250 -250 0 250
ITD (us) ITD (us)
C. D G, H
2 2
& g 80
° ° 2 0 #%-:——
B 3 05 L 02 i
IS s )
B Mo E oot 0F L. .m0t . ..
<Z>0246810 0246810200246810 0 2 4 6 8 10
Frequency (kHz) Frequency (kHz) Frequency (kHz) Frequency (kHz)

Figure 2.  AAR neurons feature characteristic delays and characteristic phases. A-D, Example neuron with a linear phase—frequency relation over the entire frequency range. E-H, Second
example neuron featuring two different linear regimes over the low-frequency and the high-frequency ranges. 4, E, Tone-delay curves, stimulus frequencies indicated on the left margin (Hz). Curves
were shifted on the y-axis for visual clarity. Note that the gray tone-delay curve in E was not significantly tuned for IPD. However, tuning in the neighboring low-frequency and high-frequency ranges
was significant. The characteristic delay as computed from the tone-delay curves is indicated by the black line. The (D estimated from FFT of noise-delay functions is illustrated by the blue line (4,
whole frequency range) and by violet and yellow lines (E, low-frequency range and high-frequency range, respectively). B, F, Noise-delay functions (black) and overlaid composite curves (red)
representing the normalized sum of the tone-delay curves. The variance explained (r2, top left comer) by the linear sum was significant (p < 0.01). €, G, Frequency-tuning curves (black) and scaled
FFTamplitude spectra (blue) of the noise-delay curves. Note that the peak position and size correspond well in Cbut not in G. The frequency-tuning curve measured at a constant ITD of 60 s for this
neuron underestimates the neuron’s sensitivity to low frequencies, which is, however, obvious from the low-frequency tone-delay curves in E and the FFT amplitude spectrum. D, H, Phase—
frequency relation derived from tone-delay curves (best IPDs, black circles) and FFT phase spectra of noise-delay curves (blue circles). While phase estimates of both methods corresponded well, the
FFT-based method obtains superior frequency sampling. Regression through phase data estimated from tone-delay curves (black line) and different ranges of the FFT phase spectra (color code here
and in subsequent figures: blue, entire frequency range; violet: low-frequency range; yellow, high-frequency range). The slope of the regression represents the (D and the offset reflects the CP. For

(D and CP values see Results. Error bars represent SEM. Contralateral leading ITDs are represented by positive [TDs here and in all figures.

not shown). Based on the regression over the remaining phase data, we
inferred the characteristic delay and phase as described above. The mis-
match between the two estimates was quantified by subtracting the am-
plitude and phase estimates obtained from tone-delay curves from their
FFT counterpart (i.e., the amplitude and phase spectra of noise-delay
curves, respectively). Because the frequency range was sampled at slightly
different points in the two methods, we linearly interpolated the FFT
spectra at the respective frequency sample points.

In addition, characteristic delay and phase distributions were obtained
from ICX neurons in the midbrain pathway using FFTs of noise-delay
curve as described above, thereby allowing for comparison with CD—-CP
data obtained with tone-delay curves in earlier studies (Takahashi and
Konishi, 1986; Wagner et al.1987). These noise-delay curves had been
recorded in our laboratory for earlier studies (Wagner et al., 2007) using
procedures identical to those described above.

Linearity of the phase—frequency relation. The phase—frequency relation
was considered significantly linear when the RMSE was smaller than
expected from random data (cf. Yin and Kuwada, 1983). While this
criterion was met in most cases, it represented a liberal test for linearity.
By visual inspection, phase—frequency relations in many AAR neurons
tended to indicate two linear regimes, one in the low-frequency range
and one in the high-frequency range. In neurons that displayed a local
minimum in the amplitude spectrum, we used the corresponding fre-
quency to divide the range into a low-frequency and a high-frequency
range. Predictably, the RMSE obtained with two linear regimes tends to

be smaller than the one obtained using a single linear regime. However
the reduction in RMSE should be larger if the data deviate systematically
from a single regression model compared with random deviations from
that model. To check for a significant reduction in RMSE, we computed
probability density functions for the reduction in RMSE using 1000
bootstrap runs for each set of data. Surrogate datasets were created by
randomly shuffling the order of the residuals from the single regression
model and recalculating the RMSE obtained with two regressions, one
through the low-frequency range and one through the high-frequency
range, thereby obtaining a probability distribution of the decrease in
RMSE (ARMSE) under the assumption that no systematic deviations
from the linear model were present. The model of two regression regimes
was considered superior if the probability of observing a given ARMSE
was <0.01.

Model neurons. As proof of concept for using Fourier transforms of
short noise-delay functions to estimate phase and amplitude spectra, we
created model units that behaved as linear integrators across frequency.
Each model unit was assigned a linear phase—frequency relation based on
a chosen CD—CP pair as well as a flat frequency-tuning curve. Frequen-
cies were sampled in steps of 500 Hz between 0 and 31.5 kHz (64 sample
points) with amplitude values equal to 1 between 500 and 8500 Hz and 0
everywhere else. We experimented with different shapes of frequency-
tuning curves but chose to present the data from flat frequency-tuning
curves for different reasons: (1) they have conceptual advantages over the
more physiologically realistic ones; and (2) our error assessment of the
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Figure3. Mismatches between responses to tone stimuli and linear decomposition (FFT) of noise-delay curves. A, Comparison
between the frequency-tuning curves obtained with tone stimuli presented at a neuron’s best ITD and the FFT amplitude spectra
of noise-delay curves. Top and Middle, Frequency-wise error computation for the example neurons of Figure 2. The curves were
matched by normalizing the FFT amplitude spectrum to cover the dynamic range of the frequency-tuning curve (i.e., baseline
activity to maximum response rate). The maximum rates were set to 1. Bottom, Averaged errors in a population of AAR neurons.
Positive valuesindicate a larger estimate of the FFT amplitude spectrum than that measured with tone stimuli. Note that FFT results
predict systematically higher amplitudes in the low-frequency range. B, FFT amplitude spectra compared frequency-wise to the
maximal response rates obtained in tone-delay curves. Top and middle, Error computation for the example neurons of Figure 2.
Normalization as in A. Bottom, Note that the population error only weakly correlates with frequency. C, Frequency-wise compar-
ison of phase data obtained from tone-delay curves and FFT phase spectra of noise-delay curves. Top and middle, Error computa-
tion for the example neurons of Figure 2. Black and dark gray lines, Regressions through phase data. Bottom, The population error
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2 msin steps of 31.25 ps. Instead, we evaluated
the noise-delay curves between —270 and 270
s in steps of 30 us corresponding to the ex-
perimental procedures. We calculated Fourier
transforms of the simulated noise-delay curves
as described for the experimental data to
explore the systematic errors in the Fourier es-
timates arising from the analysis of short noise-
delay curves. We further used the simulated
noise-delay curves to test the effect of zero pad-
ding the ITD signals. Omitting zero padding or
using zero padding to various signal lengths
affected exclusively the frequency resolution of
the FFT spectra. All other results remained
qualitatively unchanged (data not shown).

