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G E N E T I C S

Data-driven phenotype discovery of FMR1 premutation 
carriers in a population-based sample
Arezoo Movaghar1,2, David Page3, Murray Brilliant4, Mei Wang Baker5, Jan Greenberg1, 
Jinkuk Hong1, Leann Smith DaWalt1, Krishanu Saha1,2, Finn Kuusisto6, Ron Stewart6, 
Elizabeth Berry-Kravis7, Marsha R. Mailick1*

The impact of the FMR1 premutation on human health is the subject of considerable controversy. A fundamental 
unanswered question is whether carrying the premutation allele is directly correlated with clinical phenotypes. A 
challenging problem in past genotype-phenotype studies of the FMR1 premutation is ascertainment bias, which 
could lead to invalid research conclusions and negatively affect clinical practice. Here, we created the first population-
based FMR1-informed biobank to find the pattern of health characteristics in premutation carriers. Our extensive 
phenotyping shows that premutation carriers experience a clinical profile that is significantly different from 
controls and is evident throughout adulthood. Comprehensive understanding of the clinical risk associated with 
this genetic variant is critical for premutation carriers, their families, and clinicians and has important implications 
for public health.

INTRODUCTION
The phenotypic features of human disease are initially defined by 
studies of selected patient groups that may not represent the full 
genetically affected population. Resulting genotype-phenotype cor-
relations may be biased, which could affect the outcomes of research 
and the health and well-being of millions of people worldwide (1). 
In this study, our focus is on the gene known as fragile X mental 
retardation 1 (FMR1). The conditions related to the FMR1 gene are 
a prime example of genetic variants for which phenotypes were 
defined from clinically ascertained data and possibly not representative 
of the full genetically affected population.

The FMR1 gene is responsible for the production of a protein 
called fragile X mental retardation protein (FMRP). This protein 
regulates the translation of ~30% of all transcripts in the synaptic 
proteome, predicting a key and widespread role in the functioning 
of the nervous system (2). In the 5′ untranslated region of the FMR1 
mRNA, there are varying numbers of cytosine-guanine-guanine 
(CGG) trinucleotide repeats. The modal number of CGG repeats in 
the human population is around 30. Large expansions in the number 
of CGG repeats can disrupt the functioning of the FMR1 gene (2–4). 
Expansion of CGG repeats beyond 200 leads to hypermethylation 
and at least partial silencing of FMR1, which results in the fragile X 
syndrome (FXS) (5–7). This genetic condition is the most common 
inherited cause of intellectual disability and autism (5–7). However, 
the phenotypic effect of shorter repeat expansions, below 200 CGGs, 
remains a subject of considerable controversy (6).

The FMR1 premutation (55 to 200 CGG repeats) is carried by over 
1 million individuals in the United States, and carriers originally 
were believed to be clinically unaffected except for their risk of 
having a child with FXS (8, 9). However, two known disorders have 

now been well documented to cause clinical symptoms in a subset 
of individuals carrying the premutation: fragile X-associated tremor/
ataxia syndrome (FXTAS) and fragile X-associated primary ovarian 
insufficiency (FXPOI). FXTAS is a neurodegenerative disorder that 
emerges after age 50 and affects 30 to 40% of male premutation 
carriers (10) and 8 to 16% of female premutation carriers (11). FXPOI 
is defined as menopause before age 40 and other reproductive 
symptoms and affects 20 to 25% of female premutation carriers 
(12). The penetrance of these conditions is highly correlated with the 
number of CGG repeats, and they are more prevalent in individuals 
with larger than 70 CGGs (7, 10, 13).

In addition, some clinical and community-based reports have 
suggested that premutation carriers are at higher risk for a range of 
other health conditions and symptoms, including autoimmune 
diseases, migraines, fibromyalgia, neuropathy, infertility, depression, 
anxiety, and cognitive dysfunction, all with variable frequency and 
emerging at different stages of the life course (6, 8, 14–17). These 
two characteristics—differential age of symptom onset and variability 
in frequency of symptoms within the premutation population—
make it a significant challenge to determine the genotype-phenotype 
association of the FMR1 premutation.

