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Individual Neurons in the Cingulate Cortex Encode Action
Monitoring, Not Selection, during Adaptive Decision-Making
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The cingulate cortex contributes to complex, adaptive behaviors, but the exact nature of its contributions remains unresolved.
Proposals from previous studies, including evaluating past actions or selecting future ones, have been difficult to distinguish in
part because of an incomplete understanding of the task-relevant variables that are encoded by individual cingulate neurons. In
this study, we recorded from individual neurons in parts of both the anterior cingulate cortex (ACC) and posterior cingulate cortex
(PCC) in 2 male rhesus monkeys performing a saccadic reward task. The task required them to use adaptive, feedback-driven
strategies to infer the spatial location of a rewarded saccade target in the presence of different forms of uncertainty. We found that
task-relevant, spatially selective feedback signals were encoded by the activity of individual neurons in both brain regions, with
stronger selectivity for spatial choice and reward-target signals in PCC and stronger selectivity for feedback in ACC. Moreover,
neurons in both regions were sensitive to sequential effects of feedback that partly reflected sequential behavioral patterns.
However, neither brain region exhibited systematic modulations by the blockwise conditions that governed the reliability of the
trial-by-trial feedback and drove adaptive behavioral patterns. There was also little evidence that single-neuron responses in either
brain region directly predicted the extent to which feedback and contextual information were used to inform choices on the
subsequent trial. Thus, certain cingulate neurons encode diverse, evaluative signals needed for adaptive, feedback-driven
decision-making, but those signals may be integrated elsewhere in the brain to guide actions.
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Introduction
Organisms tend to repeat actions that lead to positive outcomes
and avoid actions that lead to negative outcomes (Thorndike,

1911). This kind of adaptive behavior is particularly sensitive to
errors, which can drive adjustments that ultimately lead to ap-
propriate behavioral policies in uncertain environments (Bertse-
kas and Tsitsiklis, 1996; Sutton and Barto, 1998). However, errors
can arise from different sources that may have different, even
opposite, implications for effective learning. For example, a base-
ball batter may realize after a missed swing that the new pitcher
throws harder than the previous one and should adjust accord-
ingly. However, if the same batter, facing the same pitcher, again
misses later in the game, the best policy is probably not to over-
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Significance Statement

Effective decision-making in dynamic environments requires adapting to changes in feedback and context. The anterior and
posterior cingulate cortex have been implicated in adaptive decision-making, but the exact nature of their respective roles remains
unresolved. Here we compare patterns of task-driven activity of subsets of individual neurons from parts of the two brain regions
in monkeys performing a saccadic task with dynamically changing reward locations. We find evidence for regional specializations
in neural representations of choice and feedback, including task-relevant modulations of activity that could be used for perfor-
mance monitoring. However, we find little evidence that these neural representations are used directly to adjust choice behavior,
which thus likely requires integration of these signals elsewhere in the brain.
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compensate. Put another way, errors that arise from either
changes in or uncertainty about an environment likely represent
good opportunities for learning and thus should cause changes in
behavior. In contrast, errors that are an inevitable consequence of
noise or other inherent limitations are often best ignored (Yu and
Dayan, 2005; Courville et al., 2006; Adams and MacKay, 2007;
Behrens et al., 2007; Fearnhead and Liu, 2007; Nassar et al., 2010;
Wilson et al., 2013).

Such flexibility implies that, in addition to processing errors, the
brain should also keep track of contextual information needed to
interpret the source of those errors to guide learning. Accordingly, of
particular interest are the anterior cingulate cortex (ACC) and pos-
terior cingulate cortex (PCC), which can encode both error feedback
and relevant contextual information, including the likelihood of a
recent environmental change-point and subjective uncertainty
about the current state of the environment (Vogt and Pandya, 1987;
Ito et al., 2003; Behrens et al., 2007; Matsumoto et al., 2007; Quilo-
dran et al., 2008; Jocham et al., 2009; Pearson et al., 2011; Heilbron-
ner and Platt, 2013; Payzan-LeNestour et al., 2013; Heilbronner and
Haber, 2014; McGuire et al., 2014). This feedback encoding has been
identified at the single-neuron level in the ACC and PCC of monkeys
(McCoy and Platt, 2005; Matsumoto et al., 2007; Seo and Lee, 2007;
Heilbronner and Platt, 2013). However, the relevant contextual sig-
nals have generally been studied only using much lower-resolution
imaging techniques (Behrens et al., 2007; Kolling et al., 2014;
McGuire et al., 2014). Therefore, it is currently unknown whether
and how such signals are combined at the single-neuron level in the
cingulate cortex, and whether there are regional specializations in the
computation of these variables between the anterior and PCC.
Moreover, it is unclear whether these signals represent monitoring of
past actions, selection of future actions, or both during error-driven
learning (Alexander and Brown, 2011; Pearson and Platt, 2013;
Shenhav et al., 2013; Botvinick and Cohen, 2014; Heilbronner and
Hayden, 2016).

We recorded from individual ACC and PCC neurons in mon-
keys performing an adaptive-inference task in which the task context
affected the degree to which particular errors should lead to behav-
ioral adjustments. We focused on the relationship between noise and
change-points. In one condition, small spatial errors were most
likely a result of noise in an otherwise stable reward-generating pro-
cess. In another condition, the same errors instead typically resulted
from change-points in the process itself. We tested whether and how
individual ACC and PCC neurons encode choice, feedback, and
contextual variables required to monitor performance and make
adjustments to guide future task-relevant actions.

Materials and Methods
Subjects
Two adult male rhesus monkeys (Macaca mulatta) were used for this
study. All training, surgery, and experimental procedures were per-
formed in accordance with the National Institutes of Health’s Guide for
the care and use of laboratory animals and were approved by the Univer-
sity of Pennsylvania Institutional Animal Care and Use Committee.

Behavioral task
On each trial, the reward target was drawn probabilistically from a distribu-
tion centered on the best target. The best target was selected uniformly from
the 10 possible targets based on a change-point process governed by a flat
hazard rate. Here, the hazard rate is defined as the probability, on any given
trial, that the best target would be randomly reselected. In the no-noise,
high-hazard (“unstable”) condition, the best target was rewarded 100% of
the time, but its location was unstable, changing with a hazard rate of 0.4–
0.45 per trial. In the high-noise, low-hazard (“noisy”) condition, the best
target was rewarded 60% of the time, with adjacent pairs of targets rewarded
at 15% and 5%, but the best location was more stable, changing with a hazard

rate of 0.02 per trial. Noise and hazard rate were counterbalanced to achieve
similar overall performance for the two task conditions. The two environ-
ments were presented in blocks of 100–300 trials and cued explicitly by the
color and size of the fixation point (large red disk for “unstable” and small
gray disk for “noisy” trials).

Each trial began with the presentation of a central fixation point. The
monkey had 500 ms to acquire fixation, after which the circular, 10-target
array (radius 10° visual angle) appeared. The monkey needed to maintain
fixation for a variable duration (�500 –1000 ms) until the fixation point
disappeared, signaling the monkey to indicate its prediction by making a
saccadic eye movement to a single reward target. After the monkey had
indicated its choice, visual feedback was given indicating the chosen
target (small green dot) and the reward target (large white dot). This
visual feedback was present for a variable duration (randomly chosen
from 1200, 1350, 1500, 1650, and 1800 ms), during which time the mon-
key could freely view the screen. After the feedback was extinguished, the
screen went blank; and, if the reward target had been chosen, the juice
was delivered. The variable delay between feedback onset and juice de-
livery allowed us to differentiate between the effects of receiving feedback
information and receive the juice reward itself.

Eye position was monitored using a video-based system (Eye-Link 2000;
SR Research) sampled at 1000 Hz. Visual stimuli were generated using the
Psychtoolbox (Brainard, 1997) and custom MATLAB software and pre-
sented on an LCD monitor (BenQ) located 60 cm from the monkey’s eyes.