Results

This study is based on extracellular re-
cordings of 290 forebrain neurons in the
AAR of the barn owl. Data were obtained
from eight owls. In two animals, the
recording sites were verified through his-
tological lesions as reported by Vonder-
schen and Wagner (2009).

Characteristic phases in auditory
forebrain neurons

Sensitivity to ITD first emerges in brains-
tem coincidence detector neurons that
cross-correlate narrow-band inputs from
the two ears (Carr and Konishi, 1990; Fi-
scher et al., 2008). In a simple approach,
the input may be regarded as sinusoidal,
resulting in an output resembling a cosine
function. Upon stimulation with tones,
auditory forebrain neurons that inherit
ITD sensitivity from lower processing

is small and frequency-independent.

method will be maximal for the rectangular frequency-tuning curve due
to edge effects in Fourier transforms of the signals and therefore
represents the most conservative estimate. The CD and CP pair defined a
unit’s best IPD at each frequency (see Eq. 2). Tone-delay functions were
modeled as cosine functions with amplitudes and phase offsets defined
by the frequency and phase tuning, respectively. Noise-delay curves were
simulated simply by taking the average of the tone-delay functions. This
process was equivalent to taking a real valued inverse Fourier transform
of the phase and amplitude spectrum, but allowed us to evaluate the
resulting noise-delay function at arbitrary ITDs. According to the Fou-
rier theorem for discrete functions, the time steps and signal duration are
related to the frequency sampling steps as follows:

N—-1
H(f,) = X he
k=0
kkn=0,1,2,...,N—1
k
tk =
NAf
fu = nAf

with k being the running index of the time samples (;) and n being the
running index of the frequency samples ( f,).

With a frequency sampling step Af = 500 Hz and N = 64 samples, the
resulting noise-delay function would be sampled over a time window of

stages should display ITD tuning proper-
ties similar to those observed in brainstem
units. Consistent with this prediction, we
found that neurons in the AAR displayed cyclic tone-delay func-
tions to different tone frequencies (Fig. 2A,E). Neurons were
tuned to ITD across a broad range of frequencies, including low
frequencies (<3 kHz), as illustrated in the two example neurons.
The best ITDs changed as a function of frequency in a regular
manner in the first neuron and in a more irregular way in the
second neuron. The progression of best ITD across frequencies
can be parametrized into a frequency-independent component,
the characteristic delay, which represents a shift of all tone-delay
curves away from 0 (Fig. 24, E, black lines), and a frequency-
dependent delay component that can be derived from the CP (see
Eq. 2), which describes which response phase, ranging from the
neuron’s maximal response (phase 1) to the minimal response
(phase 0.5), is displayed at the characteristic delay. To estimate
the characteristic delay and phase, we computed the IPD that the
neuron was tuned to from each periodic tone-delay curve,
thereby obtaining each neuron’s phase-frequency relation (Fig.
2D,H). Characteristic delay and phase correspond to the slope
and offset, respectively, of the linear regression of the phase—fre-
quency data (see Materials and Methods). Significance of the linear
fit was assumed if the mean squared error was unlikely to occur by
random phase data (bootstrap test; p < 0.005). Both example neu-
rons exhibited a relatively small frequency-independent I'TD tuning
component (CD of 20 and —1 ws, respectively) compared with the
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physiological ITD range of £250 us and a
large frequency-dependent component (CP
0f 0.29 and 0.38 cycles, respectively), where
the range of possible CPs is 0.5 cycles.

If inputs from different frequency

AAR

channels were combined in a linear way in 100
a neuron, the noise-delay function should be @
predictable from the sum of the tone- S 50
delay functions and, furthermore, the 8
general shape of the noise-delay function 0

should be predictable from the character-
istic phase. For instance, a frequency-in-
dependent ITD tuning (CP = 0) predicts I
that tone-delay curves exhibit a peak at a

0O

X

common ITD across frequencies, which 20
should give rise to a symmetric large peak 2

. . . c

in the noise-delay function. In contrast, a 3 10
frequency-dependent component in the o

ITD tuning (CP # 0) indicates a shift of 0200

best ITDs as a function of frequency and
should result in an asymmetric peak in the
noise-delay function (compare Fig. 1B,C).
To test this, we computed the composite
curves (i.e., the normalized sum of the
tone-delay curves) (Yin and Chan, 1990),
and compared them to the normalized
noise-delay function (Fig. 2B, F). In both
cases, the composite curve was a good
match of the noise-delay function (r*
0.8 and 0.53, respectively). As expected
from the CPs in both neurons, the corre-
sponding noise-delay functions displayed an asymmetric shape
featuring one steep slope in the center of the ITD range and
stronger responsiveness to positive (contralateral ear leading)
ITDs.