There is controversy regarding whether these symptoms are the 
direct result of the premutation because nearly all studies describing 
these phenotypes have been based on individuals who were ascer-
tained through a family member with FXS who was diagnosed in a 
clinical setting. Following diagnosis of FXS, family members are 
offered cascade genetic testing, leading to the identification of rela-
tives with the premutation. Family members, thus, become aware of 
their own genetic status, as do their clinicians, which may artifactually 
elevate prevalence estimates of symptoms. An additional limitation 
of these studies is that the biological significance of the premutation 
may be confounded with parenting/family stress due to the challenges 
posed by a family member with FXS (18). Thus, the published literature 
may be skewed toward larger CGG repeats, reports of more serious 
symptoms, and substantial ascertainment bias. To date, genotype-
phenotype associations have not been evaluated systematically for 
all potential symptoms in the absence of familial FXS or studied in 
a population-based unbiased context.
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The purpose of the present research was to use double-blind 
methods where both clinicians and patients were blind to genotype 
to evaluate whether premutation carriers differ significantly from 
those with normal numbers of CGGs in the pattern of clinical diagnoses 
recorded in their electronic health records (EHRs). We further 
determined whether these double-blind methods replicate the clinical 
literature. Incorporation of EHRs into genetic research provides an 
unprecedented opportunity to refine the definition of the genotype-
phenotype association in human diseases. Mining the EHR is a rich 
and powerful tool to rapidly ascertain a comprehensive and diverse 
collection of clinical phenotypes (19). By linking population-based 
EHRs to genomic data, we investigated associations of the FMR1 
premutation with a wide range of possible health conditions. We 
analyzed females and males separately, as the premutation phenotypes 
associated in the clinical literature differed by sex.

The present study, using a discovery-oriented approach, is the 
first research to investigate the health characteristics of FMR1 
premutation carriers in a population setting incorporating the 
entire spectrum of available health diagnoses. Using machine learning 
approaches, we mined the EHRs of nearly 20,000 participants (all of 
whom were served by a single health care system), with the goal of 
identifying potential phenotypes associated with the FMR1 premu-
tation (Fig. 1). In addition, we studied the EHRs of participants of 
various ages to investigate age-related differences in premutation 
phenotypes. The FMR1 premutation carriers in our study are unaware 
of their CGG repeat length, and thus, unlikely to have been familiar 
with the medical literature identifying symptoms associated with 
the premutation. Therefore, the results of this study offer an oppor-
tunity to evaluate the extent of primary phenotypes in premutation 
carriers unconfounded by knowledge or concerns about one’s own 
genetic status, the effects of stressful parenting, or clinical ascertainment 
bias. Understanding the clinical risks associated with the FMR1 
premutation potentially will result in more effective preventive care 
and personalized treatment that could improve the quality of life of 
millions of people around the globe and have a positive impact on 
public health. The study has the potential to inform a long-standing 
research controversy within the FMR1 field. More generally, our 
approach provides a window into how screening for genetic variants 
can inform health care prior to receiving a diagnosis.

RESULTS
Here, we report on the first U.S. population–based FMR1-informed 
biobank that we created by connecting EHRs of 19,996 adults with 
their FMR1 genetic information. All participants received their 
health care from the Marshfield (Wisconsin) Clinic health care 
system. As members of the Personalized Medicine Research Project 
(PMRP), these participants consented to contribute their deidenti-
fied EHRs, DNA, and other biosamples to be used in research. The 
phenotypic data for this study include almost 40 years of detailed 
EHR data (1979 to 2018) in the form of International Classification 
of Disease, Ninth and Tenth Revisions (ICD-9 and ICD-10 codes) 
harmonized as SNOMED (systematized nomenclature of medicine–
clinical data) codes.

We screened 19,996 PMRP participants to identify all those who 
had premutation-range CGG repeats (i.e., 55 to 200 repeats) (20). 
In total, 98 premutation carriers were identified (72 females and 
26 males), who are the focus of the present study. All individuals 
who had a CGG repeat in the premutation range were included in 

the analysis. CGGs of female premutation carriers ranged from 
55 to 125 (mean, 66.9) on longer allele and 7 to 45 (mean, 28.8) on 
shorter allele; CGGs of male premutation carriers ranged from 55 to 
96 (mean, 63.81) (Fig. 2). Thus, this is a study of genotype-phenotype 
associations among individuals who were primarily in the lower 
half of the premutation range. Most studies based on ascertainment 
through family diagnosis are skewed toward larger number of 
CGGs, and thus, here we have a unique opportunity to investigate 
premutation carriers beyond the scope of previous studies.

We selected 1001 controls with CGGs in the normal range (i.e., 
24 to 40 CGG repeats)—494 male controls and 507 female controls 
(Fig. 2). The female controls had both FMR1 alleles in the normal 
range. As the presence (or absence) of certain health phenotypes in 
the EHR is a function of the participant’s age and observation 
window, we matched premutation carriers and controls on year of birth 
and duration of receiving care from the Marshfield Clinic (Table 1). 
The participants did not differ in many parameters that otherwise 
could have confounded the interpretation of the data. As shown in 
Table 1, these included total number of medical encounters to 
providers in the Marshfield health care system, total number of 
SNOMED codes in the EHR, number of unique SNOMED codes in 
the EHR, or number of medical encounters or codes per year of 
receiving care from the Marshfield system. Hence, phenotypic 
characteristics that are found to differentiate premutation carriers 
from controls would not be attributable to differences between the 
two groups in age, health care utilization from the Marshfield Clinic, 
or total diagnoses received. None of the participants—case or control—
had a diagnosis of FXS, FXTAS, or FXPOI in their EHR. Our data 
include deceased cases (8 premutation carriers and 108 controls), 
but EHRs from all cases were included in this study regardless of 
mortality status. Individuals with 41 to 54 CGG repeats (the “gray 
zone”) were excluded from the control group, as there is some 
evidence suggesting possible phenotypic associations with gray zone 
CGG repeats (21). In addition, those with low numbers of CGG 
repeats (<2 SDs below the mean; 7 to 23 CGGs in the present popu-
lation) were similarly excluded from the control group because 
recent research has suggested that having low numbers of CGGs 
might possibly be associated with clinical symptoms (22, 23).

