
Elyahu et al., Sci. Adv. 2019; 5 : eaaw8330     21 August 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 14

I M M U N O L O G Y

Aging promotes reorganization of the CD4 T cell 
landscape toward extreme regulatory  
and effector phenotypes
Yehezqel Elyahu1,2,3*, Idan Hekselman3,4*, Inbal Eizenberg-Magar5, Omer Berner1,2,3, 
Itai Strominger1,2,3, Maya Schiller6, Kritika Mittal1,2,3, Anna Nemirovsky1,2,3, 
Ekaterina Eremenko1,2,3, Assaf Vital3,4, Eyal Simonovsky3,4, Vered Chalifa-Caspi3,  
Nir Friedman5, Esti Yeger-Lotem3,4†, Alon Monsonego1,2,3†

Age-associated changes in CD4 T-cell functionality have been linked to chronic inflammation and decreased 
immunity. However, a detailed characterization of CD4 T cell phenotypes that could explain these dysregulated 
functional properties is lacking. We used single-cell RNA sequencing and multidimensional protein analyses to 
profile thousands of CD4 T cells obtained from young and old mice. We found that the landscape of CD4 T cell 
subsets differs markedly between young and old mice, such that three cell subsets—exhausted, cytotoxic, and 
activated regulatory T cells (aTregs)—appear rarely in young mice but gradually accumulate with age. Most 
unexpected were the extreme pro- and anti-inflammatory phenotypes of cytotoxic CD4 T cells and aTregs, respectively. 
These findings provide a comprehensive view of the dynamic reorganization of the CD4 T cell milieu with age and 
illuminate dominant subsets associated with chronic inflammation and immunity decline, suggesting new therapeutic 
avenues for age-related diseases.

INTRODUCTION
One of the key hallmarks of aging is the deterioration of the immune 
system, rendering the elderly more prone to infections, chronic 
inflammatory disorders, and vaccination failure (1). A marked 
change observed in aging relates to the composition and functionality 
of CD4 T cells, the main orchestrators of adaptive immune responses 
(1–3). In young rodents and humans, CD4 T cells comprise a high 
frequency of naïve cells, reflecting the ability of the immune system 
to encounter new antigens, respond to them effectively, and generate 
immune memory (4). With aging, the naïve subset shrinks along 
with the accumulation of highly differentiated memory cells, which 
often show dysregulated properties (5, 6). For example, previous 
studies performed on classical CD4 T cell subsets described reduced 
proliferation, lower secretion of interleukin-2 (IL-2) cytokine (7, 8), 
and accumulation of metabolic defects (9), along with higher pro-
duction of pro-inflammatory mediators (10). Furthermore, regulatory 
T cells (Tregs) appear to accumulate with age and further contribute 
to reduced responsiveness of effector T cells (11, 12). These changes 
are assumed to result from age-related thymus involution, repeated 
antigen encounters, and intrinsic cellular senescence processes (4, 13). 
In addition, systemic low-grade chronic inflammation that develops 
with age, referred to as “inflammaging”, also appears to affect the 
phenotype and function of CD4 T cells (14, 15). Overall, aging is 

associated with a change in the structure of the CD4 T cell compart-
ment, where accumulating dysfunctional subsets contribute to 
immune failure.

Only recently, studies performed at a single-cell resolution showed 
elevated cell-to-cell transcriptional variability in the activation pro-
gram of CD4 T cells (16) and in leukocytes from lungs of old mice 
(17). In line with these findings, increased variation of chromatin 
modifications was recently observed in immune cells from elderly 
individuals (18). While these studies provided insights into the 
functional alterations occurring in aging, they primarily relied on 
previously described markers of CD4 T cell subsets or on small num-
bers of cells, which might obscure more complex cellular compositions. 
Therefore, an unsupervised, large-scale view on the organization of 
cell subsets within the CD4 T cell population in aging is needed.

Here, we applied 3′-based single-cell RNA sequencing (scRNA-
seq) to characterize CD4 T cells from young and aged C57BL/6 mice. 
Transcriptomic profiles of 24,007 CD4 T cells from both age groups 
revealed the emergence of distinct activated regulatory, exhausted, 
and cytotoxic CD4 T cell subsets in aged mice, which were very rare 
in young mice, and accounted for about 30% of the CD4 T cell com-
partment of old mice. We further show that these subsets gradually 
accumulate with age and have distinct pro- and anti-inflammatory 
functional properties.

RESULTS
scRNA-seq reveals complex gene expression signature 
of CD4 T cells in aged mice
We generated scRNA-seq data from splenic CD4 T cells of young 
(2 to 3 months; n = 4) and old (22 to 24 months; n = 4) healthy mice, 
henceforth denoted young and old cells, respectively (Fig. 1A; fig. S1, A 
and B; and Materials and Methods). Cells were subjected to two rounds 
of CD4 enrichment followed by sorting for CD4+TCRb+CD8− 
CD19−CD11b−NK1.1− cells to achieve highly pure (>99%) CD4 T cells 

1The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of 
Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. 
2Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research 
Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel. 3National Institute 
for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 
Israel. 4Department of Clinical Biochemistry and Pharmacology, Faculty of Health 
Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. 5Department of 
Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel. 6Departments 
of Immunology and Neuroscience, Rappaport Faculty of Medicine, and the Integrated 
Cancer Center, Technion-Israel Institute of Technology, Haifa 3525422, Israel.
*These authors contributed equally to this work.
†Corresponding author. Email: alonmon@bgu.ac.il (A.M.); estiyl@bgu.ac.il (E.Y.-L.)

Copyright © 2019 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Elyahu et al., Sci. Adv. 2019; 5 : eaaw8330     21 August 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 14

C D

E F

G

CD62L

****

%
 C

D
44

+
C

D
62

L–

Young Old
0

10

20

30

40

50

C
D

44 0 104 105 106

0

10
4

10
5

10
6

10
7

0 104 105 106

0

104

105

106

107

Old

Young

Mean normalized expression

ln
(f

ol
d 

ch
an

ge
)

D
im

2

Dim1

Old

N = 10,821 cells

B
Viability
 dye

NK1.1/
CD11b/
CD19

CD8

0 102 103 104 105

0

−10
3

103

104

105

T
C

R

CD4

99.8

A

×4 young
(2–3 months)

Isolated 
 spleen

Purified
 CD4 T cells

3' GemCode-
 based

scRNA-seq

Analysis
 of 24,007

 CD4 T cells

×4 old
(22–24 months)

(i) (ii) (iii) (iv)