As the linear across-frequency integration seemed a fair
model, we next tested whether linear decomposition by fast Fou-
rier analysis would enable us to assess a faster and better-sampled
estimate of a neuron’s phase—frequency relation. Prior to fast
Fourier transformation, noise-delay curves were zero padded to a
64 sample signal to yield adequate frequency resolution (~512
Hz) in the amplitude and phase spectrum. The phase spectrum in
turn would allow us to estimate the frequency dependence as
described before. We found that the amplitude spectrum cap-
tured the range of frequency responses seen in the frequency-
tuning curve obtained with tones. Similarly the phase spectrum
obtained by FFT of noise-delay curves was a good match to the
phase—frequency relation of the first example neuron (Fig. 2C,D),
even though its linear phase—frequency relation differed slightly
in the low-frequency and high-frequency ranges. Consequently,
the derived CD and CP were similar to the estimates based on
tone-delay functions (34 us and 0.21 cycles vs 20 ws and 0.29
cycles). In the second example neuron, Fourier decomposition of
the noise-delay curve revealed two important aspects. First, the
neuron’s responsiveness to low frequencies and high frequencies
seen in the tone-delay curves was captured in the FFT amplitude
spectrum, whereas the measured frequency-tuning curve only
reflected the responsiveness to high frequencies (Fig. 2G). In this
case the FFT amplitude spectrum seemed a better estimate of the
neuron’s frequency tuning. Second, while the IPD data points
that estimated the phase—frequency relation were all close to the
FFT phase data points, the enhanced frequency sampling of the
latter indicated two linear regimes in the phase—frequency spec-
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Distribution of characteristic phases and delays in the forebrain AAR and midbrain ICX. 4, Top, CD distributions in AAR
estimated from AAR tone-delay curves (light gray symbols, n = 32) and from FFTs of noise-delay curves (black symbols, n = 279).
The distributions from tone-delay or noise-delay curves did not differ significantly (Kolmogorov—Smirnov test; p > 0.5). Inset, (Ds
obtained from FFTs of noise-delay curves as a function of (Ds obtained from tone-delay curves in a subpopulation of neurons (n =
30). Black line represents the identity line. Bottom, (Ds obtained from FFTs of noise-delay curves recorded in the midbrain ICX (dark
gray symbols, n = 77). Center, The 25-75 percentile range of the distributions (whisker) and medians (circles). CD distributions in
AAR and ICX differed significantly (asterisks, Kolmogorov—Smirnov test; p << 0.01). B, CP distributions in AAR and ICX. Data are
plotted following the same conventions as in A. Note that CP distributions differed significantly between AAR and ICX (asterisks,
two-sample Kuiper’s test; p << 0.01).

trum separated by a phase jump (Fig. 2 H). Although the phase—
frequency relation was significantly linear and similar to the one
estimated from tone-delay curves (CD = 2 us, CP = 0.29 cycles
vs CD =1 us, CP = 0.38 cycles), it could be more accurately
described by two regressions, one in the low-frequency range
(CD = 58 us and CP = 0.2 cycles) and a second in the high-
frequency range (CD = —1 us and CP = 0.3 cycles) (Fig. 2E, H,
violet and yellow lines), a point we will further explore later on.

The observed deviations between FFT spectra and the re-
corded frequency-tuning curve were quantified by subtracting
the frequency-tuning curve from the FFT amplitude spectrum
after normalizing them to the same dynamic range (Fig. 3A). A
mismatch was observed in the low-frequency range where the
FFT amplitude spectra yielded systematically higher power as
reflected by the positive mean error (Fig. 3A, bottom) and the
negative correlation of that error with frequency (r = —0.35; p <
0.01). Presumably, this was due to measuring the frequency-
tuning curves at a fixed ITD. If ITD tuning was frequency-
dependent in a neuron, its frequency response range was not
captured accurately by that method. Instead the amplitude spec-
trum of the noise-delay curve turned out a better match to the
maximal responses obtained in tone-delay curves (Fig. 3B). The
average error pooled over frequencies between these two curves
was significantly smaller than the average error between FFT am-
plitude spectra and frequency-tuning curve (—0.06 in B com-
pared with 0.13 in A; U test; p < 0.01) and was only weakly
correlated to frequency (r = —0.14; p < 0.05). Moreover, the
error variation around the mean was smaller in B than in A (av-
eraged SD after subtracting mean at each frequency band: =0.25
in Band *0.28 in A; Ansari-Bradley test; p < 0.05). We mention
in passing that a change of best ITD with sound intensity could
also contribute to the observed mismatch in frequency tuning
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Figure 5.  Low-frequency and high-frequency ranges feature band-limited CPs and (Ds. A, Unit with linear phase—frequency

relation. Left, Amplitude spectrum (blue line) and frequency-tuning curve (black line) both display a local minimum used to divide
the range in low and high frequencies (dashed black line). Maxima are indicated by arrows and minima by dashed lines. Middle,
Noise-delay curve (black). Band-limited CDs computed over the low-frequency range (violet), the high-frequency range (yellow),
and the entire range (blue line) are indicated as straight lines. Violet and yellow curves indicate the linear estimate of the
contribution to ITD sensitivity by the low-frequency range and high-frequency range, respectively. The linear estimate is a band-
limited inverse Fourier transform computed as the sum of cosine functions across the low-frequency or high-frequency range
weighted by the respective FFT amplitudes and phase-shifted according to the phase spectrum. Right, Phase spectrum regressions
were computed over the low-frequency range (violet), the high-frequency range (yellow), and the entire range (blue line). No
significant difference in the RMSE between a single regression and regressions through low-frequency and high-frequency ranges
(ARMSE) was observed (CDs, —33, —16, —32 s; (Ps, 0.25, 0.16, 0.24 cycles for low-frequency, high-frequency, and broad-
frequency ranges, respectively). B, Conventions as in A. Note that this neuron exhibited a major discontinuity in the phase—
frequency relation at the frequency of its first minimumn the amplitude spectrum. Accordingly, CDs and CPs differed more strongly
for low-frequency, high-frequency, and broad-frequency ranges ((Ds, —35, —71, —12 us; CPs, 0.21, —0.42, 0.2 cycles, respec-
tively). , Distribution of the first two local maxima (top) and minima (bottom) in the amplitude spectra, n = 230 (n = 131 for
second local minimum). D, Stacked histogram of ARMSE values obtained by computing a single regression over the phase data
versus regressions in the low-frequency and the high-frequency ranges separately (n = 230). Light blue and dark blue bars
represent nonsignificant and significant reductions in RMSE, respectively (bootstrap test, p < 0.01). Arrowheads indicate ARMSE
values measured in the example neurons in 4 (light blue) and B (dark blue).
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tone-delay functions had been assessed at
a minimum of four different frequencies.
In these neurons, the composite curves
computed from the tone-delay curves ex-
plained 0.6 + 0.18 (r*, mean * SD) of the
variance in the respective noise-delay
functions.