Electrophysiology
Each monkey was implanted with a head holder and two recording cyl-
inders that targeted the ACC and PCC on either the left side (Monkey SP)
or the right side (Monkey AT). ACC cylinders were placed at Horsley-
Clark coordinates 33 mm AP, 8 mm L for Monkey SP and 43 mm AP, 8
mm L for Monkey AT (the differences in AP coordinates reflected differ-
ences in the animals’ head sizes). PCC cylinders for both monkeys were
placed at 0 mm AP, 5 mm L, and tilted at an angle of 8.5° along the ML
plane to point downward toward the midline. For ACC recordings, we
targeted area 24c along the dorsal bank of the anterior cingulate sulcus
(�4 – 6 mm below cortical surface) because of prior work demonstrating
decision-related neural activity in this area, which is also known as dACC
(e.g., Seo and Lee, 2007; Hayden et al., 2009; Kennerley et al., 2011). For
PCC recordings, we targeted areas 31 and 23 in the posterior cingulate
gyrus (�7–11 mm below cortical surface) because of spatial- and
decision-related neural activity that have been identified in this area, also
known as CGp (e.g., Olson et al., 1996; Dean and Platt, 2006; Hayden et
al., 2008; Heilbronner and Platt, 2013). Both brain regions were targeted
using MRI and custom software (Kalwani et al., 2009) as well as by
listening for characteristic patterns of white and gray matter during re-
cordings. Neural recordings were conducted using either single-contact
glass-coated tungsten electrodes (Alpha-Omega) or multicontact linear
electrode arrays (V-probe, Plexon) and a Multichannel Acquisition Sys-
tem (Plexon). Spike waveforms were sorted offline to identify putative
single units (here referred to as “neurons”).

Behavioral analyses
Logistic regression for effects of trial history. We used a logistic regression
model to quantify the relationship between feedback on previous trials
and probability of switching on the next trial (Pswitch) while controlling
for the effects of error magnitude and noise on the current trial as follows:

log
Pswitch

Pstay
� �

i�0,j�0

1,3

�i,j�noise,i�errMagt, j

� �
j�1,k�1

3,5

�j,k�errMagt�k, j � �
j�1,k�1

3,5

�j,k�noise,1�errMagt�k, j

� �
i�0,k�1

1,5

�i,k�noise,i�switcht�k,1 (1)

where �i,j, �j,k, �j,k, and �i,k are coefficients fitted by MATLAB’s “glm-
fit” using the binomial distribution, �i,j is the Kronecker delta func-
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tion (such that �i,j � 1 if and only if i � j), “noise” denotes the noise
condition (0 � unstable,1 � noisy), “errMagt” denotes the spatial
error magnitude on trial t (for which errors of �3 are coded as 3), and
“switcht” denotes whether the subject switches its choice on the trial
following t. In this formulation, the coefficients �i,j measure the in-
fluence of feedback on the current trial (t), the coefficients �j,k mea-
sure the average influence of feedback of a given error magnitude
from k trials back, whereas the coefficients �j,k measure the differen-
tial influence of feedback in noisy versus unstable trials from k trials
back. The coefficients �i,k account for the sequential effects of choice
history. Significance for the logistic regression coefficients was deter-
mined by the Wald test ( p � 0.05).

Optimal Bayesian inference. Optimal Bayesian inference for the
change-point task involves computing the posterior distribution over
the best target 	t on trial t after observing the t th reward target from the
history of all reward targets x1, . . . , xt, P(	t�x1:t). We developed a recur-
sive, online algorithm to compute this discrete posterior distribution
(Adams and MacKay, 2007; Behrens et al., 2007; Fearnhead and Liu,
2007; Nassar et al., 2010; Wilson et al., 2013). Let H be the flat hazard rate
determining whether the best target is the same as from the previous trial
or repicked randomly from 1 of the 10 possible targets. The prior prob-
ability over the best targets on trial t is then given by a weighted sum of the
posterior on the best target from the previous trial and the flat uniform
distribution, where H governs the weighting as follows:

P�	t�x1:t�1� � P�	t�1�x1:t�1��1 
 H� �
1

10
H (2)

The posterior probability P(	t�x1:t) after observing the t th outcome xt is
given by Bayes’ rule as follows:

P�	t�x1:t� �
P� xt�	t� P�	t�x1:t�1�

P� xt�x1:t�1�
(3)

where P(xt�	t) is the known likelihood, or noise, distribution (e.g., for the
unstable condition, P(xt�	t) � 1 for xt � 	t, and 0 otherwise), and P(xt�x1:

t�1) acts as a normalization term. Combining Equations 2 and 3 provides
a recursive algorithm for computing the posterior on the best target given
knowledge of the hazard rate H and the noise distribution P(xt�	t) as
follows:

P�	t�x1:t� �

P� xt�	t��P�	t�1�x1:t�1��1 
 H� �
1

10
H�

P� xt�x1:t�
(4)

where P(	t�1�x1:t�1) equals 1/10 for t � 1.
Pure Bayesian behavioral model. For the pure Bayesian model, we gen-

erated a probability distribution of picking target k on trial t 	 1, PBayes(k,
t 	 1), by taking the softmax transformation of the optimal Bayesian
inference algorithm’s posterior probability on trial t as computed in
Equation 4 as follows:

PBayes(k,t � 1) �
exp(� � P�	t � k�x1:t�)�kexp(� � P�	t � k�x1:t�)

(5)

where � is known as the inverse-temperature term, with � � 0 resulting
in all targets being chosen with equal probability and higher � increasing
the probability of picking the most probable target.

We modeled the (discrete) noise distribution after the von Mises dis-
tribution for circular variables (Fisher, 1995) as follows:

P� xt�	t� �

exp�� cos�


5
(xt 
 	t)��

�	t
exp�� cos�


5
�xt 
 	t��� (6)

where the parameter � is inversely related to the width of the noise
distribution. The pure Bayes model thus had five free parameters: two
noise-dependent subjective hazard rates H, two noise-dependent
inverse-noise parameters �, and the inverse temperature term �.

Hybrid Bayesian behavioral model. The hybrid Bayesian model used
the same optimal Bayesian inference algorithm, but without the softmax
transformation and instead with three additional terms that describe the
excessive tendency of the monkeys to use stay-switch heuristics. These
heuristics were encoded as the probability (bounded between 0 and 1)
that they persisted in picking the same target (stay) after correct feedback
(spos), error feedback in the unstable condition (sneg,unstable), and error
feedback in the noisy condition (sneg,noisy). The probability of picking
target k on the t th trial was then given by the following:

P�k,t� � P�	t�1 � k�x1:t�1� � �1 
 s� � s

if k had been chosen on trial t 
 1 (7)

P�k,t� � P�	t�1 � k�x1:t�1� � �1 
 s�

if k had not been chosen on trial t 
 1

where P(	t � 1 � k �x1:t�1) is the posterior on best targets as computed in
Equation 4, and s is the noise- and feedback-dependent stay term that
enhances the probability of the monkey to choose the same target as the
previous trial. The hybrid Bayes model thus had seven free parameters:
two noise-dependent subjective hazard rates H, two noise-dependent
inverse-noise parameters �, and three noise- and feedback-dependent
stay terms s.

Reinforcement learning (RL) models. We applied a fixed learning rate
RL model to the monkeys’ trial 
 trial choice behavior (Sutton and
Barto, 1998). The value Vk(t) of a choice target k on trial t was updated
according to the following delta rule:

Vk�t � 1� � Vk�t� � ��Rk�t� 
 Vk�t�� (8)

where Rk is 1 if target k was the reward target and 0 otherwise. The
learning rate � differed depending on whether or not k was the chosen
target: the chosen target was associated with an “experienced learning
rate” �exp, and all nonchosen targets were associated with a “fictive learn-
ing rate” �fic (Hayden et al., 2009). In the “pure RL” model, the proba-
bility of choosing target k, P(k), was given by the softmax transformation
of Vk as in Equation 5, resulting in three free parameters. In the “hybrid
RL” model, additional choice heuristics as in Equation 7 was applied,
resulting in six free parameters: two choice-dependent learning rates �,
an inverse-temperature term �, and three stay terms s.

Heuristic models. We tested two heuristic models (see Table 2). “Heu-
ristic 1” consists of only the stay-switch heuristic used in the hybrid Bayes
and hybrid RL models (Eq. 7). “Heuristic 2” captures the observation
that monkeys almost always switch for large errors and tend to stay for
small errors, unless the same target has been consistently rewarded. This
heuristic model always switches to the rewarded target when the error
magnitude is �2. For error magnitude �2, the model’s choice function is
a probabilistic mixture of a model that stays with probability s and an RL
model with a single fictive learning rate (�, Eq. 8) and an inverse-
temperature parameter (�) for soft-max choice selection (Eq. 5).