Young

N = 13,186 cells

Yo
un

g

Lef1

AUC = 0.65

Satb1

AUC = 0.63

Ccr7

AUC = 0.62

 O
ld

Aw112010

AUC = 0.75

S100a11

AUC = 0.69

Izumo1r

AUC = 0.67

17.2

69.6

36.8

37.022.3

10.2

Ccl5

S100a6

Ikzf2

Aw112010

S100a11

Izumo1r

Maf

Nkg7

Tnfsf8
Tnfrsf4

S100a4
Sostdc1

SrgnLag3
Ly6a

Tnfrsf18 S100a10

Lef1Satb1

Ccr7 Dapl1

−0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6

0
1
2
3

0
1
2
3

0
1
2
3

0 0

2

4

0

2

4

2

4

Fig. 1. Gene expression signatures of CD4 T cells in young and old mice. (A) Experimental flowchart: (i) Splenocytes were harvested from young (2 to 3 months, n = 4) 
and old (22 to 24 months, n = 4) mice; (ii) CD4 T cells were purified using magnetic separation and sorting; (iii) cells’ mRNAs were barcoded using 10x Genomics Chromium 
platform and sequenced; and (iv) data were computationally analyzed. (B) Representative flow cytometry plots showing highly pure CD4+TCR+ T cells after magnetic 
enrichment and sorting, discarding cells that were positive for CD8, CD19, CD11b, and/or NK1.1. These cells were used for the scRNA-seq experiments. (C) Analysis of the 
sorted young and old CD4 T cells stained for CD44 and CD62L surface markers. Top: Representative flow cytometry plots of cells from young and old mice. Bottom: Cells 
from old mice show a shift toward effector-memory identity. Data from two different experiments (n = 2 in each age group, per experiment). Each dot represents a mouse, 
bars represent mean ± SEM (unpaired t test, ****P < 10−4). (D) t-SNE projections of CD4 T cells including 13,186 and 10,821 cells from young (turquoise) and old (brown) 
mice, respectively. Each dot represents a single cell. (E) MA plot showing differentially expressed genes between age groups. Each dot represents a gene, with significantly 
up-regulated genes [ln(fold change) > 0.4, adjusted P < 10−3] in young and old mice colored turquoise and brown, respectively. (F and G) t-SNE projections with cells 
colored by the expression levels of age marker genes. Markers were selected as differentially expressed genes within an age group [ln(fold change) > 0.4] that best distinguish 
between age groups according to a receiver operating characteristic analysis [(F) AUC > 0.61, power > 0.23 and (G) AUC > 0.66, power > 0.33].
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(Fig. 1B and fig. S1C). To assess the gross shift of CD4 T cells from 
naïve to memory phenotype in aging, we measured canonical sur-
face markers using flow cytometry. As expected (19), we observed a 
significant reduction in the abundance of naïve cells (CD4+CD62L+ 
CD44−, P = 0.0006) and an increase in the frequency of effector-
memory cells (CD4+CD44+CD62L−) in the old versus the young 
splenic CD4 T cells (Fig. 1C). Next, we sequenced thousands of 
these cells using the 10x Genomics GemCode Chromium platform (20) 
to explore the transcriptomic differences between the age groups. Af-
ter quality control steps, we obtained expression profiles of 13,186 
and 10,821 pure CD4 T cells from young and old mice, respectively 
(figs. S1D and S2A, table S1, and Materials and Methods).

Next, we applied dimensionality reduction to their profiles. For 
this, we selected genes with variable expression and projected them on 
the first 20 principal components (PCs), followed by a t-distributed 
stochastic neighbor embedding (t-SNE; fig. S2, B and C, and Materials 
and Methods). Cells did not cluster topologically by depth of 
sequencing, experimental batch, or individual mouse (fig. S2, D 
and E). Instead, old cells grouped together in a distinctive manner, 
thus highlighting the impact of aging on the transcriptome of CD4 
T cells (Fig. 1D). Differential expression analysis revealed that while 
genes up-regulated in young cells [ln(fold change) > 0.4, adjusted 
P < 10−3] were associated with a naïve phenotype [e.g., Lef1, Ccr7, 
and Dapl1 genes (16)], genes up-regulated in old cells presented a 
mix of inflammatory (e.g., S100a4, S100a11, and Ccl5 genes) and 
regulatory (e.g., Maf, Ikzf2, and Tnfrsf4 genes) signatures (21), as 
well as exhaustion markers [e.g., Lag3 and Tnfsf8 genes (22); Fig. 1E 
and Materials and Methods]. In contrast to the relatively homoge-
neous signature of young cells, the highly expressed inflammatory, 
regulatory, and exhaustion genes in old cells suggest an intricacy of 
the CD4 T cell compartment in old mice. Next, we searched for 
shared genes exclusively expressed in old or young cells by using 
receiver operating characteristic analysis. We focused on genes that 
were highly differentially expressed in each age group (Materials 
and Methods). Lef1, Satb1, and Ccr7 genes were the top three markers 
common to young cells [AUC (area under the curve) > 0.61 and power 
> 0.23], supporting the dominancy of naïve CD4 T cells in young age 
(Fig. 1F). The three top markers common to old cells were the genes 
Aw112010, S100a11, and Izumo1r (AUC > 0.66 and power > 0.33; 
Fig. 1G), which were recently reported to be up-regulated under chronic 
inflammatory conditions (23–25). These genes imply a strong relation-
ship between the inflammatory state and the identity of CD4 T cells 
in aging and can be used as general markers for aged CD4 T cells.

CD4 T cells undergo extensive diversification with age, 
resulting in a new population structure
To classify CD4 T cell subsets in an unbiased manner, we clustered 
cells by their transcriptomic profiles and assessed the robustness of 
the clusters’ identity [Materials and Methods; (26)]. Combining all 
cells from young and old mice, we identified seven distinct and 
robust clusters (Fig. 2A and fig. S2F). To associate each cluster 
with a known CD4 T cell subset, we screened the most significantly 
up-regulated genes (combined P < 10−3) of each cluster and com-
pared them to previously reported T cell subsets and to canonical 
markers (Fig. 2, B and C; fig. S3, A and B; table S2; and Materials 
and Methods). Of the seven distinct clusters, three were matching 
established subsets: a population of naïve T cells overexpressing 
Lef1, Sell, and Igfbp4 genes (denoted naïve); a population of resting 
regulatory T cells (rTregs), labeled on the basis of their classical expression 

of Foxp3 and Il2ra (encoding CD25 protein) genes, together with 
the expression of naïve-associated genes Lef1 and Sell (21); and 
effector-memory T cells (TEM) expressing the Igals1, S100a4, and 
Itgb1 genes (27). We also observed a population of naïve CD4 T cells 
(denoted Naïve_Isg15) expressing the Lef1, Sell, and Igfbp4 genes 
along with type I interferon (IFN) response genes (Ifit1, Ifit3, Isg15, 
and Stat1), which possibly indicate an intermediate state of T cell 
receptor–mediated activation or direct IFN signaling (28). The 
transcriptional signatures of the three remaining subsets have not 
been previously defined in the context of aging and include activated 
regulatory T cells (aTregs) overexpressing Foxp3, Cd81, Cd74, and 
Cst7 genes, together with aTregs-associated genes such as Tnfrsf4, 
Tnfrsf9, Tnfrsf18, and Ikzf2 (21, 29, 30); cells with an exhaustion 
signature (denoted exhausted, fig. S3B) overexpressing the Lag3, 
Tbc1d4, Sostdc1, and Tnfsf8 genes (22, 31); and cells overexpressing 
genes such as Eomes, Gzmk, and Ctla2a, which are commonly asso-
ciated with CD8 T cells (denoted cytotoxic) and were previously 
described in the context of viral infection and cancer as CD4 cyto-
toxic T cells (32–34).