Differentiating premutation carriers from controls
We used a machine learning approach, random forest, to differentiate 
premutation carriers from individuals with normal alleles using EHR 
data. The input vector for each participant represents the frequency 
of appearance of each feature (SNOMED concept identifiers) in the 
EHRs. Although the use of EHR data provides a unique opportunity 
to examine a broad spectrum of phenotypes in a population setting, 
this approach also has multiple challenges. EHRs contain noise, 
other errors, and missing data, in part because their primary role is 
billing and also because patients choose whether and when to come 
into the clinic. We attempted to minimize these limitations by 
restricting the analyses to codes that appeared at least twice for a 
given participant (rule of 2) and that were observed in at least five 
individuals (24, 25).

To investigate the possible effect of age, we conducted the analyses 
at various age thresholds including all of the codes that were recorded 
in the EHRs before the ages of 40, 60, and 80, as well as lifetime 
diagnoses. We include cumulative lifetime diagnoses because 186 
participants received care beyond the age of 80. 10-fold cross-
validation was used to train and test the models. To measure the 
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success of classification, the area under the receiver operating 
characteristic curve (AUROC) is reported. If the AUROC is significantly 
greater than 0.5, as determined by a Mann-Whitney-Wilcoxon test 
(Mann-Whitney U test), we conclude that the premutation carriers 
are significantly different from controls (26).

Given the variability in both age of onset and frequency of symptoms, 
we expected a significant but not perfect classification of the two 
groups. Using this approach, we were able to differentiate premutation 
carriers from controls based on diagnostic codes in their EHRs. Our 
random forest classifiers predicted the premutation status of participants 
before the ages of 40, 60, 80, or lifetime diagnoses with AUROC = 0.63, 
P = .0000; AUROC = 0.65, P = .0000; AUROC = 0.65, P = .0000; and 
AUROC = 0.6, P = .007, respectively, for females, and AUROC = 0.61, 

P = 0.039; AUROC = 0.63, P = .0000; AUROC = 0.64, P = .0000; and 
AUROC = 0.66, P =  .0000, respectively, for males (Fig. 3). The 
statistically significant values of AUROCs for these models indicate 
the importance of the target genotype (FMR1 premutation) and are 
consistent with the variability in frequency and age-related symptom 
manifestation of the FMR1 premutation.

To identify the specific clinical diagnoses that differentiate 
premutation carriers from controls, we used a measure called mean 
decrease in impurity based on Gini score (MDG), which is defined 
as the total decrease in node impurities from splitting on the variable, 
averaged over all trees in a trained random forest. Variables with 
higher MDGs are more influential in creating decision trees for 
prediction (27). After identifying these variables, we examined the 

Personalized Medicine Research Project (PMRP)
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Fig. 1. Workflow overview of creating and mining the FMR1-informed biobank. Starting with recruiting 20,353 PMRP participants, 19,996 individuals were 
genotyped. We identified premutation carriers and controls and matched them on year of birth and duration of receiving care from Marshfield Clinic. The diagnostic 
codes were used to examine whether the overall health profile of premutation carriers is different than controls. To filter possible noise and error in the EHR data, we 
applied the rule of 2 and limited our dataset to health conditions that were observed in more than five participants. We applied random forest to create a model 
representing the health conditions differentiating the two groups. Further examination of the model showed that premutation carriers suffer from a higher burden of 
disease throughout the life span compared with the controls for differentiating conditions. In a separate set of analysis, we used PheWAS to identify individual clinical 
conditions that are primary phenotypes of premutation. The resulting phenotypes are unconfounded by concerns about one’s own genetic status, stressful parenting, or 
clinical ascertainment bias.
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participants’ EHR data in terms of three indicators of burden of 
disease (28): (i) the percentage of cases and controls who received 
each diagnosis, (ii) the number of medical encounters for each 
condition for cases versus controls, and (iii) the age of cases versus 
controls when they first received each diagnosis (data S1 and S2). 
Figure 4 shows the distribution of three indicators of the burden of 
disease for the 100 variables with the highest MDG at age 40. Similar 
distributions based on ages 60 and 80 and lifetime are shown in 
figs. S1 to S3. Results indicated that for all of these variables, female 
premutation carriers had either a higher likelihood of receiving the 
diagnosis, had a higher frequency of medical encounters for this 
diagnosis, or were first diagnosed at a younger age compared with 
controls.