Most of the 32 AAR neurons (Fig. 4,
light gray symbols) were tuned to both a
time and a phase delay with 50% of the CP
values falling between 0.03 and 0.25 cycles
(percentiles at 25 and 75% here and onwards).
The CD distribution was narrowly centered
within the owl’s physiological range with 50%
of the values ranging between —20 and 12 us.

We confirmed these results by analyz-
ing phase—frequency relations based on
FFTs of noise-delay functions in a large
population of AAR neurons. Noise-delay
functions were recorded in 290 AAR neu-
rons. In 279 neurons, the phase spectra
were significantly linear such that CD
and CP could be estimated (Fig. 4, black
symbols). CDs were distributed narrowly
around zero with the median at —2 ws and
50% of the values between —21 and 26 us
(Fig. 4A). In contrast, the CP distribution
was centered away from zero around a
median of 0.15 cycles with 50% of the data
ranging between 0.04 and 0.21 cycles (Fig.
4B). CD and CP estimates obtained in the
same neuron by both methods — from
tone-delay functions and from FFTs of
noise-delay curves — correlated signifi-
cantly (r = 0.55, p < 0.01 for CDs; r =
0.37, p < = 0.04 for CPs; n = 30; Fig. 4,
insets). Moreover, the CD and CP distri-
bution assessed by the two methods were
statistically similar (p > 0.05, Kolmogo-
rov—Smirnov test, two-sample Kuiper’s
test, respectively).

assessed with noise and tones. But in the owl, this seems unlikely,
as ITD tuning was robust against intensity changes both in the
ITD detector neurons in the brainstem and in the AAR (Cohen
and Knudsen, 1995; Pena et al., 1996). Importantly, the FFT
phase spectra obtained from noise-delay curves on which CD and
CP estimates were based were a good match of best IPD values
computed from tone-delay curves (Fig. 3C). Phase errors were
frequency-independent (r = —0.06, p = 0.31) and small on av-
erage (—0.009 cycles) with an average standard deviation of *0.1
cycles.

Overall, the similarities in recorded-tuning curves and FFT
spectra lend support to our basic assumption that across-
frequency integration in AAR neurons can be adequately de-
scribed as a linear process such that the neuron’s frequency
response and its noise-delay function approximate Fourier pairs.

The characteristics of ITD tuning across frequencies seen in
the example neurons were representative of the population of
AAR neurons we used for recording. One or several tone-delay
functions were recorded in 92 AAR neurons. In 73 neurons, tun-
ing to ITD in response to tone stimuli was significant (Rayleigh
test; p < 0.001). Best IPDs were a linear function of frequency
(bootstrap test; p < 0.005) in 32 out of 37 neurons in which

The finding of frequency-dependent delay tuning (CP # 0) in
AAR neurons was unsuspected in the barn owl considering that
midbrain neurons in the external nucleus of the ICX feature lin-
ear phase—frequency relations with intercepts at zero and hence
represent pure time delays (Takahashi and Konishi, 1986).

To exclude any bias of our FFT-based method, we computed
CD and CP distributions from FFTs of 77 noise-delay functions
recorded in ICX (Fig. 4, bottom). CDs were distributed across
positive (contralateral ear leading) ITDs around a median of 26
s and 50% of the data within —4 and 54 ws. CPs were near zero
(median at 0.02 cycles) and 50% of the values ranging between
—0.05 cycles and 0.07 cycles. The prevalence of frequency-
independent ITD tuning in ICX neurons confirmed previous
findings (Takahashi and Konishi, 1986). Both CD and CP distri-
butions for ICX differed significantly from the distributions ob-
tained for AAR neurons (p < 0.01; Kolmogorov—Smirnov test
and two-sample Kuiper’s test, respectively).

Contributions of low-frequency and high-frequency ranges to
ITD sensitivity

The finding of frequency-dependent ITD tuning in the owl fore-
brain was surprising, not only because this has not been observed
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Linear integration model for noise-delay curves. Phase—frequency relations were determined either by a broadband CD—CP pair (A-E) or by two band-limited CD—CP pairs in the

low-frequency and the high-frequency ranges (F-J). A, Tone-delay curves modeled as cosine functions were offset along the y-axis as a function of frequency (values in kHz). (D is indicated by the
blue line. Peak responses close to zero are connected by a blue curve to emphasize the frequency-dependent shift due to the CP. B, Superimposed tone-delay functions. Note that the curves align at
the (D. €, Noise-delay function modeled as sum of the tone-delay curves. Straight black lines mark the range of ITDs sampled under experimental conditions. Blue circles, Sampled ITD signal for
discrete Fourier analysis. D, Frequency-tuning curve modeled as window function evaluated between 0 and 32 kHzin steps of 0.5 kHz equaling 1between 0.5and 8.5 kHzand 0 everywhere else (black
line). Amplitude spectrum of the full-length noise-delay function was superimposed (blue circles). E, Phase—frequency tuning (black line) and superimposed phase spectrum (blue circles). F-J,
Conventions as in A—E. Tone-delay curves in the high-frequency range in light gray. Low-frequency CD in violet. High-frequency CD in yellow. Note that the discontinuity in the phase—frequency

relation has no effect on the amplitude spectrum (cf. Fig. 7B).