Next, we compared the proportion of each subset in old versus 
young mice (Fig. 2, D and E, and fig. S3C). Whereas the two naïve 
subsets were significantly enriched in young mice [Naïve: log(median 
ratio) = −0.27, P = 0.03 and Naïve_Isg15: log(median ratio) = −0.23, 
P = 0.03], the rTregs subset had a similar abundance in both age 
groups [log(median ratio) = 0.02, P = 0.89], while the TEM subset 
was dominant in old mice [log(median ratio) = 0.51, P = 0.03]. Notably, 
the aTregs, exhausted, and cytotoxic subsets (collectively denoted 
RECs to represent these regulatory, exhausted, and cytotoxic subsets) 
were highly enriched in all aged mice [log(median ratio) = 1, P = 0.03; 
log(median ratio) = 1.32, P = 0.03; and log(median ratio) = 1.46, 
P = 0.03; respectively], accounting for ~30% of the CD4 T cells and 
were negligible in young mice (~1%).

Since the frequency of RECs substantially differed between old 
mice (Fig. 2E and fig. S3C), we sought to examine whether this pattern 
represents different stages of chronic inflammation. We thus mea-
sured the levels of serum cytokines in the old group and analyzed their 
correlation with the proportion of RECs (Spearman correlations; Fig. 2F 
and fig. S4A). Whereas the cytotoxic cells were highly correlated 
with IL-27 (r = 1) and IFN (r = 0.95), aTregs and exhausted cells 
were highly correlated with IL-6 (r = 1 and r = 0.95, respectively).

Overall, these results demonstrate that aging is marked by a complex 
landscape of CD4 T cells, with increased frequencies of subsets with 
effector (including TEM, exhausted, and cytotoxic cells; fig. S4B) and 
regulatory (aTregs) signatures. Notably, the frequency of these subsets 
was associated with elevated levels of inflammatory cytokines in the 
sera (primarily IL-27, IFN, and IL-6), suggesting a link between the 
process of inflammaging (35) and the fate of CD4 T cells in aging.

RECs are distinct CD4 T cell subsets exhibiting a gradual 
increase in frequency with age
To gain insight into the identity of RECs, we compared their ex-
pression profiles to the profiles of closely related, well-established 
subsets (table S3 and Materials and Methods). First, we compared 
the cytotoxic and exhausted cells to TEMs (Fig. 3, A and B): The 
cytotoxic cells exhibited higher levels of Nkg7, Eomes, Gzmk, and 
Runx3 genes, together with genes encoding inflammatory chemokines 
[e.g., Ccl3, Ccl4, and Ccl5 (36); Fig. 3A]; the exhausted cells expressed 
relatively high levels of coinhibitory genes [e.g., Cd200, Lag3, and 
Pdcd1 (22)], as well as genes related to cellular oxidative stress 
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Fig. 3. The genes and proteins characterizing cytotoxic, exhausted, and aTregs subsets. (A to C) MA plots showing differentially expressed genes between (A) cyto-
toxic and TEM cells, (B) exhausted and TEM cells, and (C) aTregs and rTregs cells. Only cells from old mice were considered in the analysis. Each dot represents a gene; genes 
that were up-regulated consistently across mice [ln(fold change) > 0.4] were colored by the corresponding subset. (D) Left: Representative t-SNE plots of CD4 T cells 
coming from young (top) and old (bottom) mice colored by subset identity. Right: Analysis was based on the expression of 10 marker proteins chosen according to the 
gene expression profiles. The mean fluorescence intensities (MFIs) of each marker are presented. (E) Representative flow cytometry plots gated on FOXP3+ cells showing 
the MFI of selected marker proteins that relate to Tregs activation, projected on CD81− (rTregs) and CD81+ (aTregs) populations. (F) Violin plots quantitatively showing the 
MFI of each marker in rTregs and aTregs. Each dot represents a mouse (n = 6, from two different experiments). Paired t test, *P < 0.05, **P < 0.01, and ****P < 10−4.
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[e.g., Hif1a and Tbc1d4 (37); Fig. 3B]; the TEM subset expressed 
higher levels of memory-associated genes [e.g., Itgb7, Itgb1, and 
Il18r1; (27)] in both comparisons. Next, we compared the gene 
expression profiles of the two Tregs subsets (Fig. 3C). Notably, 
whereas the rTregs subset expressed higher levels of quiescence genes 
(e.g., Ms4a4b and Sell), aTregs subset expressed higher levels of coin-
hibitory (e.g., Pdcd1 and Lag3) and costimulatory genes [e.g., 
Tnfrsf9 and Tnfrsf4; (38)], activation genes [S100a11 and Il1r2 (IL1 
decoy receptor); (39)], and the transcription factor (TF) Ikzf2 (30).

We further validated the subsets’ identities by measuring the 
levels of key surface and intracellular proteins (chosen on the basis 
of the gene expression profiles) in CD4 T cells from young (2 months) 
and old (20 months) mice, using multicolor flow cytometry. Clus-
tering analysis revealed that whereas the young cells comprised 
mainly naïve cells and defined clusters of effector-memory and 
rTregs cells, the old cells included a prominent cytotoxic CD4 T cell 
subset, expressing high levels of the EOMES (Eomesodermin)  TF and 
the CCL5 chemokine (Fig. 3D and fig. S5A). We also identified naïve, 
TEM, exhausted (based on the expression of CD62L, CD44, PD1, 
and LAG3), and the two Tregs subsets (all were FOXP3+ and differed 
by expression levels of CD81, PD1, and LAG3). Further analysis 
of the Tregs subsets in the old cells revealed that CD81 [a member 
of the tetraspanin family (40)] is a specific marker that differen-
tiates between rTregs and aTregs. CD81 was coexpressed with PD1, 
TNFRSF4, TNFRSF9, Helios, IL1R2, and LAG3, which together 
affirmed the activated phenotype of aTregs [Fig. 3, E and F; (21)]. 
The Tregs marker CD25 was similarly expressed by aTregs and 
rTregs (fig. S5B).