Focusing on diagnostic codes that were received before age 40 in 
females (Fig. 4, figs. S1 to S3, and data S1), we observed that the 
percentage of receiving the code was higher in premutation carriers 
for 75% of the 100 target conditions. A greater number of medical 
encounters for female premutation carriers than for controls was 
observed in 70% of the target conditions, and in 64% of conditions, 
premutation carriers were diagnosed at a younger average age than 
controls. For 32% of conditions, female premutation carriers had 
worse health outcomes on all three indicators of disease than the 
controls—higher frequency of receiving the diagnosis, greater number 
of medical encounters for the diagnosis, and younger age at receiving 
the diagnosis. We did not observe any condition in which all criteria 
were higher in controls than in premutation carriers (data S1).

For males, focusing on diagnostic codes that were received 
before age 40 (Fig. 4 and data S2), we observed that the percentage 
of receiving the code was higher in premutation carriers for 78% of 
the 100 target conditions. However, unlike for females, the frequency 
of medical encounters for target conditions did not differ for male 
premutation carriers than for controls, and the two groups had similar 
distribution of ages when first receiving these diagnoses. For 14% of 
conditions, male premutation carriers had worse health outcomes 
on all three indicators of disease than the controls—higher frequency 
of receiving the diagnosis, greater number of medical encounters 
for the diagnosis, and younger age at receiving the diagnosis. We 
did not observe any condition in which all criteria were higher in 
male controls than in male premutation carriers. These patterns at 
age 40 are less definitive than those observed in females. This observation 

could be the result of older age of onset for FMR1-related health 
conditions in males (i.e., the onset of FXTAS symptoms is at age 50 
or older). As shown in figs. S1 to S3, the burden of disease in males 
appears to be greater at older ages.

Participants were not aware of their CGG repeat length, so their 
higher burden of disease was not an artifact of anxiety emanating 
from knowledge of their premutation status. On the basis of available 
data, premutation carriers and controls had an equivalent likelihood 
of parenting a child with a disability, meaning that stressful parenting 
does not confound the health outcomes in these individuals.

Phenotypic profiles of premutation carriers
To further examine the phenotypic association of clinical diagnoses 
and the FMR1 premutation, we used the Phenome-Wide Association 
Study (PheWAS) methodology, separately for females and for males 
(29). We converted all diagnostic codes to ICD-9 codes and then 
created a map connecting those codes to clinical phenotypes 
(phecodes) (30). To take into account the effect of both X chromosomes 
for females, the number of CGGs on the shorter allele was included 
as a covariate in all analyses. Here, we report the health profile of 
participants based on clinical phenotypes that were received before 
age 40. In the Supplementary Materials, we report similar analyses 
for codes received before ages 60 and 80 and for lifetime codes 
received (figs. S4 to S6). We declared the level of statistical significance 
at a P value of 0.05 without adjusting for multiple comparisons. In 
addition, we report the statistical significance at adjusted P value of 
0.1 for the false discovery rate (FDR). Although the current research 
is one of the largest studies examining premutation carriers, more 
data will be needed to generate substantial individual findings with 
a lower FDR. In addition, using this significance threshold reduces 
the risk of underreporting medical conditions that could possibly 
affect the well-being of individuals with the premutation (31).

Applying linear regression on phecodes that represent diagnoses 
received before age 40  in females, we identified 37 significant 
associations with FMR1 premutation status (Fig. 5). Among these 
conditions, fracture of upper limb survived adjustment for multiple 
comparisons. The results suggest that three phenotypic categories 
were strongly related to premutation status in females: mental 
disorders, genitourinary problems, and injuries (P < 0.01), all previously 
suggested in the clinical literature (6). With respect to mental disorders, 

Fig. 2. Distributions of CGG repeats in female and male participants. Premutation-range CGG repeats are defined as 55 to 200 repeats, and normal range is considered 
to be 24 to 40 CGG repeats. In total, 98 premutation carriers were identified (72 females and 26 males), and we selected 1001 age-matched controls (494 male and 507 
female controls). CGG repeats in female premutation carriers ranged between 55 and 125, and in male premutation carriers, the range was between 55 and 96 CGGs.
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findings of agoraphobia, social phobia, and panic disorder confirm 
the higher risk of anxiety disorder in female premutation carriers 
that has been reported in the clinical literature (6). With respect to 
genitourinary problems, specific codes that were identified include 
infertility, menstrual-related symptoms, and dysmenorrhea; premature 
reproductive aging has been previously reported in the clinical 
literature in premutation carriers (32). With respect to injuries, specific 
codes that we identified for females in the present analysis include 
fractures and sprains, perhaps reflective of ataxia and falls, or estrogen 
insufficiency, both of which have been reported in the clinical 
literature as characteristic of females with the premutation. Thus, 
patterns of conditions reported in the clinical literature were largely 
replicated by this double-blind approach (6).