Model fitting and comparison. Behavioral models were fit using
MATLAB’s “fmincon” function to find values of free parameters that
maximized the likelihood of the monkeys’ actual sequences of choices for
each session. To compare goodness-of-fit for the models while account-
ing for differences in the number of free parameters, we used both Akaike
information criterion (AIC) and Bayesian information criterion (BIC)
(Burnham and Anderson, 2004) as follows:

AIC � 
 2logL � 2m � 2m�m � 1���n 
 m 
 1�, (9)

BIC � 
 2logL � m log n, (10)

where L is the likelihood of the monkey’s choices given model parame-
ters, m is the number of model parameters (see Table 2), and n is the
number of trials. Lower AIC and BIC are preferred.

Neural analyses
Neurons were included in the database for further analyses only if we
recorded �350 total trials, of which �125 were low-noise trials and
�150 were high-noise trials. This selection criterion yielded a database
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consisting of 102 neurons from ACC (n � 67 from Monkey SP, 35 from
Monkey AT), of which 77 were considered high-isolation quality single
neurons (n � 49 from Monkey SP, 28 from Monkey AT), and 235 neu-
rons from PCC (n � 75 from Monkey SP, 160 from Monkey AT), of
which 188 were considered high-isolation quality single neurons (n � 58
from Monkey SP, 130 from Monkey AT). On average, 710 trials (308 low
noise, 402 high noise) were recorded for ACC neurons, and 832 trials
(329 low noise, 503 high noise) were recorded for PCC neurons. Isolation
quality did not affect our main conclusions (whether an effect was statis-
tically significant or not), so here we present analyses that include both
low- and high-isolation quality neurons.

GLM. We used a GLM to examine the relationship between trial-by-
trial neural activity and task and behavioral variables of interest while
accounting for important potential confounds. We fit firing rates, r, of
individual neurons to the following equation:

r � �0 � �1 choicex � �2 choicey � �3 rwdTargx � �4 rwdTargy

� �5 fdbk � �6 errMag � �7 noise � �8 fdbkPrev � �9 fdbk�noise

� �10 fdbk�fdbkPrev � �11 switch � �12 postDeltax

� �13 postDeltay � �14 rewRate � �15 trialNum � �16 rPrev, (11)

where �* are regression coefficients fit by MATLAB’s “glmfit” function
using “identity” link function, “choicex” and “choicey” denote the hori-
zontal and vertical coordinates, respectively, of the chosen target (nor-
malized to radius 1), “rwdTargx” and “rwdTargy” denote the horizontal
and vertical coordinates, respectively, of the rewarded target (normalized
to radius 1), “fdbk” denotes categorical feedback on the current trial (0 �
error, 1 � correct), “errMag” is the spatial error magnitude (mean-
centered for error trials), “noise” denotes the noise condition (0 � un-
stable, 1 � noisy), and “fdbkPrev” denotes categorical feedback on the
previous trial (0 � error, 1 � correct). The interaction terms
“fdbk*noise” and “fdbk*fdbkPrev” are the mean-subtracted products of
the indicated variables. The term “switch” denotes whether the monkey
stays (0) or switches (1) its choice on the subsequent trial. The position
terms “postDeltax” and “postDeltay” reflect the difference in horizontal/
vertical coordinates of the postfeedback saccadic target relative to the
original chosen target and were included to account for the confounding
role of postfeedback saccades on the apparent encoding of choice and
feedback variables. The remaining terms were included as potential con-
founds for the apparent neural selectivity for noise: “rewRate” denotes
the average reward rate in the previous 10 trials, “trialNum” is the trial
number during a session (accounting for slow rise or fall in neural activity
over time), and the autoregressive term “rPrev” denotes the firing rate
from the previous trial. Significance for individual coefficients was deter-
mined by the t test ( p � 0.05). A neuron was considered selective for
choice if either �1 or �2 were significantly different from 0. Likewise, a
neuron was considered selective for rewarded target location if either �3

or �4 were significantly different from 0.
For sliding-window analyses, we performed the above GLM for firing

rates computed in 250 ms time bins advanced in 50 ms steps. For epoched
analysis, we defined a prefixation epoch (500 ms before fixation point
onset), a postsaccade epoch (500 ms after saccade onset), and a feedback
epoch (250 –750 ms after feedback onset).

Spatial tuning. To determine whether spatially tuned neurons were
better characterized by unimodal or bimodal tuning, we fit spatial tuning
curves to cosine functions with spatial frequency of 1 or 2 and assessed
which was the better least-squares fit (Hayden and Platt, 2010). To de-
termine tuning widths, we fit spatial tuning curves to von Mises distri-
bution and report the width of the tuning curve at half-maximal height.
Tuning strength was measured in two different ways: (1) an receiver
operating characteristic (ROC)-based selectivity index (the three targets
closest to the preferred direction are grouped as “preferred” and the three
targets in the opposite direction are designated as “null”); and (2) the
norm of the GLM coefficients (i.e., square root of �1

2 	 �2
2 for choice and

square root of �3
2 	 �4

2 for reward target). The results are presented in
Table 3.

Results
The monkeys learned adaptively from feedback
We trained 2 monkeys to perform a novel change-point task that
required them to make a saccadic eye movement to predict, based
on the outcomes of previous trials, the likely location of a single,
stochastically determined “reward target” from among a circular
array of 10 visually identical circles (Fig. 1a). The monkeys per-
formed this task under two different, explicitly cued conditions
presented in blocks of 100 –300 trials. These blocks differed in
terms of the reliability with which feedback signaled change-
points in the most likely location of the reward target (Fig. 1b,c).
In zero-noise, high-hazard (“unstable”) blocks, a single target
was always rewarded until a change-point occurred, governed by
a relatively high hazard rate (0.4 – 0.45). The hazard rate was
defined as the probability of a change-point occurring on any
given trial. To maximize reward in these blocks, the monkeys
should always choose the previously rewarded target and thus
immediately shift choices after errors resulting from change-
points. In contrast, in high-noise, low-hazard (“noisy”) blocks,
the location of the reward target fluctuated around a relatively
stable best target that changed with a hazard rate of 0.02. To
maximize reward in these blocks, the monkey should identify the
best target by integrating noisy feedback information across trials
and thus typically suppress behavioral adjustments to small
errors.

We analyzed the performance of the 2 monkeys from all ses-
sions from which we made neural recordings (n � 93,278 trials
over 67 sessions for Monkey SP; 71,422 trials over 65 sessions for
Monkey AT). Overall, the monkeys chose the reward target well
above chance (�10%) in both the unstable (49% for Monkey SP,
50% for Monkey AT) and noisy (42% for Monkey SP, 43% for
Monkey AT) conditions. However, they adjusted to true change-
points of the best target differently in the two conditions (Fig.
2a,b). In the unstable condition, they tended to choose the best
target �50% of the time after just one trial after a change-point
and �95% of the time after �10 trials. In the noisy condition,
they tended to choose the best target �50% of the time within
5– 6 trials after a change-point, then after �15 trials reliably chose
the best target more frequently than the reward rate for that target
(60%). These results imply that they were not just choosing the
most recent reward target or matching reward probabilities (Su-
grue et al., 2004; Lau and Glimcher, 2005), but rather selecting the
target inferred to be maximally rewarding.

Both monkeys used adaptive, feedback-driven strategies to
solve the task. The monkeys clearly attended to the visual feed-
back that they received at the end of each trial, indicating the
location of the rewarded target, which on error trials tended to
elicit eye movements to that location in the free-viewing period at
the end of the trial (Fig. 3). Subsequently, they were more likely to
switch their choice after error versus correct feedback (Fig. 2c,d).
However, they did not treat all errors equally. They were more
likely to switch after making larger spatial errors (e.g., when the
rewarded target was far from the chosen target). Moreover, for a
given spatial error magnitude, they were less likely to switch in the
noisy versus unstable condition (Fig. 2c,d). This difference was
largest for small spatial errors, which were more predictive of
change-points in the unstable versus noisy condition. These
adaptive features of behavior were present throughout the exper-
imental sessions (switch rate depended on the interaction be-
tween spatial error magnitude and noise condition in each tertile
of experimental sessions for each monkey; logistic regressions, t
test, H0: regression coefficient � 0, tertile values of t � �8.79,
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�16.9, and �13.6 for Monkey SP, �4.23, �19.5, and �13.6 for
Monkey AT, p � 0.001 in each case), even as both monkeys’
overall performance tended to improve over time (Spearman’s �
of best-target choices vs experimental session; � � 0.52 and � �
0.32, for Monkey SP in unstable and noisy conditions, respec-
tively, p � 0.05 in each case; and � � �0.12, � � 0.32, and � �
0.44, p � 0.05, for Monkey AT in unstable and noisy conditions,
respectively). Subsequent analyses therefore combine data across
recording sessions.