We next sought to assess the dynamics of RECs over time and 
thus measured their relative abundance in spleens of healthy mice 
at 2, 6, 12, 16, and 24 months of age, using flow cytometry. The 
frequency of exhausted cells (defined as CD4+PD1+CD62L−FOXP3− 
EOMES−CCL5−) steadily increased from 6 months of age (r = 0.94, 
P = 1.5 × 10−12, Spearman correlation) and coincided with continuous 
decreased proportions of naïve cells (defined as CD4+CD62L+PD1−

FOXP3−EOMES−CCL5−; r = −0.96, P = 1.7 × 10−14, Spearman 
correlation; Fig. 4A). Out of the regulatory cells (CD4+FOXP3+), 
the relative abundance of aTregs, (defined as CD81+) also increased 
with age, reaching a peak at 16 months of age and slightly declining 
at 24 months [r = 0.64, P = 1.81 × 10−5, Spearman correlation; 
Fig. 4B]. Cytotoxic cells (defined as CD4+EOMES+CCL5+) were ob-
served in a later time point at 12 months, and their fraction sharply 
increased with age (r = 0.71, P = 4.0 × 10−8, Spearman correlation; 
Fig. 4C). To assess whether the high RECs frequencies in old mice 
reflected an increase in the absolute number of cells, or merely a 
decrease in the naïve compartment, we measured the absolute 
numbers of RECs per gram of spleen in young (2 months) and old 
(24 months) mice (fig. S5C). While a marked decline in total CD4 
cells was observed in old mice (P = 0.0014, Fig. 4D), the absolute 
numbers of cytotoxic and aTregs cells significantly increased 
(P = 0.016 and P = 0.03, respectively; Fig. 4E). The absolute number 
of exhausted cells was also increased in old mice but did not signifi-
cantly differ from young mice (P = 0.21). In general, the number of 
RECs was highly variable among individual mice, possibly repre-
senting the individual aging process.

Since the cellular composition of the spleen is different from 
other immunological tissues and dynamically changes with aging 
(41), we also examined site-specific proportions of RECs. For this, 
we purified CD4 T cells from seven immune compartments of 

16-month-old mice, including the spleen, bone marrow (BM), 
blood, and lymph nodes (LNs) from axillary, cervical, inguinal, and 
mesenteric sites, and analyzed the percentage of RECs in each com-
partment using flow cytometry (fig. S5D). All RECs showed the 
lowest proportion in the LNs. Whereas aTregs were highly abundant 
in BM, exhausted and cytotoxic cells were enriched also in blood 
and spleen (Fig. 4, F to H, and fig. S5, E and F). Together, these 
findings indicate that the RECs’ accumulation with time pre-
dominantly occurs in non-lymphatic immune compartments, as 
opposed to lymphatic sites, which exhibit a relatively preserved T cell 
composition.

RECs exhibit extreme regulatory and effector properties
As the regulation of CD4 T cell identity and function is largely co-
ordinated by the combined activity of TFs (42), we examined the 
specific set of working regulons (namely, TFs and their target gene 
modules) that appear to be active within the identified subsets and 
specifically within the RECs. For this, we applied the SCENIC 
workflow on the transcriptional signatures of the old cells (43). We 
identified 27 high-confidence regulons that were active consistently 
across all four old mice (Fig. 5A and Materials and Methods). Clus-
tering cells hierarchically by their active regulons revealed that cells 
were largely grouped by the subsets that we identified. The three 
regulons that were active in all subsets were governed by the TFs 
Bclaf1, Elf1, and Ets1, previously shown as key regulators of T cell 
homeostasis and activation [fig. S6A; (44, 45)]. The RECs exhibited 
an active Prdm1 regulon, suggesting a certain degree of exhaustion 
in these subsets (22). Among the RECs, the aTregs subset displayed 
elevated activity of the regulons corresponding to Foxp3, nuclear 
factor B (NF-B) TF family (Nfkb1, Nfkb2, Rel, and Relb), Irf4, and 
Maf, which were previously associated with activation phenotype of 
Tregs [Fig. 5B; (46, 47)]. To assess whether the two Tregs subsets differ 
in functionality, we sorted aTregs (CD25highCD81+) and rTregs 
(CD25highCD81−) from old (16 months) and young (2 months) 
mice (fig. S6B), respectively, and compared their suppressive 
activity on the proliferation of CD4 T cells, in vitro (Materials 
and Methods). aTregs exhibited a significantly higher suppressive 
activity than rTregs (Fig. 5C).

The cytotoxic subset appeared to be dominantly regulated by 
TFs associated with cytotoxicity and T helper 1 (TH1) polarization, 
including Eomes, Runx2, Runx3, and Tbx21 regulons [Fig. 5B; (42, 48)]. 
In activated CD8 T cells, these TFs regulate the production of cyto-
kines and lytic proteins, such as tumor necrosis factor (TNF), IFN, 
granzyme B (GzmB), and perforin (48). To evaluate the activity of 
these regulons in aged cytotoxic CD4 T cells, we used flow cytometry 
to measure subset-specific secretion of these molecules from acti-
vated CD4 T cells extracted from 16-month-old mice (Materials and 
Methods). Compared to exhausted and TEM subsets, the cytotoxic 
subset showed the highest percentage of cells that produced TNF, 
IFN, perforin, and GzmB, indicating their primary contribution to 
the cytotoxic and pro-inflammatory mediators that were released 
following stimulation (Fig. 5D and fig. S6C). We also observed 
higher frequency of cells producing IL-21 and IL-17a within cyto-
toxic cells (fig. S7A), probably due to the active Rora regulon [Fig. 5B; 
(49)]. Visualizing the expression of key TH1 and TH17 markers 
on the t-SNE map revealed primarily TH1—rather than TH17—
polarization in the cytotoxic subset (fig. S7, B and C), which was 
validated by the high versus low percentage of IFN- and IL-17–
secreting activated cytotoxic CD4 T cells, respectively (fig. S7D). 
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Exhausted cells presented a high activity of Nfatc1 regulon, which 
is presumably involved in regulating the exhaustion process (50–53). 
Together, these results demonstrate that each of the three RECs 
uses defined sets of genes and TFs, which together promote an 
extreme immune phenotype that can hinder immunity in old 
age (Fig. 5E).

DISCUSSION
In the current study, we aimed to comprehensively describe how 
the CD4 T cell compartment is sculptured during the process of 
aging. Our scRNA-seq and flow cytometry data, together with the 
functional assays we performed, allowed in-depth characterization of 
CD4 T cell subsets in aging. We identified a gradual reorganization 
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of the CD4 T cell compartment, where regulatory, exhausted, and 
cytotoxic phenotypes co-emerge with age.