In addition, at the .05 level, the results indicate significant 
associations of the premutation with other conditions and symptoms 
for females: mental disorders (alteration of consciousness); neuro-

logical (abnormality of gait, convulsions, obstructive sleep apnea, 
abnormal movement, and sleep apnea); circulatory system (chronic 
venous insufficiency); digestive (other diseases of the teeth and 
supporting structures); genitourinary [endometriosis, inflammatory 
diseases of the uterus (except cervix), noninflammatory disorders of 
the vulva and perineum, disorders of menstruation, and other 
abnormal bleeding from the female genital tract]; fetal complications 
(complications of labor and delivery); dermatologic [hyperhidrosis, 
acne, cellulitis and abscess of leg (except foot), diseases of sebaceous 
glands, and chronic ulcer of skin]; musculoskeletal (synovitis and 
tenosynovitis, intervertebral disc disorders, and disorders of coccyx); 
and symptoms and ill-defined conditions (thoracic or lumbosacral 
neuritis or radiculitis, symptoms of the muscles, swelling of limb, 
malaise and fatigue, and myalgia and myositis).

Focusing on the health profile of male participants based on 
diagnostic codes that were received before age 40, we identified a 

Table 1. Participants’ characteristics. Participants included 72 female premutation carriers with 55 to 125 CGGs, 507 female controls with 24 to 40 CGGs, 26 
male premutation carriers with 55 to 96 CGGs, and 494 male controls with 24 to 40 CGGs. Female deceased: premutation carriers = 5 and control group = 40. 
Male deceased: premutation carriers = 3 and control group = 68. 

Premutation carriers Controls

Variable Range Mean Range Mean P value

Females

Year of birth* 1918–1987 1957.74 1911–1988 1956 0.62

Duration of 
receiving care 
from Marshfield*

3–40 32.47 1–40 31.96 0.67

Number of 
medical 
encounters

12–1114 268.55 3–1652 300.28 0.26

Number of 
SNOMED codes 21–2985 748.77 10–6130 859.54 0.24

Unique SNOMED 
codes 10–369 151.80 5–482 159.45 0.47

SNOMED codes/
years in the 
system

1.17–218 28.44 0.59–234.9 27.79 0.85

Number of 
medical 
encounters/years 
in the system

0.67–54.11 9.57 0.30–64.64 9.63 0.95

Males

Year of birth* 1912–1988 1956 1911–1988 1956.06 0.99

Duration of 
receiving care 
from Marshfield*

2–40 28.5 1–40 31.26 0.12

Number of 
medical 
encounters

16–703 197.92 4–1617 246.94 0.29

Number of 
SNOMED codes 20–2335 608.85 7–6416 745.89 0.43

Unique SNOMED 
codes 9–306 115.65 5–495 132.20 0.35

SNOMED codes/
years in the 
system

0.67–59.87 21.10 0.48–195.46 24.14 0.57

Number of 
medical 
encounters/years 
in the system

0.53–18.02 7.12 0.38–44.08 8.02 0.53

*Cases and controls were matched on year of birth and duration of receiving care from Marshfield.
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total of 22 significant associations (see Fig. 5). All of the conditions 
that are annotated (P < 0.01) in Fig. 5 survived adjustment for multiple 
comparisons. Abnormal blood chemistry has the highest association 
with the FMR1 premutation. The categories that differentiated male 

premutation carriers from male controls include mental disorders, 
respiratory conditions, and genitourinary disorders, all of which 
were elevated in premutation carriers (P < 0.01). Specific codes reflective 
of mental disorders were major depressive disorder, mood disorder, 
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males; premutation carriers and controls had similar age of onset for target conditions.
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and other nonpsychotic and/or transient mental disorders. Specific 
codes reflective of respiratory problems include chronic sinusitis, other 
disease of the respiratory system (not elsewhere classified), and dyspnea. 
Specific codes reflective of genitourinary disorders include urinary 
incontinence and other symptoms and conditions of the urinary system. 
Mood disorder, incontinence, and arthropathies may suggest early 
possible signs of FXTAS (33). In addition, evidence (P < 0.05) of 
higher rates of respiratory disorders, digestive problems, and endocrine/
metabolic conditions were observed in male premutation carriers, which 
have not been reported previously in the clinical literature (Fig. 5).