Their adaptive behavior reflected context-specific differences
in the effects of recent trial history on the current choice (Fig. 4).
For example, when encountering a spatial error of 1 (i.e., the
rewarded target was immediately adjacent to the chosen target) in
a noisy block, the monkeys were more likely to switch after several
consecutive error trials than after several consecutive correct tri-
als (Fig. 4d,e), but not when encountering the same spatial error
of one in an unstable block (Fig. 4a,b). More generally, the rela-
tionship between feedback history and behavioral adjustment
was stronger and extended further back in time for trials in which
the feedback was more uncertain (e.g., noisy trials with small
error magnitudes) than for trials in which the feedback was more
informative (e.g., noisy trials with large error magnitudes or un-
stable trials). These adaptive dependencies on feedback history
could not be explained simply by the history of choices: a logistic
regression model that included both feedback history and core-
gressors representing choice history (the pattern of stay vs switch
on previous trials) showed stronger feedback dependence in the
noisy versus unstable conditions, particularly in terms of using
feedback from at least one trial back (Fig. 4g,h).

Thus, the monkeys’ behavioral adjustments to error feedback
depended on both how predictive the error was of a change-point
and the monkey’s current uncertainty about the environment,
integrated across multiple trials in a context-dependent manner.
These behavioral characteristics are consistent with normative
(Bayesian) theory and human behavior on comparable change-
point tasks (Courville et al., 2006; Daw et al., 2006; Behrens et al.,
2007; Krugel et al., 2009; Nassar et al., 2010; O’Reilly et al., 2013;
Wilson et al., 2013; McGuire et al., 2014; Diederen and Schultz,
2015). The monkeys also exhibited non-normative tendencies to
persist in choosing the same target, especially after positive feed-
back. Accordingly, a hybrid model with fully adaptive, Bayesian
learning plus additional stay-switch sequential heuristics (Table
1) reproduced key features of the monkeys’ behavior, including
dependence on error magnitude and noise (Fig. 2g,j), as well as
context-dependent influence of recent feedback (Fig. 4c,f,i). This
model provided a better match to behavior than several other
models, including: (1) a purely Bayesian model (Fig. 2f,i); (2) the
heuristic model alone; (3) a standard, fixed-learning rate (i.e., not
adaptive to task context) reinforcement-learning model that in-
cluded the same heuristics; or (4) an alternative heuristic model
that always switched for large errors and stayed for small errors
unless a target has been consistently rewarded without adapting
to task context (Table 2).

Spatial and feedback signals were represented differently in
ACC and PCC
We recorded the activity of 102 ACC neurons (n � 67 from
Monkey SP, 35 from Monkey AT) and 235 PCC neurons (75
from Monkey SP, 160 from Monkey AT) as the monkeys per-
formed the change-point task.

Consistent with existing literature, individual neurons in both
brain regions encoded spatial choice (the location of the chosen
target on a given trial; Fig. 5a,b) and categorical feedback (correct

Figure 1. Task and recording sites. a, On each trial, the monkey chose 1 of 10 targets
with a saccade. Visual feedback then indicated both the chosen target (small green dot)
and the reward target (large white dot). Juice was then delivered if the monkey chose the
reward target. b, The two task conditions were determined by the following: (1) the
hazard rate ( H) governing the rate at which the best target was repicked at random from
among the 10 targets; and (2) the noise in the distribution of reward probability as a
function of distance from the best target. c, An example sequence of trials for Monkey AT.
Background color represents the task condition, as in b. d, Structural MRI for Monkey SP,
showing recording chambers (shaded rectangles) and approximate recording locations
(dashed), determined as in Kalwani et al. (2009).
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or error; Fig. 5e,f) (McCoy et al., 2003; Matsumoto et al., 2007;
Hayden et al., 2008; Quilodran et al., 2008; Heilbronner and Platt,
2013). Individual neurons also encoded the location of the re-
warded target (Fig. 5c,d) and graded signals reflecting spatial er-
ror magnitude (Fig. 5e,f), a type of prediction error that strongly
influenced switching behavior (Fig. 2) and is similar to fictive
learning signals identified previously in ACC (Hayden et al.,
2009). None of these forms of selectivity could be explained solely

by postfeedback eye movements (Fig. 3),
which were included as coregressors in the
generalized linear model used to assess
neuronal selectivity (Eq. 11).

These spatial and feedback signals were
represented in a broadly similar manner
in ACC and PCC (Fig. 5g,h), but with im-
portant quantitative as well as qualitative
differences (Figs. 6, 7; Table 3). ACC and
PCC spatial selectivity tended to be uni-
modal for both choice- and reward-target
tuning, with tuning widths that spanned
�4 –5 visual targets (Table 3). The timing
of the onset of selective responses for
choice location, reward-target location,
and correct versus error feedback was
similar in the two brain regions and thus
did not provide any evidence for sequen-
tial processing between the two. More-
over, selectivity for choice location tended
to occur after the choice was made, imply-
ing that these spatial signals do not play a
role in generating the choice but possibly
helping to evaluate its outcome. However,
there was substantially stronger selectivity
for spatial choice and reward-target sig-
nals in PCC than in ACC (Fig. 6a– d; Table
3). In contrast, there was stronger selectiv-
ity for feedback in ACC than in PCC (Fig.
6e,f), but a preponderance of error-
preferring neurons in PCC (mean �5 for
feedback � �0.666, unpaired t test p �
0.001, t � �6.18; mean �6 for error mag-
nitude � 0.208, p � 0.001, t � 5.33) that
was not evident in ACC (mean �5 �
�0.081, p � 0.8, t � �0.26; mean �6 �
�0.011, p � 0.8, t � �0.24). These differ-
ences in selectivity imply possibly differ-
ent roles for the two brain regions in
postdecision processing.

Consistent with this idea, we found dy-
namic encoding of spatial signals by cer-
tain error-sensitive neurons in PCC but
not ACC (Fig. 7). Specifically, because of
the spatial nature of our task, effective,
error-driven decision-making required
knowing the locations of both the choice
and the reward target, which occurred at
two different times in a trial. The example
ACC and PCC neurons in Figure 7a, b
demonstrate different ways in which
choice and reward target locations were
encoded by individual neurons. The ACC
neuron retained similar selectivity for
choice location throughout the postsac-

cade and feedback epochs (note similar, vertically oriented firing
patterns in Fig. 7a), with some additional modulation by reward-
target location in the feedback epoch. By contrast, the PCC neu-
ron was selective for a particular location that corresponded to the
monkey’s choice in the postsaccade epoch (Fig. 7b, left, vertically
oriented patterns) but that corresponded to the location of the re-
ward target in the feedback epoch (more horizontally oriented firing
patterns in Fig. 7b, right).

Figure 2. Adaptive, feedback-driven behavioral performance. Behavioral data from Monkeys SP and AT (top rows) and simu-
lated behavioral data from median best-fit parameters of three behavioral models (bottom rows). a, b, e– g, Fraction of trials
picking the best target as a function of trials after change-point, plotted separately for unstable (yellow) and noisy (blue) condi-
tions. Dashed lines indicate the fraction of trials in which the best target was rewarded for each task conditions. c, d, h–j,
Probability of switching to a different target on the following trial, per condition, as a function of the spatial error magnitude (the
number of target locations between the chosen target and the reward target). Switch probability depended on spatial error
magnitude (Spearman’s � � 0.62 for Monkey SP and 0.67 for Monkey AT, p � 0.001 for both) and task condition (partial �
accounting for spatial error magnitude ��0.15 for Monkey SP, �0.10 for Monkey AT, p � 0.001 for both), particularly for small
errors (median difference for errors of 1 and 2 ��0.31 vs 3	 errors ��0.17 for Monkey SP, Wilcoxon signed-rank test, signed
rank�55.0, p �0.001;�0.24 vs�0.09 for Monkey AT, signed rank�47.0, p �0.001). Colors as in a. In all panels, points/error
bars indicate mean/SEM across all trials from recording sessions.
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These different patterns of spatial and
feedback selectivity were representative of
the populations of neurons we recorded
in ACC and PCC. Spatial selectivity was
fairly common in the two brain regions.
Of 102 recorded ACC neurons, 29
(28.4%) exhibited choice selectivity, 27
(26.5%) exhibited reward-target selectiv-
ity, and 13 (12.7%) exhibited selectivity
for both during the feedback epoch, as
computed by the GLM (Eq. 11). Of 235
recorded PCC neurons, 117 (49.8%) ex-
hibited choice selectivity, 103 (43.8%) ex-
hibited reward-target selectivity, and 76
(32.3%) exhibited selectivity for both dur-
ing the feedback epoch. To illustrate the
encoding schemes seen in single neurons
(Fig. 7a,b) across the population of re-
corded neurons, we: (1) constructed 2D
tuning curves for each neuron, using
z-scored firing rates for each combination
of choice and reward-target location; (2)
aligned both dimensions relative to the
preferred choice location during the post-
saccadic epoch; and (3) averaged across
populations of error- or correct-prefer-
ring neurons in each brain region. In the
postsaccadic epoch (Fig. 7c–f, top row), as
expected by design, the population tuning
curves reflected primarily the choice se-
lectivity of the individual neurons. In the
feedback epoch (Fig. 7c–f, bottom row), the ACC and PCC pop-
ulations showed strikingly different encoding schemes. For ACC
neurons, spatial selectivity with respect to choice was somewhat
maintained from the postsaccadic to the feedback epoch, albeit
weaker in strength (Fig. 7c,d, compare top and bottom panels).
For PCC neurons, particularly those that responded more
strongly to error versus correct feedback (“PCC-”), choice selec-
tivity in the postsaccadic epoch was transformed to reward-target
selectivity at the same location in the feedback epoch (Fig. 7e,f).