Our initial analysis of the young and old mRNA profiles pointed 
to mixed signatures of pro- and anti-inflammatory gene expression 
in old CD4 T cells, compared with the naïve-associated signature in 
young cells. Among the top differentially expressed genes in old 
CD4 T cells, S100a11, Izumor1, and Aw112010 were found to be 
strong markers of old cells. Up-regulation of these genes in leuko-
cytes was previously reported in the context of long-term inflam-
mation (54). Furthermore, a recent study has shown that the Aw112010 
gene is induced in acute and chronic inflammation and is essential 
for translation of inflammatory proteins (25). Whereas the mecha-
nisms underlying the induction of these genes in old CD4 T cells is 
yet unclear, together with the increased levels of circulating cytokines 
and chemokines, they may serve a useful set of biomarkers for immune 
senescence.

The single-cell analysis we performed uncovered heterogeneity 
in the CD4 T cell compartment, which is composed of a number of 
distinct cell subsets in aging. Pro- and anti-inflammatory signatures 
were thus not common to all old CD4 T cells but were distributed 
primarily among four distinct subsets, expressing gene sets of TEM, 
aTregs, exhausted, and cytotoxic cells. Whereas effector-memory 
and exhaustion phenotypes were already implicated in aging, the 
aTregs and the cytotoxic CD4 T cell subsets were previously described 
in cancer and chronic inflammation but not in aging (30, 32). The gene 
signatures of the aTregs and the cytotoxic CD4 T cells indicate their 
enhanced regulatory and effector cytotoxic profiles, respectively, sug-
gesting that these subsets play a key role in the deterioration of the 
immune system with age. Since these subsets accumulate at differ-
ent stages of aging and are enriched in the BM, blood, and spleen 
compartments, it is plausible that their molecular phenotype and 
function represent two parallel processes in the timeline of aging.

The aTregs subset showed a gradual increased frequency with age, 
reaching ~50% of all FOXP3+ CD4 T cells in the BM. Compared 
with the rTregs, the aTregs expressed increased levels of activation 
genes such as Helios, IL1R2, TNFRSF9, and TNFRSF4, as well as 
their encoded proteins. These marker proteins were coexpressed 
with CD81, which we found to be a highly specific marker for aTregs 
in mice. In line with other recent reports, the aTregs were governed by 
TFs of the NF-kB TF family (Nfkb1, Nfkb2, Rel, and Relb), Irf4, and 
Maf, which were associated with their distinct functional characteristics 
(46, 47). Notably, old mice-derived aTregs had a greater suppressive 
effect than rTregs from young mice in an ex vivo suppression assay. 
The aTregs we identified are thus reminiscent of Tregs with enhanced 
suppression activity previously observed within tumors of patients 
with solid cancers (55). Further research is required to determine 
the environmental cues that promote the differentiation of aTregs 
with age, and whether they originate primarily from thymus-derived 
Tregs or from other cells such as the exhausted subset, which shows 
similar spatiotemporal and gene module patterns. It is intriguing 
that while presumably attenuating the process of chronic inflam-
mation, these Tregs may represent a gradual process that substantially 
compromises immunity to self- and non–self-antigens and thus need 
to be specifically targeted therapeutically.

Whereas the sharpest increase in frequency of TEMs, exhausted 
cells, and aTregs occurred between 6 and 12 months of age, the cyto-
toxic CD4 T cells accumulated primarily after 12 months of age. 
Furthermore, we found that the gene modules driven by Eomes, 
Runx2, Runx3, and Tbx21 TFs, which are required for the cytotoxic 

CD8 lineage, are active in this cytotoxic subset, and that in  vitro 
stimulation of these cells results in a significantly higher expres-
sion of pro-inflammatory and cytotoxic molecules, such as IFN, 
TNF, GzmB, and perforin, as compared to the TEM and exhausted 
subsets. Cytotoxic CD4 cells were previously observed and thera-
peutically used in mouse models of colitis (33) and cancer (56), and 
in human viral infection (32, 34). However, neither were they linked 
to aging nor did they reach the frequencies observed in our find-
ings. While the differentiation pathways, antigen specificity, func-
tion, and accumulation of cytotoxic CD4 cells in aging are yet to be 
revealed, their correlation with increased levels of circulating in-
flammatory cytokines suggests that they may mark a stage in aging 
with a robust immune failure and chronic inflammation.

Overall, our data depict a complex and dynamic landscape of CD4 
T cells in aging. The composition of the CD4 T cell compartment 
undergoes massive rearrangement characterized by a decline of naïve 
cells and co-emerging cytotoxic, exhausted, and aTregs subsets, which 
at least in part feed the process of chronic inflammation on one 
hand and declined immunity on the other hand. Notably, whereas 
this cellular reorganization occurred in all the mice we analyzed, 
there was a substantial variability in the frequency and dynamics of 
each subset among individual mice, which, in general, may reflect 
possible impacts of environmental factors, such as exposure to stress, 
pathogens, and a diverse microbiome (57). It is thus intriguing to 
speculate that the dynamics of RECs reflects the aging process in 
each individual in a manner that might render them prone to a myriad 
of age-related diseases (such as cancer and neurodegeneration), 
which commonly exhibit cell senescence, inflammation, and com-
promised repair mechanisms (5, 58–60). For example, both aTregs 
and exhausted cells have been directly implicated in the tumor 
microenvironment as cells that can suppress tumor immunity (29, 30), 
and thus a decline in T cell effector functions along with chronic 
inflammation and increased frequencies of RECs may play a key 
role in age-related onset of cancer. While further work is needed to 
dissect the mechanisms underlying the accumulation and function 
of each subset with age, our study opens avenues to the under-
standing of age-related immune failure and can be relevant for 
improving diagnostic and therapeutic strategies for its associated 
pathologies.

MATERIALS AND METHODS
Mice
Wild-type (WT) C57BL/6 and CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) 
mice were purchased from the Jackson Laboratory (Bar Harbor, ME) 
and were housed under specific pathogen–free conditions at the 
animal facility of Ben-Gurion University. WT C57BL/6 mice were 
kept in different age batches from 2 to 24 months. All mice were 
checked for any macroscopic abnormalities (according to the Jackson 
guide—“AGED C57BL/6J MICE FOR RESEARCH STUDIES”). 
Animals with skin lesions, organ-specific problems, or behavioral 
issues were discarded from the study. All surgical and experimental 
procedures were approved by the Institutional Animal Care and 
Use committee of Ben-Gurion University of the Negev, Israel.