Automated mining of the research literature for  
phenotype confirmation
To verify our results, in addition to using cross-validation in 
conjunction with random forest learning, we incorporated the 
published literature as a positive control. Using the text mining tool 
KinderMiner (see Materials and Methods and table S1) (34), we 

processed 26 million articles in PubMed to identify the reported 
associations of FMR1 premutation with health conditions. The results 
of this validation task showed that our research is able to confirm in 
an unbiased population-based sample many of the conditions 
previously reported only in clinical research (e.g., anxiety, phobia, 
depression, falls, injuries, infertility and menstrual-related issues, 
pain, thyroid-related conditions, and sleep apnea).

The KinderMiner analysis also confirmed that our study resulted 
in the discovery of conditions that were not previously reported in the 
literature (e.g., acne and skin problems, bacterial infection, and adverse 
drug reactions). These previously unidentified discoveries not only are 
impactful for premutation carriers and their families but also can 
improve current clinical practice. For example, further examination of 
EHRs of the 21 premutation carriers who had an adverse drug reaction 
showed that 57% of them had a reaction to antibiotics, 43% to opioid 
(narcotic) analgesics, 29% to antihypertensive drugs, 24% to anti-
inflammatory drugs, and 48% to other types of drugs. Clinicians, 

Fig. 5. Manhattan plots of unadjusted −log10 (P values) for phecodes observed before age 40. Each point shows one phecode. All associations with P < 0.01 are 
annotated. For females, the conditions with P values between 0.05 and 0.01 include alteration of consciousness, abnormality of gait, convulsions, obstructive sleep apnea, 
abnormal movement, sleep apnea, chronic venous insufficiency, other diseases of the teeth and supporting structures, endometriosis, inflammatory diseases of the 
uterus (except cervix), noninflammatory disorders of the vulva and perineum, disorders of menstruation and other abnormal bleeding from the female genital tract, 
complications of labor and delivery, hyperhidrosis, acne, cellulitis and abscess of the leg (except the foot), diseases of the sebaceous glands, chronic ulcer of the skin, 
synovitis and tenosynovitis, intervertebral disc disorders, disorders of the coccyx, thoracic or lumbosacral neuritis or radiculitis, symptoms of the muscles, swelling of 
limbs, malaise and fatigue, and myalgia and myositis. For males, the conditions with P values between 0.05 and 0.01 include other symptoms of the respiratory system, 
other diseases of the respiratory system, personality disorders, depression, orchitis and epididymitis, gingival and periodontal diseases, disorders of carbohydrate transport 
and metabolism, intestinal disaccharidase deficiencies and disaccharide malabsorption, disorders of the function of the stomach, dyspepsia, and other specified disorders 
of the function of the stomach.
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genetic counselors, and pharmacogeneticists can use this information 
to improve personalized treatment plans for premutation carriers. 
In addition, these new proposed phenotypes will create an opportunity 
to reevaluate the risks associated with FMR1 premutation.

DISCUSSION
The present study is the first to investigate the health characteristics 
of FMR1 premutation carriers in a representative population sample 
selected on the basis of CGG repeat length rather than being ascertained 
after a family member is diagnosed with FXS. The approach we 
used was double blind, as neither the patient nor the provider was 
aware of the individual’s FMR1 status, and so expectancy of associated 
conditions cannot account for the patterns.

Understanding how this genetic variant affects disease risk could 
be potentially used in developing personalized health plans and 
preventive care. This research informs a long-standing debate regarding 
the health implications of carrying the FMR1 premutation and 
provides new insights about the health and well-being of premutation 
carriers.

In our discovery approach, we examined EHR data to systematically 
assess phenotypic associations with FMR1 status. In addition to 
identifying the conditions that are more prevalent in FMR1 premutation 
carriers, our research revealed that premutation carriers had an 
elevated number of medical encounters for these conditions compared 
with controls, and the onset of symptoms was at a younger age. 
Together, these patterns indicate that premutation carriers suffer from 
a greater burden of disease for these differentiating conditions. 
Notably, premutation carriers, both female and male, were not sicker 
overall, as when all conditions in the health record were considered, 
there were no differences in number of conditions or number of 
medical encounters, whether considering the entire EHR or the 
averages of these indicators per year. It was specifically with respect 
to the conditions that differentiated premutation carriers from 
controls that the greater burden of disease was observed. In other 
words, the premutation is associated with a unique pattern of health 
conditions.