in the midbrain, but also because its origin in the auditory system
raises an intriguing question. One obvious difference between the
forebrain and the midbrain pathway is the integration of inputs
that convey ITD sensitivity in the low-frequency range (<3 kHz)
in the forebrain (cf. Fig. 2, also Pérez et al., 2009; Vonderschen
and Wagner, 2009). ICX neurons typically respond to frequen-
cies >3 kHz. In other words, they exhibit high-pass characteris-
tics (Wagner et al., 2007). Therefore, a major processing step in
the forebrain pathway involves the convergence of ITD sensitivity
in the high-frequency and the low-frequency ranges. Interest-
ingly, a majority of neurons (230 out of 279) exhibited two max-
ima in the amplitude spectrum of the noise-delay curve (Fig.
5A,B), the low-frequency maximum at ~2 kHz and the high-
frequency maximum at ~6 kHz. The local minimum occurred at
~3.5 kHz (Fig. 5C). Moreover, many phase spectra were discon-
tinuous around the frequency at which the local minimum oc-
curred (Fig. 5B). These neurons appeared to display distinct CDs
and CPs in the low-frequency and the high-frequency ranges. To
quantify these band-limited CDs and CPs, we computed band-
limited regressions over two regimes of the phase data, one in the
low-frequency range and one in the high-frequency range. In
each neuron, the low-frequency range was separated from the
high-frequency range by the frequency at which the local mini-
mum in the amplitude spectrum occurred. In some neurons the
phase—frequency relation was consistent with a single CD and CP
(Fig. 5A). Consequently, the root mean squared error was not
reduced substantially by a fit using two band-limited regressions
instead of a single regression over the entire frequency range. In

the majority of neurons, however, the discontinuity in the phase
spectrum was more pronounced and the band-limited regres-
sions reduced the RMSE significantly (bootstrap test, p < 0.01)
(Fig. 5B,D).

Linear model for across-frequency integration

The local minima in the amplitude spectra and discontinuities in
the linearity of the phase—frequency spectra at corresponding
frequencies might indicate converging inputs conveying band-
limited ITD tuning. Could they alternatively represent a system-
atic effect of the Fourier decomposition of noise-delay curves?
According to the interdependencies of sampling in the time and
frequency domain in discrete Fourier analysis, noise-delay curves
would ideally have been assessed over a range of 2 ms in steps of
31.25 pstoyield frequency sampling steps of 500 Hz as used when
assessing frequency tuning with pure tones. Yet we evaluated ITD
tuning over the narrower physiological range of =270 us in steps
of 30 ws. Thus, the short ITD curves can be considered the prod-
uct of the ideal signal multiplied with a rectangular window of
540 s width. To systematically test the spectral estimation errors
introduced by using relatively short ITD curves, we created simu-
lated noise-delay curves from linear integrator model units provided
with arbitrary phase—frequency functions (Fig. 6). If noise-delay
functions were sampled over their entire length (64 samples between
+1000 ws), the FFT yielded the exact amplitude and phase spectrum
that was used to create the curve (Fig. 6, blue symbols) regardless of
whether the model neurons were provided with one broadband or
two band-limited CD—CP pairs. This was expected, since the synthe-
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We note in passing that the use of more
sophisticated window functions than sim-
ple rectangles is a standard method in dig-
ital signal processing to improve estimates
of amplitude spectra. However, we re-
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the local minimum in the amplitude spectrum.

sis of noise-delay functions from cosine curves corresponded to a
real valued inverse Fourier transform. We note that observed differ-
ences in the phase spectrum at frequencies of amplitude 0 can be
neglected (Fig. 6E,]).

However, if noise-delay curves were evaluated over a short
range of ITDs corresponding to the experimental conditions
(%270 us in steps of 30 us), deviations in amplitude and phase
spectrum could be observed (Fig. 7A). In this case, the FFT am-
plitude spectrum could not reproduce the sharp edges of the
original flat spectrum, but instead appeared as a low-pass filtered
version of the original spectrum and leaked into the range of
frequencies above 8.5 kHz, which had not contributed to the
original signal. This spectral leakage was primarily caused by the
rectangular window multiplied onto the ideal ITD signal (i.e.,
the short range of ITDs over which the curve was evaluated)
(Harris, 1978; Smith, 1999). Notably, deviations in the phase
spectrum were minor. Only phases at very high frequencies (>8.5
kHz) corresponding to frequencies at which spectral leakage was
obvious did not reflect the actual phase—frequency relation of the
original signal. CD and CP estimates remained mostly unaffected
as the deviating phase data corresponded to frequencies that con-
tributed <30% of the maximal amplitude and were therefore
excluded from the phase—frequency regression.

2 4 6 8 10

= Model prediction upper limit
+ Amplitude at minimum in AAR

Phase jumps cause systematic changes in the amplitude spectra of short noise-delay curves. Segments of model
noise-delay curves shown between #270 ws and their FFT spectra. Left column, Original frequency tuning (black line) and
amplitude spectra of noise-delay curves (circles, gray shades indicate unit identity). Middle column, Model noise-delay curves were
sampled according to experimental conditions (=270 ps, 30 s steps; 4, black circles). Right column, Original phase—frequency
relation (lines) and FFT phase spectra of noise-delay curves (circles). A, Model unit with (D = 30 ws and CP = 0.2 cycles. The
amplitude spectrum of the short noise-delay curve appeared as a filtered version of the original frequency-tuning curve. The phase
spectrum deviated only slightly from the original signal at frequencies <<9 kHz. B, Model units with band-limited (Ds and CPs. Note
that phase jumps in the phase—frequency function were reflected as local minima in the amplitude spectrum due to a combined
effect of spectral leakage and interference. ¢, Model units with fixed phase jumps of 0.3 cycles. Varying (Ds and CPs did not affect
the amplitude spectrum further. D, Correlation of local minima and phase jumps in amplitude and phase spectra of noise-delay
curves in 230 AAR units compared with the prediction from modeled noise-delay curves. Phase jumps were computed as the
absolute phase difference between the regressions through the low-frequency and high-frequency phase data at the frequency of