Sample processing for scRNA-seq
Young (2 to 3 months) and old (22 to 24 months) mice were eutha-
nized using isoflurane overdose. Then, spleens were harvested and 
mashed into a 70-m cell strainer. Lysis of red blood cells was performed 
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using 300 l of Ammonium-Chloride-Potassium (ACK) buffer for 
1 min (Lonza, Basel Switzerland). Then, CD4+ T cells were purified 
from total splenocytes using a magnetic microbeads negative se-
lection kit (EasySep Mouse CD4+ T Cell Isolation Kit, STEMCELL 
Technologies), according to the manufacturer’s instructions. In all 
processing steps, wide-bore pipette tips were used, and centrifugation 
condition did not exceed 400g, to minimize physical damage to the 
cells caused by shearing forces.
FACS sorting
To enhance purity and discard dead cells, CD4 T cells were further 
purified using FACS. Cells were sorted as eFluor780-Live cells+ 
(Fixable Viability dye, eBioscience), PerCP/cy5.5-conjugated anti-CD8− 
(53-6.7; BioLegend), phycoerythrin (PE)–conjugated anti-CD19− 
(6D5; BioLegend), PE-conjugated anti-CD11b− (M170; BioLegend), 
PE-conjugated anti-NK1.1− (PK136; BioLegend), BV421-conjugated 
anti-CD4+ (GK1.5; BioLegend), and fluorescein isothiocyanate 
(FITC)–conjugated anti-TCRb+ (H57-597; BioLegend) using the 
FACSAria III instrument (BD Biosciences, San Jose, CA). To minimize 
physical stress to the cells, a 100-m nozzle and 20-psi sheet fluid 
pressure were used. Cells were sorted into RPMI (Life Technologies)–
enriched media with 10% fetal bovine serum, 10 mM Hepes, 1 mM 
sodium pyruvate, 10 mM nonessential amino acids, 1% penicillin-
streptomycin-nystatin, and 50 M 2-mercaptoethanol (2-ME). After 
sorting, CD4 T cells in all samples reached >99% purity. Before the 
loading on Chromium Controller Instrument (10x Genomics), cells 
were suspended in phosphate-buffered saline (PBS) supplemented 
with 0.04% bovine serum albumin, counted four times under a light 
microscope, and passed through a 40-m strainer (for extended protocol, 
see “Cell preparation guide,” 10x Genomic protocol; https://sup-
port.10xgenomics.com/single-cell-gene-expression/sample-prep). 
To reach 2000 to 3000 recovered cells, ~5000 cells per sample 
were loaded to the 10x Genomics platform.

Tissue processing for flow cytometry and in vitro assays
Spleen
See the “Sample processing for scRNA-seq” section.
Lymph nodes
Mice were euthanized with isoflurane overdose, and lymph nodes 
were harvested from inguinal, mesenteric, cervical, and axillar areas. 
Then, lymph nodes were mashed into a 70-m cell strainer, and 
cells were washed and counted.
Blood
Blood was collected into EDTA-coated tubes (MiniCollect, Greiner 
Bio-One) from euthanized mice using cardiac puncture. Red blood 
cells were then lysed using blood lysis buffer (BD Biosciences), and 
the remaining leukocytes were washed twice and counted.
Bone marrow
Mice were euthanized with isoflurane overdose. Femurs and tibias 
were collected. Cells from the BM were obtained by flushing the 
bones with injected sterile PBS. Red blood cells were removed using 
500 l of (ACK) lysis buffer for 1.5 min.

Sequencing library construction using the 10x Genomics 
Chromium platform
Single-cell suspension was loaded on a Chromium Controller 
Instrument (10x Genomics) to generate single-cell gel bead-in-
emulsions (GEMs). Barcoding and complementary DNA (cDNA) 
libraries were prepared using the Single-Cell 3′ Library & Gel Bead 
Kit, according to the manufacturer’s instructions. GEM-reverse 

transcription (RT) was performed in a Mastercycler Nexus Thermal 
cycler (Eppendorf). After RT, GEMs were broken, and the cDNA 
was cleaned up with Dynabeads MyOne Silane Beads (Thermo Fisher 
Scientific) and amplified. Amplified cDNA product was cleaned up 
with the SPRIselect Reagent Kit (0.6× SPRI; Beckman Coulter). 
Indexed sequencing libraries were constructed using the Chromium 
Single-Cell 3′ Library Kit (10x Genomics) for enzymatic fragmenta-
tion, end-repair, A-tailing, adaptor ligation, post-ligation cleanup, 
sample index polymerase chain reaction (PCR), and PCR cleanup. 
Final libraries were quantified by Qubit, TapeStation, and quantitative 
PCR using NEBNext Library Quant Kit (BioLabs). Libraries were 
loaded at 2 to 2.2 pM on an Illumina NextSeq500 using the high-output 
75-cycle kit with the following parameters: 26 bp for Read1, 56 bp 
for Read2, and 8 bp for I7 Index. Each library was sequenced twice 
using Illumina’s NextSeq 500 sequencing platform. Sequencing 
depth was 50,000 to 100,000 reads per cell.

RNA sequencing data processing
The output Illumina base call files from both sequencing runs were 
merged and converted to FASTQ files using Cell Ranger software v2.0.1, 
which included Illumina’s bcl2fastq v2.19.1.403. FASTQ files of each 
mouse sample were converted to count matrices using Cell Ranger soft-
ware, based on transcriptome reference of Mus musculus (mm10 1.2.0). 
Barcodes (25,707) were identified as cells, according to Cell Ranger’s 
algorithm of calling cell barcodes. This algorithm takes as input the 
expected number of recovered cells, which was set to 3000 cells in 
our study. It then orders all barcodes by their unique molecular 
identifier (UMI) content and computes the number of UMIs at the 
99th percentile. All barcodes whose total UMI count was at most 1/10 
of this number were referred to as low-quality cells and discarded.

Quality control
Quality control and further analyses were done in R v3.4.2, using 
Seurat package v2.0.1 [fig. S1D; (26)]. To discard doublets, cells 
were ordered by their number of UMIs, and the top (N/1000) per-
centage of cells per sample were filtered out, where N is the total 
number of called cell barcodes identified per sample (20). To discard 
broken cells (lysed cells with retained mitochondrial RNA), cells 
with more than 5% UMIs mapped to mitochondrial DNA were 
filtered out (61). The numbers of cells per sample filtered out by the 
different criteria appear in table S1. Together, 24,007 cells were kept 
for further analysis after quality control. Within each cell, the ex-
pression level of each gene was normalized cell-wise, by using the 
NormalizeData function of Seurat. This function divides the expres-
sion level of a gene by the total expression of all genes in that cell, 
multiplies the quotient by a scale factor of 10,000, and log-transforms 
the product (base e) after the addition of a pseudocount of 1.