What could account for these findings? Past discussions implicated 
a number of alternative hypotheses, all of which were considered 
in the present research design. For example, participants were not 
aware of their CGG repeat length, so their higher burden of disease 
was not an artifact of knowledge of their premutation status. In 
addition, on the basis of the available data, these premutation carriers 
and controls had an equivalent likelihood of parenting a child with 
a disability, and thus, stressful parenting does not confound the 
difference in health outcomes in these individuals. The premutation 
carriers in the present sample had CGG counts in the lower portion 
of the premutation range, and even so, the clinical phenotype 
evident in their health records mirrored those reported for clinically 
ascertained carriers with higher numbers of CGG repeats. Thus, the 
most parsimonious explanation is that there are health consequences 
of the premutation, and these cannot be attributed to ascertainment 
bias or spurious self-report.

A unique aspect of the present study in examining whether those 
who had the premutation differed from the population in the normal 
CGG range is that we omitted from the control group both those 
with gray zone CGG repeats and those with particularly low numbers 
of CGG repeats, as both of these “zones” have been associated with 
an elevated risk of health conditions (21, 22). It is possible that having 

a control population for whom CGGs clustered more closely around 
the population mode of 30 CGG repeats sharpened the present 
study’s ability to detect a premutation phenotype.

The PMRP population is relatively homogenous, with a majority 
of the participants reporting themselves to be white Caucasian. 
Initial testing and discovery in a genetically relatively homogeneous 
population is a logical first step in a continuum of investigations 
because other genetic factors and population structure (admixture) 
are naturally well controlled. The advantage of studying a population 
with low genetic variation has been clearly demonstrated by the 
success of the Iceland genetics project (35).

However, the lack of diversity is a limitation of the current study. 
The number of FMR1 premutation carriers in this population is 
similar to the reported prevalence in other U.S.-based studies on 
white Caucasians (9, 20). However, it is higher than other ethnic 
groups, and additional studies are required to examine the presence 
of identified phenotypes in these populations (9).

Although the sample was drawn from a representative population 
cohort of 20,000 adults, the number of premutation carriers was 
small, particularly for the male premutation carriers. Thus, larger 
samples are needed to more fully investigate the genotype-phenotype 
associations reported here. Larger samples would make it possible 
to more robustly correct for multiple comparisons. The balance 
between types I and II error must be considered in every study, and 
in our discovery-oriented approach, we sought to identify associated 
phenotypes rather than to overlook these in an effort to reduce type 
II error. The results of the present study largely replicated the 
phenotypes reported in studies based on data ascertained through 
family diagnoses cases, providing some justification for this decision, 
although in future research with larger samples, correction for false 
discovery should be prioritized.

Knowledge of the clinical risk associated with the premutation 
will be critical for clinicians who diagnose and counsel families. 
Vulnerability of premutation carriers to falls and higher rates of 
injuries and fractures could be a part of genetic counseling for these 
individuals, with specific instructions about avoiding certain risky 
behaviors. Our results also showed that psychiatric features such as 
anxiety, depression, and panic disorder are more common and 
severe in premutation carriers. Psychiatric counseling, therapeutic 
intervention, and proper medication will be helpful in improving 
these conditions. It is possible that for women, hormonal insufficiency 
is a factor in both the injuries (bone thinning) and psychiatric 
phenotypes. Females identified as FMR1 premutation carriers via 
population screening should receive proper genetic counseling and 
be informed about the possibility of early menopause and infertility. 
Early detection of reproductive difficulties will help in avoiding the 
long and emotionally painful process of diagnosis and fertility 
treatments. Our machine learning approach can serve as a framework 
for discovery and evaluation of primary phenotypes in other genetic 
variants in which knowledge about the fundamental phenotype may 
be compromised by ascertainment bias.

MATERIALS AND METHODS
Study population
Participants in this study were all members of the Marshfield Clinic’s 
PMRP. The PMRP is one site of the National Institutes of Health 
(NIH)–funded eMERGE (Electronic Medical Records and Genomics) 
Network, a consortium of medical centers with EHR-linked banked 
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DNA (36). The PMRP includes 20,353 individuals (40% of the eligible 
population of the Marshfield Epidemiologic Study Area, a 19–zip 
code region centered geographically around Marshfield, Wisconsin, 
and an additional 9–zip code area in northern Wisconsin) who 
consented to share their EHRs, DNA, and other biosamples for 
research. Recruitment into the PMRP began in 2002. We assayed 
CGG repeat length in all PMRP participants for whom DNA samples 
were available (n = 19,996) using the procedures described previously 
(8, 20). The exact size of the CGG repeat is available for 3998 participants 
(2114 females and 1884 males), from which 620 males and 650 females 
qualified as possible controls for this study; after matching, 494 males 
and 507 females were included in the data analysis. The PMRP is the 
only eMERGE site with FMR1 CGG data. The participants came 
from a very stable/stationary rural population for which the average 
participant has approximately 40 years of continuous and virtually 
comprehensive data within the Marshfield Clinic EHR system linked 
to both stored and assayed biospecimens (e.g., DNA).