FFT amplitude spectrum. To address this
question, we systematically introduced
discontinuities in the phase—frequency
relation at 3500 Hz corresponding to a
change in CD and CP between low-fre-
quency and high-frequency ranges. Inter-
estingly, we found systematic effects in the
amplitude spectrum when introducing
phase jumps in the phase—frequency rela-
tion such that the CP in the high-
frequency range changed while the CD
was kept constant (Fig. 7B). Phase jumps
caused a local minimum in the FFT am-
plitude spectrum that deepened with in-
creasing phase difference. A phase jump
of 0.5 cycles resulted in zero power at that
frequency in the amplitude spectrum.
This phenomenon can be regarded as a
combined effect of spectral leakage and
interference. The amplitude spectrum is
estimated at a frequency between two fre-
quencies that contributed to the original
signal. Hence it will be an average of the
two contributions. Due to the phase difference of 0.5 cycles, these
frequencies interfere negatively, causing an absolute minimum
(Fig. 7B). The estimated phase at that frequency fell in between the
neighboring phases, thereby smoothing out the phase jump. Additional
variation of the CD had no effect on the minimum in the amplitude
spectrum (Fig. 7C).

These model data demonstrate that phase jumps in the phase—
frequency spectrum will appear smoothed out in the FFT esti-
mate of the phase spectrum but cause local minima in the
amplitude spectrum. The model predicts a negative correlation
between size of the phase jump (between 0 and 0.5 cycles) and the
relative amplitude at that frequency. Indeed, in Fourier trans-
forms of AAR noise-delay curves, the normalized amplitude at
the local minimum was negatively correlated with the absolute
phase jumps (Fig. 7D; r = —0.35; p < 0.001; n = 230). The
relation predicted by the model was an upper bound to 93% of
the data. The model relation can only be approached as an upper
bound, as the model was provided with flat amplitude spectra of
1 across all frequencies, whereas flat amplitude spectra were not
present in the real data. The negative correlation of phase jumps
and amplitude minima at frequencies of ~3.5 kHz confirms that
low-frequency and high-frequency inputs converge in the fore-
brain pathway, contributing each a band-limited CD—-CP pair.

Frequency (kHz)
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ITD sensitivity in different frequency
bands across the population of neurons
We next assessed CDs and CPs in the low-
frequency range and high-frequency
range across the population of 230 AAR
neurons that featured a local minimum in
the amplitude spectrum (Fig. 8). The CD
distribution in both frequency ranges was
similar (Kolmogorov-Smirnov test; p >
0.05) and independent (r = 0.14; p >
0.05). Ninety percent of all values fell
within a range that was much smaller than
the physiological range of the barn owl
(i.e., between —92 and 76 us for low fre-
quencies and between —137 and 114 us
for high frequencies compared with a
physiological range of £250 us (Fig. 8 A).
However, the distribution of CPs in the
high-frequency and low-frequency ranges
was significantly different (Kuiper’s test;
p < 0.01), and uncorrelated (r = —0.04;
p > 0.05). CPs at high frequencies
spanned the entire range with an almost
uniform distribution, while the distribu-
tion of CPs in the low-frequency range
was skewed and narrow around a median
of 0.21 cycles (Fig. 8B). As explained
above, some systematic errors were asso-
ciated with FFTs of relatively short noise-
delay functions. To assess the accuracy in
our CD-CP estimates, we computed the
differences between true and estimated
CD-CP pairs for model noise-delay func-
tions with flat frequency spectra in the
broadband range (0.5-9 kHz; Fig. 8C), the
low-frequency range (0.5-3.5 kHz; Fig.
8D), and the high-frequency range (4-9
kHz; Fig. 8 E). Each arrow in Figure 8C-E
starts at the true CD—CP pair of a model
unit and points to the estimated CD-CP
pair and hence indicates size and direction
of the error in the CD-CP plane. Errors
between true and estimated CD—CP pairs
were negligible for the broadband as well
as for the high-pass CD—CP estimates in
the parameter space comprising 90% of
the data (Fig. 8C,E, green squares). How-
ever, for the low-frequency range, a sub-
stantial number of CD—CP combinations
in and outside the area comprising 90% of
the AAR data resulted in CP and CD esti-
mates that differed clearly from the true
CP and CD (Fig. 8 D, black arrows).
From Equation 1, it is clear that differ-

ent combinations of CDs and CPs can lead to the same best ITD
value at a given frequency. We indicated the iso-ITD lines con-
necting all CD—CP combinations that lead to a peak ITD at 0 and
+250 ps for each range’s center frequency (Fig. 8C-E, black
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independent and not significantly different (p > 0.05; Kolmogorov—Smirnov test). B, CP distribution in the low-frequency and
high-frequency ranges were independent (r = —0.02; p > 0.05) and differed significantly (p << 0.01; Kuiper's test). However,
note that the CP estimates in the low-frequency range had only rough accuracy as demonstrated in D. (~E, CP as function of (D for
broadband (C, blue dots), low-frequency (D, violet dots), and high-frequency (E, yellow dots) ranges. Green squares mark the
range of CD—CP pairs comprising 90% of the data. CD—CP pairs that convey tuning to same best ITD are connected by iso-ITD lines
for each range’s center frequency at 0 s and =250 s (black lines and dashed black lines, respectively). Arrows indicate
estimation errors pointing from the true CD—CP pair of a model unit to the estimate obtained from the FFT of its noise-delay curve.
Note that errors shifted the estimated CD—CP pairs parallel to the iso-ITD lines. Hence the estimate of best ITD corresponding to a
(D—CP pair remained unaffected by CD—CP estimation error. Black arrows designate all CD—CP pairs from model data resulting in
estimates that fall inside the range of experimental data. Negative correlations (r) of CP and (D in the experimental data were
significant for broadband and low-frequency data (p << 0.05). (Ds and CPs in the high-frequency range were correlated if data
points in the bottom left corner were shifted by an entire cycle (r = —0.62; p < 0.05). F, ITD peak sensitivity contributed by
low-frequency and high-frequency ranges across the AAR population.