Dimensionality reduction
Dimensionality reduction was done using Seurat package in R. First, 
we selected variable genes by using the FindVariableGenes function. 
To identify variable genes across a range of expression values, this 
function first computes the mean expression and dispersion [i.e., 
log(variance/mean)] per gene. Then, it bins genes according to their 
mean expression and calculates z scores for dispersion within each 
bin. Last, it then uses the dispersion-based z scores to select variable 
genes from the different bins. Only genes with mean expression be-
tween 0.0125 and 2 and dispersion >0.9 were considered (fig. S2B), 
resulting in 2399 variable genes. These variable genes were then 

https://support.10xgenomics.com/single-cell-gene-expression/sample-prep
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used as input to linear dimensionality reduction based on principal 
component analysis (PCA), executed via the RunPCA function. 
This function identifies the PCs that account for the largest variability 
in the data, in a decreasing order. We estimated the significance of 
PCs by using the JackStraw function. This function repeatedly permutes 
a subset of the genes and calculates the PC scores of each gene to 
assess the likelihood that the PC score of a gene was obtained by chance. 
Accordingly, significant PCs are those enriched for genes with low 
P values. To create the t-SNE projections, the first 20 PCs (all of 
which were significant, P < 7.2 × 10−18) were used via RunTSNE 
function by the elbow method (fig. S2C). Perplexity of the t-SNE 
projection was set to 10, 30 (default), 50, 100, and 150, and showed 
similar shapes of projections. Thus, default perplexity was used.

Differential gene expression analysis and discriminating 
markers between cells from young and old mice
Both analyses were carried via Seurat R package, using FindMarkers 
function. In the differential gene expression analysis, only genes 
whose differential expression was relatively high and significant 
[|ln(fold change)| > 0.4, adjusted P < 10−3] were considered as dif-
ferentially expressed. In the discriminating markers analysis, age group 
markers were calculated using the FindMarkers function in Seurat, 
with test.use parameter set to “roc.” This function calculates per gene 
its differential expression (fold change and P value) between age 
groups. The function uses a standard AUC classifier to estimate the 
ability to correctly assign a cell to its age group based on the expres-
sion level of the putative marker gene.

Differential gene expression analysis between RECs and their 
closely related well-established subsets was done by using cells from 
old mice and was calculated via the FindMarkers function (using 
the Wilcoxon rank sum statistical test). Only highly and significantly 
expressed genes were counted as differentially expressed [|ln(fold 
change)| > 0.4, adjusted P < 10−3].

Clustering process, robustness analysis, and subsets’ 
identity association
We clustered cells that passed our quality control by applying the 
Seurat FindClusters function. This function calculates k-nearest 
neighbors according to the PCA and constructs a shared nearest 
neighbor graph. It then optimizes a modularity function (Louvain 
algorithm) to determine cell clusters. We used the first 20 PCs and 
calculated the k-nearest neighbors according to the expression pro-
files of variable genes in all cells. To cope with overclustering of 
large cell subsets, we assessed the confidence of cluster splits. First, 
using the BuildClusterTree function, we averaged the gene expres-
sion within each cluster to create a representative cluster signature, 
which we hierarchically ordered, resulting in a cluster tree. Second, 
we applied the AssessNodes function to each split within the tree. 
This function judges the confidence of the split by testing the 
assignment of cells to one cluster or the other, using out-of-bag 
(OOB) error of a random forest classifier. Split clusters that were 
indistinguishable from each other (OOB error > 0.05) were merged. 
To assess the robustness of the seven identified clusters, we tested 
whether results differ upon selection of different numbers of PCs 
and different values for the resolution parameter. We repeated the 
clustering process based on the first 10, 19, and 21 PCs. These led to 
similar clustering patterns on the t-SNE projection. We set the reso-
lution parameter to several values [0.6, 0.8 (default), 1, and 1.2, as 
recommended by Seurat]. The different values resulted in varying 

numbers of clusters, yet clusters were then merged by the AssessNodes 
function to seven clusters with similar positions on the t-SNE projections. 
To test the sensitivity of the analysis to the dispersion threshold se-
lected (0.9), we repeated the analyses upon setting it to 0.87 and 1.4, 
which resulted in 3231 and 277 variable genes, respectively. As can be 
seen (fig. S2F), the t-SNEs obtained for the different thresholds were 
similar to each other. Moreover, subsets were colocalized to similar, 
well-defined regions of the t-SNE, together supporting the robustness 
of the analysis to the selection of variable genes.

To identify subset-specific markers, we applied the FindConserved
Markers function in Seurat to each subset. For each age group, this 
function computes the differential expression (fold change and P value) 
of genes in the studied subset relative to all other cells. It then calcu-
lates a combined P value to identify genes whose differential expression 
is conserved between the age groups. Only highly and significantly 
expressed genes were counted as differentially expressed [|ln(fold 
change)| > 0.4 and combined P < 10−3]. To associate each cluster 
with a potential identity, we manually compared the top differen-
tially expressed genes per subset to canonical markers of previously 
reported CD4 T cell subsets.

We also examined the similarities between the identified subsets 
to previously published datasets of T cells: a dataset of naïve and 
TEM subsets (16); a dataset of Tregs in resting and activated states 
(21), pertinent to our Tregs subsets; and a dataset of tumor-infiltrating 
lymphocytes (22), related to our cytotoxic and exhausted subsets 
(fig. S3A). First, we compared gene signatures of each pair of subsets 
using Jaccard index-based metric, implemented via the matchSCore 
package (62). Gene signatures were defined as the top 500 most 
up-regulated genes of each subset, relative to other subsets taken 
from the same study (a pseudocount of 1 was added to the expression 
level of each gene to allow fold change analysis). Second, Spearman 
correlation coefficients between the gene expression profiles of each 
pair of subsets were calculated. Expression profiles included only 
genes expressed above noise levels (mean normalized expression > 
0.0125) in both subsets, resulting in at least 7400 genes per comparison.

Regulons
Regulons were identified in SCENIC v0.1.6 package in R (43). We 
used expression data pertaining to cells from old mice. Only genes 
with at least one raw count in at least one cell were analyzed 
throughout the pipeline. All gene raw counts were then log-transformed. 
Regulons were identified by SCENIC only if they were found to be 
active in more than 1% of all cells and correlated with at least one 
other regulon (|r| > 0.3). In downstream analysis, we focused on 
high-confidence regulons, which we defined as active in more than 
10% of the cells in at least one of the subsets in all mice and including 
high-confidence relationships between the transcription factor and 
at least nine target genes.