Institutional review board (IRB) approval for this research 
was obtained by the Marshfield Clinic and the University of 
Wisconsin-Madison. According to the approved protocol, partici-
pants consented to contribution of their deidentified EHRs and 
DNA to be used in research without expectation of return of research 
results (37). The ethical considerations raised by this protocol have 
been discussed extensively in previous reports (38).

Random forest classifier
Random forest is a robust, accurate, and reliable classification 
method with low generalization error and high predictive performance 
(39). The algorithm repeatedly draws a bootstrap sample (random 
sampling with replacement) and trains an ensemble of decision 
trees, one tree per sample. To further ensure diversity among the 
trees in the forest, during training only, a random subset of variables 
is considered for use at any node in a decision tree. At prediction 
time (testing time), for a given test, the forest aggregates the predictions 
from all of the trees and identifies the most popular class as the final 
prediction (39). Although the current study is based on the largest 
FMR1-informed biobank derived from population data, the number 
of cases is still relatively small compared with the number of features 
in our analyses. This difference elevates the risk of overfitting the 
training data, a risk that is also raised by use of a nonlinear model, 
such as the decision trees in a random forest. Nevertheless, such 
nonlinear models provide an opportunity to find important multi-
variate interactions in the data. They enabled us to find predictive 
combinations of diagnostic codes that differentiate the two groups. 
The ensemble nature of random forests in practice reduces the risk 
of overfitting. The random forest method can be validly applied to 
studies in which the number of cases is much smaller than number 
of input features (39, 40). To measure the success of classification, 
the AUROC was reported. The ROC curve displays the false-positive 
rate versus the true-positive rate. AUROC of 1.00 shows 100% 
success in classification, and AUROC of 0.5 represents random 
classification (26). To ensure that the ROC curve is not overly 
optimistic, it was constructed by stratified 10-fold cross-validation, 
the form of hold-out testing widely used throughout machine learning 
for this same purpose. In stratified 10-fold cross-validation, cases 
and controls were each randomly partitioned into 10 parts, and on 
each fold, a different single part of the cases and of the controls were 
held aside for testing. A predictive model (in our case, random forest) 
was trained on the remaining ​​9 ⁄ 10​​ of the data, tested on the held-out 

​​1 ⁄ 10​​, and an ROC curve was constructed from the test set. The 10 
final resulting ROC curves were vertically averaged to avoid any 
assumption of calibration between folds. Because a single ROC curve 
was returned by the overall method, no adjustment for multiple 
comparisons was necessary for the curve or the P value resulting 
from the Mann-Whitney U test based on it.

Replication via KinderMiner
The strength of machine learning is its ability to find previously 
unrecognized phenotypes, as well as to “rediscover” previously 
known phenotypes, simultaneously moving research beyond 
published literature and clinical studies. Therefore, the previous studies 
can serve as a positive control to determine whether machine learning 
is able to accurately identify the known phenotypes and how well it 
is able to actively expand the boundary of our knowledge. To verify 
our results, we used a text-mining tool called KinderMiner, which 
enabled us to screen the entire published literature on fragile X 
premutation available on PubMed and evaluate our list of phecodes 
(34). KinderMiner uses keyword matching and document counting 
to identify correlations of FMR1 premutation and target clinical 
phenotypes and ranks them by their co-occurrence proportion. For 
each target phenotype, KinderMiner returns the number of articles 
that contain both, either, and neither the target phenotype and 
FMR1 premutation. The one-sided Fisher’s exact test was performed 
to identify the significance level of each correlation. We processed 
26 million article abstracts and identified 2070 published articles 
related to FMR1 premutation. Table S1 shows the list of target 
phenotypes and their association level with FMR1 premutation in 
the published literature.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaaw7195/DC1
Supplementary Text
Fig. S1. The distribution of the target diagnoses in premutation carriers and controls for codes 
received before age 60.
Fig. S2. The distribution of the target diagnoses in premutation carriers and controls for codes 
received before age 80.
Fig. S3. The distribution of the target diagnoses in premutation carriers and controls based on 
lifetime diagnoses.
Fig. S4. Manhattan plots of unadjusted −log10 (P values) for phecodes observed before age 60.
Fig. S5. Manhattan plots of unadjusted −log10 (P values) for phecodes observed before age 80.
Fig. S6. Manhattan plots of unadjusted −log10 (P values) for lifetime phecodes.
Table S1. Phenotypic association with FMR1 premutation reported in published literature, 
identified by KinderMiner.
Data S1. Lists of the first 100 variables that contributed in the classification of female 
premutation carriers (n = 72) versus control (n = 507).
Data S2. Lists of the first 100 variables that contributed in the classification of male 
premutation carriers (n = 26) versus control (n = 494).
Data S3. Linear regression models based on PheWAS phenotypes of female participants.
Data S4. Linear regression models based on PheWAS phenotypes of male participants.
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