To quantify these relationships for individual neurons, we
computed correlation coefficients between the marginal tuning
curves for choice and reward target for different time epochs.
These marginal tuning curves were computed using only error
trials to avoid inflating correlations (because choice and reward
target locations were, by definition, the same on correct trials).
For the population of ACC neurons, choice tuning in the post-
saccadic epoch tended to be positively correlated with choice
tuning in the feedback epoch (Fig. 7g,h, abscissa; median corre-
lation coefficients � 0.394 and 0.406 for error- and correct-pre-
ferring neurons, respectively, H0: median � 0, Wilcoxon signed-
rank test, signed rank � 1298.5 and 1039.5, respectively, p �
0.001 for both), but not reward-target tuning (Fig. 7g,h, ordinate;
median correlation coefficients � �0.055 and 0.109, signed
rank � 581.5 and 637.5, respectively, p � 0.1 for both). By con-
trast, for the population of PCC neurons, choice tuning in the
postsaccadic epoch tended to be positively correlated with both
choice tuning during the feedback epoch (Fig. 7i,j, abscissa; me-
dian correlation coefficients � 0.182 and 0.200 for error- and
correct-preferring neurons, respectively, with signed rank �
9162 and 1933.5, p � 0.001 for both) and reward-target tuning
during the feedback epoch (Fig. 7i,j, ordinate; median correlation
coefficients � 0.248 and 0.261, signed rank � 10,932.5 and

1970.5, p � 0.001 for both). These relationships reflected system-
atically varying encoding of choice versus reward-target encoding
in the feedback epoch across individual neurons, particularly in
negative-preferring neurons: neurons that tended to lose their
choice selectivity in the feedback epoch (smaller values along the
abscissa in Fig. 7g–j) were also the ones that became selective for
reward-target tuning at that time (larger values along the ordi-
nate; Pearson’s correlation coefficient of the scatterplots shown
in Fig. 7g–j; �0.310, p � 0.024; 0.051, p � 0.73; �0.408, p �
0.001; �0.159, p � 0.185, respectively).

Error encoding in cingulate was modulated by sequential, but
not blockwise, task context
A primary finding from our behavioral analyses was that the
monkeys used different strategies in the noisy versus stable block
to integrate feedback information across trials to determine the
location of the rewarded target (Figs. 2, 4). However, we found
very little evidence for an associated blockwise modulation of
feedback signals in either ACC or PCC. Specifically, the GLM (Eq.
11) identified selectivity for noise condition that was indepen-
dent of recent reward rate and certain forms of slow drift and
appeared to persist throughout each trial for �20% of units in
both brain regions (Fig. 8a,b,e,f). However, in most cases, this
selectivity could not be distinguished from nonspecific, slow fluc-
tuations in firing rate over the course of the recording session:
only 3 of 29 neurons in ACC (10.3%, 95% CI � [2.2%, 27.4%])
and 11 of 84 neurons in PCC (13.1%, 95% CI � [6.7%, 22.2%])
that were classified as having selectivity for task condition had
statistically reliable effects when using a permutation test that
scrambled the identity of task conditions but maintained the
overall temporal distribution of the task blocks (p � 0.05). There
also were a small number of individual neurons in both brain

Figure 3. Postfeedback saccades. Summary of the location (top row) and timing (bottom row) of the first saccade made by
Monkey SP (left column) and Monkey AT (right column) in the free-viewing period on each trial, after the saccadic choice was made
and feedback was presented (Fig. 1a). In all panels, data from correct trials are shown as positive values on the ordinate, and data
from error trials are shown as negative values on the ordinate. a, b, Histograms indicating the relative fractions of trials from all
recording sessions in which the first free-viewing saccade was made to the location indicated. For error trials, both monkeys made
the first saccade to the rewarded target (red) on most trials. c, d, Response times, which were approximately similar for all
conditions. “Stay” response times were measured from trials in which the monkey made a small, postfeedback eye movement that
landed near the original choice target.
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regions that exhibited feedback encoding (different firing pat-
terns on correct vs error trials) that was different in the unstable
versus noisy block (Fig. 8c–f). However, across the population,
there was no systematic relationship between feedback encoding

and task condition, in contrast to what might be expected if feed-
back encoding were more sensitive to errors in unstable com-
pared with noisy conditions: the GLM coefficients for feedback
encoding were not consistently correlated with GLM coefficients

Figure 4. Adaptive integration of feedback history. Behavioral data from Monkeys SP (left column) and AT (middle column) and simulated data from the hybrid Bayesian model (right column).
a– c, Probability of switching in the unstable condition. For each spatial error magnitude on the current trial (spatial errors � 3 are grouped together as 3	), behavior is plotted separately for
different combinations of feedback history for up to 3 trials before the current trial. In the legend, 0 � error and 1 � correct, such that, for example, 001 indicates a correct choice 3 trials back,
followed by two consecutive error trials. Error bars indicate SEM across all trials from all recording sessions for the monkeys, or simulated sessions for the model. d–f, Same conventions as in a–c,
but for the noisy condition. g–i, Difference in logistic regression coefficients for the influence of previous error trials on switching after the current trial in the noisy versus unstable condition. For each
error magnitude, the influence of error feedback from up to 5 trials back is plotted (going from left to right) from more recent to more distant trials (the first point in each series represents one trial
back, etc.). Positive coefficients imply that an error from that many trials back promoted more switching in the noisy versus unstable condition, above what was expected for that particular error
magnitude on the current trial. Error bars indicate 95% CI. Filled symbols represent the Wald test for H0 � no difference in coefficients ( p � 0.05).

Table 1. Best-fit model parameters for the hybrid Bayesian model

Parameter Description

Median (IQR)

Monkey SP (n � 67 sessions) Monkey AT (n � 65 sessions)

H(unstable) Hazard rate for unstable trials 0.70 (0.63, 0.76) 0.71 (0.63, 0.79)
H(noisy) Hazard rate for noisy trials 0.30 (0.23, 0.36) 0.36 (0.29, 0.43)
�(unstable) Inverse-noise parameter for unstable trialsa 4.27 (2.78, 5.34) 4.87 (3.62, 5.76)
�(noisy) Inverse-noise parameter for noisy trialsa 2.33 (1.25, 3.02) 2.44 (1.78, 3.01)
s(pos) Likelihood of stay after correct feedback 0.66 (0.59, 0.72) 0.78 (0.74, 0.81)
s(neg,noisy) Likelihood of stay after error feedback in unstable trials 0.01 (0.00, 0.03) 0.03 (0.01, 0.06)
s(neg,unstable) Likelihood of stay after error in noisy trials 0.16 (0.09, 0.20) 0.12 (0.08, 0.19)
aFor reference, a von Mises distribution with � of 4 has a half-maximal width of 68.5 degrees, spanning �2 visual targets, whereas a distribution with � of 2 correspond to a half-maximal width of 97.0 degrees, spanning �3 visual targets.