Flow cytometry
For extracellular staining, cells were washed with FACS staining 
buffer (PBS supplemented with 2% fetal bovine serum and 1 mM 
EDTA) and incubated with Fc receptor blocker (TrueStain fcX; 
BioLegend) for 5 min at 4°C. To differentiate between live and dead 
cells, a viability staining step was done using the eFluor780-Fixable 
Viability Dye (eBioscience) following the manufacturer’s instructions. 
Cells were then incubated with primary antibodies for 25 min at 4°C 
and were washed twice with a FACS staining buffer. The following 
antibodies were used for membranal staining: PE-conjugated 



Elyahu et al., Sci. Adv. 2019; 5 : eaaw8330     21 August 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 14

anti-CTLA4 (4C10-4B9; BioLegend), PE/cy7-conjugated anti-CD25 
(3C7; BioLegend), AF700-conjugated anti-CD62L (Mel-14; BioLegend), 
BV605- or BV785-conjugated anti-PD1 (29F.1A12; BioLegend), 
APC-conjugated anti-CD81 (Eat-2; BioLegend), FITC-conjugated 
anti-CD8 (53-6.7; BioLegend), PerCP/cy5.5-conjugated anti-CD44 
(IM7; BioLegend), AF700- or BV785-conjugated anti-CD4 (RM4-5; 
BioLegend), PE-conjugated anti-CD121b (4E2; BD Biosciences), 
BV421-conjugated anti-CD25 (PC61; BioLegend), BV605-conjugated 
anti-CD195 (C34-3448; BD Biosciences), BV785-conjugated anti-LAG3 
(C9B7W; BioLegend), BV421-conjugated anti-CD4 (GK1.5; BioLegend), 
PerCP/cy5.5-conjugated anti-CD8 (53-6.7; BioLegend), PE-conjugated 
anti-CD137 (17B5; BioLegend), PE/cy7-conjugated anti-CD134 (OX-86; 
BioLegend), and PE-conjugated anti-CD178 (MFL3; eBioscience). 
After staining for membranal markers, intracellular labeling was 
performed: Cells were fixed and permeabilized using the FOXP3/
Transcription Factor Staining Kit (eBioscience), blocked with Rat serum 
(1 l per 100 l of staining buffer), and stained with the following 
antibodies: BV605-conjugated anti-TNF (MP6-XT22; BioLegend), 
BV605-conjugated anti–IL-17a (TC11-18H10.1; BioLegend), FITC- 
or BV510-conjugated anti–IL-2 (JES6-5H4; BioLegend), BV421- or 
BV786-conjugated anti-IFN (XMG1.2; BioLegend), BV421-conjugated 
anti–IL-10 (JES5-16E3; BioLegend), APC-conjugated anti-GzmB 
(QA16A02; BioLegend), PE-conjugated anti-CCL5 (2E9/CCL5; 
BioLegend), PE/cy7-conjugated anti-EOMES (Dan11mag; eBioscience), 
AF488-conjugated anti-FOXP3 (150D; BioLegend), APC-conjugated 
anti–IL-21 (149204; R&D systems), PE/dazzle-conjugated anti–Helios 
(22F6; BioLegend), and APC-conjugated anti-Perforin (B-D48; 
BioLegend). All flow cytometry experiments were performed with 
the CytoFLEX instrument (Beckman Coulter). Data were analyzed 
with the FlowJo (v10.5.3) software. Gating strategies were set on the 
basis of fluorescence minus one, unstained samples, and unstimu-
lated samples (when needed). All the samples in the experiment 
excluded dead cells, clumps, and debris.

Clustering analysis of flow cytometry data
Clustering analysis of flow cytometry data was done using FlowJo 
(v10.5.3). First, we excluded dead cells, doublets, and non-lymphocyte 
cells (based on viability staining and FSC/SSC parameters). CD4+ cells 
were used for further analysis. Data were sampled using the “down 
sampling” function to obtain 40,000 representative cells from each 
sample. Then, we applied t-SNE algorithm with the following 
parameters: Iteration = 1000, Perplexity = 40, and Learning rate 
(eta) = 2800. Mean fluorescence intensity projected on the t-SNE 
plots for each protein to infer the cluster’s identity.

Proliferation assay and cytokine measurements
CD4+ T cells were isolated from spleens of mice with a magnetic micro
beads negative selection kit (EasySep Mouse CD4+ T Cell Isolation 
Kit; STEMCELL Technologies) and labeled with 5 M carboxyfluo-
rescein diacetate succinimidyl ester (CFSE; CellTrace Proliferation 
Kit, Invitrogen) for 5 min in PBS containing 5% fetal bovine serum, at 
room temperature. After incubation, cells were washed twice with PBS, 
resuspended in RPMI-enriched medium (composition stated above), 
and activated with anti-CD3/anti-CD28 beads (Dynabeads, Gibco) 
in 96-well (U shape) plates (80 × 105 cells per well). After 72 hours, 
cells were collected and analyzed by flow cytometry.
Cytokine measurements
Isolated CD4+ T cells were incubated with anti-CD3/anti-CD28 beads 
for 48 hours. Six hours before analysis of TNF, IL-10, IFN, GzmB, 

perforin, IL-17a, IL-21, IL-2, and CCL5, cells were treated with 
brefeldin A (GolgiPlug, BD Biosciences) and cell culture (1 l/ml, 
containing ~106 cells). The cells producing the cytokines were iden-
tified with flow cytometry (see the “Flow cytometry” section). Cells 
were cultured at 37°C and 5% CO2.

Suppression assay
For in vitro suppression assay, naïve CD4+ T cells were isolated 
from spleens of young (2 months) CD45.1 mice using a naïve 
isolation kit (EasySep Mouse Naïve CD4+ T Cell Isolation Kit, 
STEMCELL Technologies), labeled with CFSE (CellTrace Prolif-
eration Kit, Invitrogen), and used as responder cells (2 × 104 cells 
per well). Then, cells were cultured in 96-well plates with irra-
diated 2 × 104 APCs (as feeder cells) in the presence of sorted 
CD25highCD81− or CD25highCD81+ Tregs at 1:1, 1:2, and 1:4 
responders:Tregs ratios. Cells were stimulated with anti-CD3 (1 g/ml) 
for 72 hours. Proliferation (defined as all cells with CFSE dilu-
tion) of responder cells was analyzed to assess the suppression 
of Tregs cells. The percentage of suppression was determined as 
[100 − (% of proliferating cells with Tregs)/(% of proliferating cells 
without Tregs)].

Serum cytokine measurements
Mouse peripheral blood was extracted after right atrial puncture 
into a 2-ml Eppendorf tube. Then, blood tubes were incubated at 
room temperature for coagulation (15 min). After incubation, tubes 
undergo a centrifugation step (450g), and serum was collected. For 
cytokine measurement, we used LEGENDplex Mouse Inflammation 
Kit (BioLegend) following the manufacturer’s instruction. Data were 
acquired on a CytoFLEX instrument (Beckman Coulter) and analyzed 
using LEGENDplex analysis software (BioLegend).

Statistical analysis for flow cytometry experiments
Spearman correlation between the age of mice and the proportions 
of RECs and naïve cells in spleen (Fig. 4, A to C) was computed in R 
v3.4.2 using stats package v3.4.1. For statistical analysis, GraphPad 
Prism (version 7.0a) was used. Paired t test was used for compari-
sons between two groups from the same biological samples. For 
analysis of more than two groups, one-way ANOVA was used, 
corrected by Bonferroni correction for multiple comparisons.
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