across all frequency bands conveyed mainly sensitivity to con-
tralateral leading ITDs (data points up to and right of the zero
iso-ITD lines). Finally we calculated the best ITDs conveyed ac-
cording to the band-limited CD—CP pair and each neuron’s best

lines). This illustrates that true and estimated CD—CP pairs in our frequencies in the low-frequency and high-frequency ranges
model data got systematically shifted in parallel to the iso-ITD  (compare Eq. 1). As expected from the CD-CP distributions, we
lines. Thus the ITD conveyed by a CD—CP pair was accurately found that high frequencies conveyed sensitivity to small values
represented, although the accuracy of CD-CP estimates in the ~ of ITD, whereas the low frequencies conveyed sensitivity to large
low-frequency range was relatively coarse. The CD-CP pairs  values of ITD across the population of AAR neurons (Fig. 8 F).
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Discussion

This study shows that ITD information is substantially remod-
eled along the barn owl’s forebrain pathway such that neurons at
its endpoint exhibit frequency-dependent ITD tuning, although
they receive inputs from a frequency-independent representation
in the central nucleus of the inferior colliculus (ICC). Tone-delay
curves and Fourier decomposition of noise-delay curves revealed
that high-frequency channels conveyed sensitivity to small con-
tralateral leading ITDs, whereas low-frequency channels con-
veyed tuning to large contralateral leading ITDs. In the following,
we shall discuss the neural mechanisms allowing the emergence
of frequency-dependent ITD tuning in the owl compared with
the mechanisms discussed in mammalian systems.

ITD detection and ITD representation

How the brain detects ITDs and represents them in a meaningful
way remains a controversial subject (Joris and Yin, 2007; Koppl
and Carr, 2008; Grothe et al., 2010). In mammals, ITD detection
and representation typically depend on frequency, whereas the
detection of ITD in the avian nucleus laminaris and its represen-
tation in the midbrain pathway is frequency-independent.

ITD detection in the sense used here describes the process by
which ITD is extracted in the nervous system. ITD representa-
tion, in contrast, refers to the subsequent information-processing
steps. Thus, although ITD representation relies on the signals
created during ITD detection, it is important to realize that the
remodeling in the ascending auditory pathway is not limited by
the detection mechanism. Specifically, a frequency-independent
ITD detection as occurring in the barn owl’s nucleus laminaris
may be remodeled into a frequency-dependent representation, as
we demonstrate here, for the forebrain pathway. Likewise, re-
modeling of the ITD representation may occur in the owl’s mid-
brain. While most neurons in the ICC seem restricted to
represent best delays within one half of their characteristic period
(Fontaine and Brette, 2011), convergence of inputs creates ITDs
outside the so-called mr-limit in the ICX (Wagner et al., 2007).
Whether similar remodeling occurs in mammals is unknown.

Frequency-dependent delays in single neurons

In single neurons, the representation of ITDs may be described by
CD and CP (Eq. 1). The Jeffress model proposes axonal delays
that generate a variety of CDs at 0 CP for excitatory—excitatory
(EE) inputs and 0.5 CP for excitatory—inhibitory (EI) inputs
(Goldberg and Brown, 1969). Experimental evidence supports
the realization of this model in birds (Sullivan and Konishi, 1986;
Carr and Konishi, 1990). Coincidence detectors receive EE inputs
such that CPs scatter near zero (Koppl and Carr, 2008). In con-
trast, in the mammalian superior olive coincidence detection on
EE, EI or excitatory-inhibitory-excitatory inputs generate
frequency-dependent ITD tuning with widely distributed CPs
(Yin and Chan, 1990; Spitzer and Semple, 1995; Joris, 1996; Batra
et al., 1997; Fitzpatrick et al., 2002).

CDs and CPs at higher processing stages of the mammalian
auditory system (dorsal nucleus of the lateral lemniscus, Pecka et
al., 2008; inferior colliculus, Yin and Kuwada, 1983; Yin et al.,
1986; Kuwada et al., 1987; Batra et al., 1993; and auditory cortex,
Fitzpatrick et al., 2000) result from converging inputs from the
detection stage (McAlpine et al., 1998; Fitzpatrick et al., 2000;
Shackleton et al., 2000; Agapiou and McAlpine, 2008). In barn
owls, nonzero CPs in the ICC have been reported in one publi-
cation (Moiseff and Haresign, 1992). Regardless of this, the barn
owl midbrain pathway appears dedicated to preserve pure time
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Figure 9.  Schematic of ITD processing along the forebrain pathway. A, Across-frequency

convergence involves systematic convergence of ITD channels. Map of delay-sensitive neurons
(gray dots) tuned to ITD and frequency sketching the arrangement in the midbrain ICC that gives
rise to the forebrain pathway. Note that the mapped arrangement is hypothetical for the low-
frequency range (<3 kHz). Lines, Inputs recruited by the forebrain pathway comprise the entire
frequency range. Best ITD was a continuous (blue)— or, as in the majority of cases—a discontin-
uous function (violet and yellow) of frequency. B, C, Top, Tone— delay functions corresponding
to the ITD sensitivity displayed by recruited inputs. Center, Noise-delay curves obtained by
summation across inputs. Bottom, Phase-frequency relations for the respective neurons. Note
that integration along the forebrain pathway results in AAR neurons exhibiting a single CD and
(P or, more commonly, two different CD—CP pairs in the low-frequency and high-frequency ranges,
leading to enhanced responsiveness to contralateral leading ITDs (red noise-delay curve).

delays. In ICC, tonotopic layers (>3 kHz) organized in arrays
of neurons represent array-specific CDs (Wagner et al., 1987;
Takahashi et al., 1989). Across-array convergence onto ICX
neurons results in a pure time delay representation based on
CDs with CPs ranging near zero (Takahashi and Konishi,
1986).