Table 2. Comparison of behavioral modelsa

Model Description
Model
parameters

�AIC mean
(t statistic)

�BIC mean
(t statistic)

Pure RL RL model with fixed learning rates 3 711.62 (26.68) 691.46 (26.03)
Hybrid RL RL model (above) with additional win-stay/lose-stay heuristics 6 377.45 (23.83) 372.42 (23.5)
Pure Bayes Bayesian model with adaptive, context-dependent learning 5 120.57 (12.68) 110.50 (11.65)
Hybrid Bayes Bayesian model (above) with additional win-stay/lose-stay heuristics 7 NA NA
Heuristic 1 Heuristic model using win-stay/lose-stay strategies 3 1318.90 (29.71) 1298.73 (29.33)
Heuristic 2 Heuristic model that always switches for large errors and switches for small errors if the same target is consistently rewarded 3 5026.12 (19.55) 5005.95 (19.48)
a�AIC and �BIC are computed relative to the hybrid Bayesian model as the standard model; positive differences indicate that the respective model is a worse match to observed data than the hybrid Bayes model. p � 0.001 for each pairwise
t test comparison (H0: mean � � 0).
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for either noise (Fig. 8g,h) or noise 
 feedback interaction term
(Fig. 8i,j) for both monkeys. An alternative analysis comparing
ROC-based selectivity index (ROCi) for each neuron assessed
separately for the two block conditions also failed to find consis-
tent blockwise differences: the slopes of linear regressions com-
paring an ROC-based selectivity index for each neuron assessed
separately for the two conditions were not consistently different
from unity for ACC (slope � 1.07 [95% CI � 0.89, 1.25] for
Monkey SP, slope � 1.31 [1.13, 1.81] for Monkey AT, permuta-
tion test) or for PCC (slope � 1.04 [0.75, 1.30] for Monkey SP,
slope � 0.64 [0.51, 0.82] for Monkey AT).

Similarly, we failed to find a systematic difference in spatial
selectivity, for either choice or reward target, as a function of

noisy versus unstable conditions. For ACC, the median difference
in ROCi for choice during the postsaccadic epoch in the noisy
versus unstable conditions was 0.003 (H0: median � 0, signed-
rank test, p � 0.8, signed rank � 2633) and reward target during
the feedback epoch was �0.007 (p � 0.8, signed rank � 2557).
For PCC, the median difference for ROCi for choice was �0.001
(p � 0.6, signed rank � 13,276) and for reward-target was 0.010
(p � 0.056, signed rank � 15,861).

In contrast, the monkeys’ behavioral sensitivity to sequential
feedback patterns was reflected in both ACC and PCC firing pat-
terns. Neurons in both brain regions exhibited robust selectivity
for feedback on the previous trial, which has been reported for
both brain regions (Seo and Lee, 2007; Hayden et al., 2008; Ken-

Figure 5. Neuronal selectivity for choice and feedback in ACC (left) and PCC (right). a–f, Example neurons illustrating neural selectivity for the following: a, b, the spatial location of the chosen
target (numbered 0 –9, indicating the location clockwise from directly right of fixation) determined from all correct and error trials; c, d, the spatial location of the rewarded target, numbered as in
a, b and determined from all correct and error trials; and e, f, spatial error magnitude. Thick lines/ribbons indicate mean/SEM firing rates in 250 ms sliding windows. Dashed vertical gray lines indicate
median times of saccade onset. Solid vertical lines indicate time of feedback onset. g, h, Population selectivity for ACC and PCC for the indicated task variables, based on GLM (Eq. 11) applied to firing
rates in 250 ms bins stepped in 50 ms increments ( p � 0.05). All panels represent data aligned to feedback onset.
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nerley et al., 2011). In our recordings, this selectivity tended to be
slightly more prevalent at the start of the trial than at the end of
the current trial (Fig. 9a,b,e,f). Across the population, there was
no overall preference for correct or error feedback on the previ-
ous trial (mean GLM coefficient for previous feedback � 0.142,
H0: mean � 0, unpaired t test, t � 1.26, p � 0.1 for ACC and mean
GLM coefficient � 0.039, t � 0.74, p � 0.1 for PCC). However,
there was a systematic, negative relationship between selectivity
for feedback on the current trial versus selectivity for feedback on
the previous trials for both ACC and PCC in both monkeys, such
that error-preferring neurons responded more when the previ-
ous trial was correct, and correct-preferring neurons responded
more when the previous trial was an error (Fig. 9g,h).

Some neurons in each brain region (�20%) also exhibited
more complex forms of selectivity for interactions between feed-
back on the previous versus current trial (Fig. 9c–f). In some
cases, this interaction reflected behavioral sensitivity to consecu-
tive correct or error trials (e.g., the correct-preferring ACC neu-
ron in Fig. 9c responded most strongly to two consecutive correct
trials and least to two consecutive error trials), whereas in other
neurons, the interaction effect led to an opposite effect (e.g., the

error-preferring PCC neuron in Fig. 9d
responded more to feedback on the cur-
rent trial when it differed from that in the
prior trial). Across the population, there
was no consistent relationship between
selectivity for feedback on the current trial
and the previous 
 current feedback in-
teraction term (Fig. 9i,j).

Consistent with the paucity of adap-
tive, integrative signals in the neurons that
we recorded, there was no strong link be-
tween the activity of individual neurons
and behavioral choices. In particular, in
the feedback epoch, activity that predicted
the monkey’s subsequent choice (stay vs
switch) was present in about as many neu-
rons as would be expected by chance: 6
ACC neurons (5.9% [95% CI � 2.2%,
12.4%] of neurons; H0: �11 in Eq. 11 � 0,
t test, p � 0.05) and 17 PCC neurons
(7.2% [4.3%, 11.3%] of neurons). Similar
results were obtained when using other
metrics of behavioral adjustments, in-
cluding switch to reward target versus no,
switch to a nearby versus distant target, or
switch in unstable versus noisy conditions.

Discussion
Effective decision-making in dynamic
and unpredictable environments requires
adaptive forms of inference that use con-
textual information to interpret new data
(Yu and Dayan, 2005; Courville et al.,
2006; Adams and MacKay, 2007; Behrens
et al., 2007; Fearnhead and Liu, 2007; Nas-
sar et al., 2010; Wilson et al., 2013). Here
we showed that rhesus monkeys can use
this kind of contextual adaptation to solve
a reward-seeking task in which the reli-
ability of feedback differed in different
task conditions. We further showed that
individual neurons in certain parts of the
ACC and PCC encoded various spatial

choice and feedback signals that could be used to monitor ac-
tions. However, these neurons did not exhibit strong modulation
by contextually relevant task conditions and had little direct re-
lationship to subsequent behavioral adjustments. Together, these
results imply that at least some parts of ACC and PCC are actively
engaged in monitoring adaptive, feedback-driven decisions with-
out contributing directly to the processes that uses that informa-
tion to drive behavior.

Our novel task included two blockwise task conditions that
differed in terms of how error feedback should be interpreted to
reduce uncertainty about the spatial location of the rewarded
target. The monkeys used adaptive strategies that were based on
both trialwise and blockwise information to perform the task.
Their tendency to adjust their behavior (switch choices) de-
pended on both the spatial error magnitude and recent patterns
of trial-by-trial feedback. These dependencies differed substan-
tially for the noisy versus unstable blocks, indicating that the
monkeys were not just performing a simple instructed-choice
task based on the explicit feedback about the rewarded location
on the previous trial. We accounted for the behavioral sensitivity

Figure 6. Differential encoding of spatial and feedback signals in ACC (blue) and PCC (red). Left column represents ROC-based
analyses (values � 0.5 imply selectivity computed in 250 ms sliding windows) applied to all recorded neurons. Right column
represents the same analyses applied to just the subset of neurons that exhibited selectivity for the given conditions (during the
saccade epoch for choice selectivity and during the feedback epoch for reward target and feedback selectivity). Lines/ribbons are
mean/SEM across neurons. Asterisks indicate time bins in which ACC and PCC selectivity differed from each other (Wilcoxon
rank-sum test for H0: equal median ROCi values, p � 0.05). a, b, Selectivity for the spatial location of the chosen target, computed
with respect to each neuron’s preferred direction (i.e., the saccade direction eliciting the highest average response in the feedback
epoch) versus the opposite (null) direction. c, d, Selectivity for the spatial location of the rewarded target, computed with respect
to each neuron’s preferred direction (i.e., the saccade direction eliciting the highest average response in the feedback epoch) versus
the opposite (null) direction. e, f, Selectivity for correct versus error feedback, computed separately for neurons that tended to
respond more strongly to correct feedback (solid lines) or to error feedback (dashed lines).
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of both monkeys to task condition, error magnitude, and feed-
back history using a mixture model that included both normative
principles that operated over short (trial-by-trial) and long
(block-by-block) timescales and non-normative heuristics that
operated over short timescales (e.g., win-stay).