Recent findings indicated that low-frequency information
substantially impacts ITD processing in the forebrain (Pérez and
Pena, 2006; Vonderschen and Wagner, 2009). Thus, a parsimo-
nious explanation for the emergence of nonzero CPs at the
endpoint of the forebrain pathway lies in the remodeling of in-
formation through convergence of inputs from a broad fre-
quency range (Fig. 9A).

Integration of ITD-tuned inputs in AAR neurons is
frequency-dependent such that ITD and frequency convergence
involves low-frequency input (<3 kHz) with large contralateral
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ITDs and high-frequency input with small contralateral ITDs
(Fig. 9B, C).

Frequency-dependent ITD representation in

neural populations

Could the frequency dependence of ITD tuning in the AAR be
inherited from such lower processing stages as the ICC, the gate-
way nucleus giving rise to the midbrain and forebrain pathways?
The distribution of ITDs in ICC narrows with increasing fre-
quency, with most, but not all, best ITDs lying within the 7-limit
(Wagner et al., 2007). This is consistent with the scarceness of
large ITDs in high-frequency channels, but is not in line with the
absence of small ITDs in low-frequency channels in AAR. Thus
we surmise that ITD information is partially discarded along the
forebrain pathway.

In the medial superior olive and ICC of at least some mam-
malian species, best ITDs are inversely related to best frequency
such that neurons tend to represent a constant interaural phase
(McAlpine et al., 2001; Brand et al., 2002; Hancock and Delgutte,
2004; Joris et al., 2006; Pecka et al., 2008; but see Bremen and
Joris, 2011). Several mechanisms may underlie this way of detect-
ing ITD. Apart from axonal delays, cochlear delays were proposed
to underlie frequency-dependent ITD tuning (“stereausis”; Shamma et
al., 1989; Joris et al., 2006; Day and Semple, 2011). Precisely timed
glycinergic inhibition shaped ITD detection in small mammals
(Brand et al., 2002; Pecka et al., 2008; Leibold, 2010), constituting
a third possible mechanism. In owls, the necessary frequency
mismatches assumed by the stereausis model are absent (Pefia et
al., 2001; Koppl and Carr, 2008; Fischer and Pefia, 2009; Sing-
heiser et al., 2010b), and there is no evidence for shifts in delay
tuning by inhibition (Fujita and Konishi, 1991; Mori, 1997; Fun-
abiki et al., 1998).

Thus, our data suggest that the frequency-dependent ITD
tuning observed in AAR and reminiscent of what is observed in
the mammalian brainstem emerges in higher processing stages.
In other words, while the Jeffress model yields a time delay code
on early levels of processing, this does not restrain the represen-
tation at later levels, where it may be reshaped.

Optimality and decoding of ITD representations

Optimality considerations predicted two regimes of ITD repre-
sentation based on head size and an animal’s physiological fre-
quency range (Harper and McAlpine, 2004). Above a critical
frequency (3 kHz in the owl), a sparse representation in a sensory
map was proposed. This map of auditory space is well established
in the ICX and optic tectum of the barn owl (Knudsen and Koni-
shi, 1978a,b; Knudsen, 1982). Below the critical frequency, the
representation should change into a population code, in which
the relative activity in two populations represents ITD. This pre-
diction did not hold for the owl’s midbrain ICC, where many ITD
channels are represented at both low and high frequencies (Wag-
ner et al., 2007). However, it was consistent with our observations
in AAR, where low-frequency channels contribute large ITDs. On
the other hand, high-frequency channels in AAR were restricted
to small ITDs, which is at variance with the predicted optimal
sparse code. Harper and McAlpine (2004) quantified optimality
based on the Fisher information extracted from ITD tuning
curves in a population of model neurons. Yet, throughout the
evolution of neural codes, optimality is likely based on the decod-
ability of sensory representations by downstream motor areas
and subsequently on the performance in relevant behavioral tasks
(see Wagner et al., 2007). Thus, if the behaviors controlled by
midbrain and forebrain pathways differ, the restraints on optimal
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coding differ, too. In fact, optimal tuning functions may reflect
the variability of the motor output they support, according to a
theoretical study (Salinas, 2006). While the midbrain pathway
uses high-frequency auditory cues to govern head saccades
(Knudsen et al., 1993; Wagner, 1993), the forebrain pathway has
been implicated in low-frequency sound localization (Cohen and
Knudsen, 1996; Pérez and Pefia, 2006; Vonderschen and Wagner,
2009; Singheiser et al., 2010a), memory-based orienting (Knud-
sen and Knudsen, 1996), novelty detection (Reches and Gut-
freund, 2008), and top-down control (Winkowski and Knudsen,
2006). These functional differences supposedly affect the opti-
mality criteria for the sensory representations leading to a
frequency-dependent representation of ITD in the forebrain
pathway and a frequency-independent representation of ITD in
the midbrain pathway.

Meanwhile, the actual impact of a change in ITD tuning func-
tions on the neural code remains unclear. Some neurons in the
owl’s thalamus bear similarity to AAR in that they represent ITDs
in the low-frequency and high-frequency ranges. Notably, these
neurons did not display strong changes in their auditory spatial
receptive fields compared with those in the midbrain ICX (Pérez
et al., 2009). While we cannot exclude the possibility that the
transformation to frequency-dependent ITD tuning observed in
AAR s functionally irrelevant, our data offer a strong incentive to
test functional decoding of ITDs in behavioral experiments.

A substantial rearrangement of ITD information in the fore-
brain pathway may also be present in other species: a study in
humans reported a switch in the lateralization percept that was
unpredicted based on the population activity in the inferior col-
liculus (Thompson et al., 2006). These results suggest the possi-
bility of ITD representation reorganization in the mammalian
auditory pathway as well.
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