In contrast to the robust behavioral sensitivity to task condi-
tions, individual neurons in ACC and PCC were relatively insen-
sitive to those same blockwise task conditions. Consider, for
example, the feedback-selective neurons that have been reported
previously and in our study constituted approximately half of the

Figure 7. Neuronal encoding of spatially selective choice and reward-target signals. a, b, Example neurons from ACC (a) and PCC (b) illustrating spatial neural selectivity, with heatmaps showing
joint histograms of firing rate as a function of both choice (horizontal axis) and reward target (vertical axis) during the postsaccade and feedback epochs. c–f, Population joint histograms for ACC (left
two columns) and PCC (right two columns) neurons, averaged over z-scored firing rates of error-preferring (�, c, e) and correct-preferring (	, d, f ) neurons. Abscissa indicates the location of the
chosen target on the given trial, aligned with respect to each neuron’s preferred choice-target location. Ordinate indicates the location of the reward (feedback) target, aligned with respect to each
neuron’s preferred choice-target location. Negative/positive values are counterclockwise/clockwise with respect to the preferred target. The color of each pixel is proportional to the mean firing rate
across neurons (yellow represents higher firing rates) for the given choice (abscissa)/reward-target (ordinate) combination, measured in the postsaccadic (top row) or feedback (bottom row) epoch.
Thus, a vertically aligned yellow streak indicates consistent choice tuning, whereas a horizontally aligned yellow streak indicates consistent reward-target tuning. Neurons were identified as (�)
or (	) based on the sign of the coefficient for feedback (�5) in GLM (Eq. 11). Marginal distributions are plotted along the edges in black in a–f. g–j, Relationship between choice tuning during the
postsaccadic epoch and reward-target tuning during the feedback epoch (ordinate; positive/negative values of Spearman’s � imply that the given neuron tended to have matching/opposite
selectivity for choice and reward feedback) is plotted against the relationship between choice tuning during the postsaccadic epoch and choice tuning during the feedback epoch (abscissa;
positive/negative values imply that the given neuron tended to have matching/opposite choice selectivity at the two time points). Triangles along the axes represent the median correlation
coefficients. Red triangles represent H0: median � 0 (Wilcoxon signed-rank test, p � 0.05). Circle represents Monkey SP; diamond represents Monkey AT. Filled symbols represent neurons selective
for both choice and reward-target locations during the feedback epoch, according to GLM (Eq. 11).
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sampled populations in both brain regions (McCoy et al., 2003;
Matsumoto et al., 2007; Hayden et al., 2008; Quilodran et al.,
2008; Heilbronner and Platt, 2013). Based on both monkeys’
behavioral patterns, which included normative tendencies to
switch more often following small spatial errors in the unstable
condition (in which any error indicated a change in the location
of the best target) than in the noisy condition (in which small
errors were expected even when the location of the best target did
not change), we expected errors to be processed differently under
those conditions. We found some neurons with different re-
sponse patterns for correct versus error feedback that were mod-
ulated by the task block. However, these neurons were rare, and
in general there was no systematic difference in response to errors
as a function of task condition. More generally, overall fluctua-
tions in spiking activity that appeared to covary with task block in
most cases could not be distinguished from slow fluctuations that
naturally occur over similar timescales.

These results contrast with previous reports of adaptive pro-
cessing by individual cingulate neurons to guide action selection
(Hayden et al., 2008; Quilodran et al., 2008; Sheth et al., 2012;
Heilbronner and Platt, 2013) as well as contextual signals in more
aggregate measures of ACC activity, such as fMRI (Behrens et al.,
2007; Krugel et al., 2009; Jessup et al., 2010; O’Reilly et al., 2013;
Payzan-LeNestour et al., 2013; McGuire et al., 2014). It is possible
that the monkeys’ use of stay/switch heuristics obscured our abil-
ity to detect adaptive integrative signals in our neural population.
However, the discrepancy between the strong behavioral signa-
tures of adaptive decision-making, and the paucity of these sig-
natures in neural activity is striking. Overall, these results support
the notion that at least some subsets of feedback-encoding neu-
rons in both ACC and PCC are insensitive to certain relatively
long-term contextual factors that are needed to interpret feed-
back appropriately and guide adaptive behaviors.

In contrast to their insensitivity to blockwise context, both
brain regions contained feedback-sensitive neurons that were
modulated by a more short-term contextual factor: the feedback
received on the previous trial, a form of sequential dependency
that has correlates in components of event-related potentials that
have been linked to the ACC (Holroyd and Coles, 2002; Walsh
and Anderson, 2012) and that has been identified in single-
neuron activity in both ACC and PCC (Seo and Lee, 2007;
Hayden et al., 2008; Kennerley et al., 2011). In our study, feed-
back selectivity in both brain regions tended to reverse on se-
quential trials: neurons that preferred errors on the current trial
tended to prefer correct feedback on the previous trial, and vice
versa. Such an encoding scheme is sensitive to differences in se-
quential outcomes, akin to an “edge-detector,” which can be ef-

fective for detecting changes in the unstable condition but is less
adaptive in the noisy condition of our task. This result was con-
sistent with our other analyses that identified only minimal rela-
tionships between neural activity and subsequent behavioral
choices, suggesting that the parts of cingulate cortex that we stud-
ied are more involved in monitoring previous choices than gen-
erating future ones.

These findings build on a host of prior studies that identified
similar evaluative processes in cingulate cortex that support
learning but, unlike our study, in some (but not all) cases also
reported evidence for more direct roles in action selection (Amiez
et al., 2006; Hayden et al., 2008; Quilodran et al., 2008; Donahue
et al., 2013). The ACC has long been implicated in high-order
cognitive functions, including cognitive control, conflict moni-
toring, pain and emotional processing, and reward processing
(Behrens et al., 2007; Walton et al., 2007; Cole et al., 2009; Alex-
ander and Brown, 2011; Rushworth et al., 2011; Shenhav et al.,
2013). Lesion studies further suggest causal contributions to both
the evaluation of recent feedback and use of that evaluation to
guide subsequent decisions (Kennerley et al., 2006; Rudebeck et
al., 2008; Buckley et al., 2009). Our findings emphasize that the
varied and integrative characteristics ascribed to the ACC as a
whole are not necessarily reflected in the activity patterns of in-
dividual neurons located throughout its rather extensive anatom-
ical borders, which likely includes subregions that may process
feedback- and decision-related information in different ways
(Vogt and Pandya, 1987; Vogt et al., 2006; Heilbronner and
Haber, 2014). In our case, area 24 along the dorsal bank of the
anterior cingulate sulcus, �4 – 6 mm below the cortical surface,
exhibited strong feedback and spatial selectivity, but little modu-
lation by task conditions.

The PCC, which has been less well studied, has traditionally
been designated as a node of the default-mode network, based
largely on its functional correlations with other regions when
subjects are not engaged in an experimental task (Raichle, 2015).
More recently, it has been implicated in evaluating decision op-
tions and outcomes in the context of reward-driven behaviors
(McCoy et al., 2003; Kable and Glimcher, 2007; Hayden et al.,
2008; Bartra et al., 2013; Heilbronner and Platt, 2013; Pearson
and Platt, 2013). Our results add to these findings by showing that
many PCC neurons have a particular form of spatial encoding
not as apparent in ACC. In particular, both regions included
neurons that encoded the spatial location of the chosen target.
ACC neurons often maintained this selectivity throughout the
feedback period (e.g., a neuron that responded most strongly on
a trial with an upward choice tended to maintain that strong
response until feedback was provided). In contrast, many PCC

Table 3. Spatial tuning properties

Selective n (%) Unimodal n (%) Tuning width median (IQR)

Tuning strength

ROCi mean (SEM) Norm GLM coefficients mean (SEM)

Choice-target tuninga

ACC 28/102 (27.5%) 22 (78.6%) 167° (154°,171°) 0.645 (0.020) 1.745 (0.290)
PCC 131/235 (55.7%) 98 (74.8%) 161° (150°,170°) 0.689 (0.010) 2.311 (0.156)
ACC versus PCC (all neurons) p � 0.001 (rank-sum � 19,533) p � 0.001 (rank-sum � 13,465) p � 0.001 (rank-sum � 13,343)
ACC versus PCC (selective neurons) p � 0.167 (rank-sum � 2546) p � 0.055 (rank-sum � 1815) p � 0.042 (rank-sum � 1789)

Reward-target tuningb

ACC 27/102 (26.5%) 18 (66.7%) 167° (163°,172°) 0.578 (0.012) 1.188 (0.145)
PCC 103/235 (43.8%) 74 (71.8%) 163° (150°,170°) 0.630 (0.009) 1.584 (0.126)
ACC versus PCC (all neurons) p � 0.067 (rank-sum � 18,743 p � 0.003 (rank-sum � 14,771) p � 0.020 (rank-sum � 15,114)
ACC versus PCC (selective neurons) p � 0.143 (rank-sum � 2024) p � 0.002 (rank-sum � 1235) p � 0.324 (rank-sum � 1596)

aChoice-target tuning computed for postsaccade epoch.
bReward-target tuning computed for feedback epoch.
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neurons did not maintain those choice-selective responses,
which were replaced by selectivity for error feedback presented at
that same location. Thus, whereas many cingulate neurons
tended to encode feedback with respect to the choice that was
made, certain PCC neurons tended instead to encode feedback
with respect to the choice that should have been made.

Overall, our results suggest that these two strongly reciprocally
connected brain regions may play somewhat distinct, although over-
lapping, roles in tracking variables needed for effective, adaptive be-
havior. However, the observed regional differences should be
interpreted with caution. ACC and PCC are large anatomical regions
and thus are likely to have within-region specializations, including

Figure 8. Little systematic encoding of blockwise noise condition in ACC (left) and PCC (right). a– d, Example neurons that responded differently in unstable versus noisy blocks either
overall (a, b) or interacting with feedback responses (c, d). Thick lines/ribbons indicate mean/SEM firing rates in 250 ms sliding windows. Dashed vertical gray lines indicate median times
of saccade onset. Solid vertical lines indicate time of feedback onset. Asterisks indicate time bins with different responses in the two blockwise conditions. e, f, Population selectivity for
ACC and PCC for the indicated task variables as computed by GLM (Eq. 11), using firing rates in 250 ms bins stepped in 50 ms increments ( p � 0.05). a–f, Data aligned to feedback onset.
g–j, Population scatter plots showing the absence of a consistent relationship between GLM coefficients for feedback and either noise (g, h) or noise 
 feedback interaction (i, j), shown
separately for each monkey (circle represents Monkey SP; diamond represents Monkey AT). For each scatter plot, the least-squares line is shown if there was a significant correlation
coefficient for the associated scatter ( p � 0.05, H0: Spearman’s � � 0).
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three distinct motor areas in the ACC (e.g., Heilbronner and
Hayden, 2016). It is possible that our choice of where to record
(intended to target subregions previously shown to have decision-
making signals) resulted in sampling from a more “cognitive” por-
tion of the ACC and more “motoric” portion of the PCC.
Furthermore, cell-type differences in the two brain areas (predomi-
nantly agranular for ACC and granular for PCC) may have biased

the subsets of neurons sampled by our microelectrodes (Vogt et al.,
2005). The fact that regional differences persist, even when we re-
strict our analyses to functionally selective subsets of the neurons,
somewhat mitigates against these concerns. Future studies involving
simultaneous recordings from ACC and PCC could shed further
light on the respective roles of the two regions and the direction of
information flow between the two.

Figure 9. Sequential feedback encoding in ACC (left) and PCC (right). a– d, Example neurons that responded differently when the previous trial was correct (solid lines) or an error (dashed lines)
either overall (a, b) or interacting with feedback responses on the current trial (c, d). Thick lines/ribbons indicate mean/SEM firing rates in 250 ms sliding windows. Dashed vertical gray lines indicate
median times of saccade onset. Solid vertical lines indicate time of feedback onset. Asterisks indicate time bins with different responses in the two blockwise conditions. e, f, Population selectivity
for ACC and PCC for the indicated task variables, using spike counts in 250 ms bins stepped in 50 ms increments ( p �0.05). a–f, Data aligned to feedback onset. g–j, Population scatter plots showing
a consistently negative relationship between GLM coefficients for feedback on the current trial and feedback on the previous trial (g, h) but not current 
 previous feedback interaction (i, j), shown
separately for each monkey (circle represents Monkey SP; diamond represents Monkey AT). For each scatter plot, the least-squares line is shown if there was a significant correlation coefficient for
the associated scatter ( p � 0.05, H0: Spearman’s � � 0).
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More studies are also needed to identify where in the brain the
kinds of feedback and spatial information we identified, along
with other contextual factors, are integrated to drive behavior.
One possibility is that these computations occur within the cin-
gulate but involve different subsets of neurons than the ones we
targeted or are based on emergent, population codes that are not
directly evident in the response properties of single neurons
(Karlsson et al., 2012). Another possibility is that aspects of these
computations have already been performed upstream of the cin-
gulate. Context-dependent prediction errors have been recorded
in the midbrain dopaminergic system, a prominent input to
ACC, and may contribute to the activity of the subset of cingulate
neurons exhibiting context-dependent feedback signals (Naka-
hara et al., 2004; Nieuwenhuis et al., 2005; Tobler et al., 2005;
Diederen and Schultz, 2015). However, the fact that feedback and
contextual signals are separable in our cingulate recordings ar-
gues somewhat against this possibility and suggests that there are
multiple parallel pathways for the computation and implemen-
tation of adaptive signals in the brain. These other pathways may
involve the insula, orbitofrontal cortex, posterior parietal cortex,
and even further downstream oculomotor planning areas, as
have been suggested by imaging studies (O’Reilly et al., 2013;
McGuire et al., 2014; Chau et al., 2015). An additional, not mu-
tually exclusive, possibility is that at least some adaptive variables,
such as those related to error magnitude and uncertainty, might
be computed in cingulate but then passed to neuromodulatory
systems, such as the locus ceruleus-norepinephrine system,
which can, in turn, affect many other brain systems (Aston-Jones
and Cohen, 2005; Nassar et al., 2012). Exactly how these systems
interact to produce adaptive behavior remains to be tested.
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Quilodran R, Rothé M, Procyk E (2008) Behavioral shifts and action valua-
tion in the anterior cingulate cortex. Neuron 57:314 –325.

Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci
38:433– 447.

Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton
ME, Rushworth MF (2008) Frontal cortex subregions play distinct roles
in choices between actions and stimuli. J Neurosci 28:13775–13785.

Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011)
Frontal cortex and reward-guided learning and decision-making. Neuron
70:1054 –1069.

Seo H, Lee D (2007) Temporal filtering of reward signals in the dorsal ante-
rior cingulate cortex during a mixed-strategy game. J Neurosci
27:8366 – 8377.

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control:
an integrative theory of anterior cingulate cortex function. Neuron
79:217–240.

Sheth SA, Mian MK, Patel SR, Asaad WF, Ziv M, Williams ZM, Dougherty
DD, Bush G, Eskandar EN (2012) Human dorsal anterior cingulate
cortex neurons mediate ongoing behavioural adaptation. Nature
488:218 –221.

Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the
representation of value in the parietal cortex. Science 304:1782–1787.

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
Cambridge, MA: Massachusetts Institute of Technology.

Thorndike EL (1911) Animal intelligence: experimental studies. New York:
MacMillan.

Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value
by dopamine neurons. Science 307:1642–1645.

Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: II.
Cortical afferents. J Comp Neurol 262:271–289.

Vogt BA, Vogt L, Farber NB, Bush G (2005) Architecture and neurocytology
of monkey cingulate gyrus. J Comp Neurol 485:218 –239.

Vogt BA, Vogt L, Laureys S (2006) Cytology and functionally correlated
circuits of human posterior cingulate areas. Neuroimage 29:452– 466.

Walsh MM, Anderson JR (2012) Learning from experience: event-related
potential correlates of reward processing, neural adaptation, and behav-
ioral choice. Neurosci Biobehav Rev 36:1870 –1884.

Walton M, Croxson P, Behrens TE, Kennerley S, Rushworth MF (2007)
Adaptive decision making and value in the anterior cingulate cortex. Neu-
roimage 36:142–154.

Wilson RC, Nassar MR, Gold JI (2013) A mixture of delta-rules approxima-
tion to Bayesian inference in change-point problems. PLoS Comput Biol
9:e1003150.

Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neu-
ron 46:681– 692.

Li et al. • Adaptive Decision Encoding in Cingulate Cortex J. Neurosci., August 21, 2019 • 39(34):6668 – 6683 • 6683


	Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making
	Introduction
	Materials and Methods
	Results
	Discussion
	References


