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Summary

Aging results in increased myelopoiesis, which is linked to the increased incidence of myeloid 

leukemias and production of myeloid-derived suppressor cells. Here we examined the contribution 

of plasma cells (PCs) to age-related increases in myelopoiesis, as PCs exhibit immune regulatory 

function and sequester in bone marrow (BM). PC number was increased in old BM and they 

exhibited high expression of genes encoding inflammatory cytokines and pathogen sensors. 

Antibody-mediated depletion of PCs from old mice reduced the number of myeloid biased 

hematopoietic stem cells and mature myeloid cells to levels in young animals, but lymphopoiesis 

was not rejuvenated, indicating that redundant mechanisms inhibit that process. PCs also regulated 

the production of inflammatory factors from BM stromal cells, and disruption of the PC-stromal 

cell circuitry with inhibitors of the cytokines IL-1 and TNF-a attenuated myelopoiesis in old mice. 

Thus, the age-related increase in myelopoiesis is driven by an inflammatory network orchestrated 

by PCs.
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eTOC Blurb

Pioli et al. demonstrate that bone marrow plasma cells (PCs) increase in number with age and play 

an obligate role in the increased production of myeloid cells during aging. They further 

demonstrate that old PCs are a source of myelopoietic cytokines and regulate their production 

from BM stroma.
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Introduction

Aging in both mice (Geiger et al., 2013; Montecino-Rodriguez et al., 2013) and humans 

(Pang et al., 2011; Rundberg Nilsson et al., 2016) results in increased myelopoiesis (Dykstra 

et al., 2011; Min et al., 2006; Rossi et al., 2005) that includes a significant increase in the 

frequency and number of hematopoietic stem cells (HSCs) (Dykstra and de Haan, 2008; 

Geiger and Van Zant, 2002), common myeloid progenitors (CMPs), granulocyte-

macrophage progenitors (GMPs) and mature myeloid cells (Dykstra et al., 2011; Tang et al., 

2013). Enhanced myelopoiesis correlates with an increased incidence of myeloid leukemias 

(Rossi et al., 2007; Signer et al., 2007) and production of myeloid-derived suppressor cells 

(Flores et al., 2017). Thus, understanding why age-associated myeloid skewing occurs has 

translational relevance.

Age-related myeloid bias reflects population shifts within the HSC compartment (Beerman 

et al., 2010; Benz et al., 2012; Challen et al., 2010; Muller-Sieburg et al., 2004). HSCs 

include lymphoid biased (Ly-HSCs) and myeloid biased (My-HSCs) subsets, and the ability 

to resolve them phenotypically (Beerman et al., 2010; Benz et al., 2012; Challen et al., 2010) 
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led to the realization that the number of My-HSCs increases over time and they become the 

predominant stem cell population in bone marrow (BM) of old mice (Beerman et al., 2010; 

Challen et al., 2010). Thus, the myeloid biased pattern of reconstitution in young recipients 

reconstituted with old total HSCs is due in part to the fact that the majority of transplanted 

cells are My-HSCs. An understanding of what triggers the increase in the number of My-

HSCs in old BM would provide insights into why age-related increases in myelopoiesis 

occur.

The production of inflammatory cytokines and chemokines increases systemically (Zhang et 

al., 2004) and locally in the BM (Ergen et al., 2012; Henry et al., 2015; Kennedy and 

Knight, 2017; Zhang et al., 2004) with age and is referred to as inflammaging (Franceschi et 

al., 2000). Hematopoietic stem and progenitor cells (HSPCs) express receptors for various 

inflammatory factors, including interleukin (IL)-1, IL-6 and tumor necrosis factor-alpha 

(TNF-α) as well as various Toll-like receptors (TLRs) (King and Goodell, 2011; Mirantes et 

al., 2014; Nagai et al., 2006). The activation of these cytokine or TLR signaling pathways 

can stimulate myelopoiesis and inhibit lymphopoiesis (Baratono et al., 2015; Nagai et al., 

2006; Ueda et al., 2005). The fact that old HSCs express genes indicative of increased pro-

inflammatory signaling is consistent with the conclusion that residence in an inflammatory 

environment contributes to age-related changes in hematopoiesis (Chambers et al., 2007). 

Thus, extrinsic events may trigger population shifts within the HSC compartment and in 

downstream myeloid progenitors. This view is supported by our recent report that Ly-HSCs 

and My-HSCs exhibit normal developmental potential when removed from the old 

environment (Montecino-Rodriguez et al., 2019). Consequently, there is considerable 

interest in identifying the source of inflammation in aging BM.

Numerous non-hematopoietic populations that include osteolineage, perivascular, 

endothelial, neuronal and mesenchymal stromal cells play a role in the regulation of 

hematopoiesis (Boulais and Frenette, 2015; Crane et al., 2017; Lo Celso and Scadden, 

2011). The effects of aging on these populations are poorly understood compared to the 

understanding of changes that occur in HSPCs (Geiger et al., 2013; Guidi and Geiger, 2017). 

Nevertheless, recent studies have demonstrated that aging affects the ability of these 

microenvironmental elements to support hematopoiesis. For example, old endothelial cells 

exhibit compromised support of hematopoietic recovery following irradiation (Poulos et al., 

2017), stromal cells from old telomerase deficient mice have a decreased ability to support 

lymphopoiesis (Ju et al., 2007) and the reduced expression of osteopontin by osteoblasts can 

compromise stem cell function (Guidi et al., 2017). Despite these advances, the major 

cellular alterations in the aging hematopoietic microenvironment that contribute to myeloid 

skewing remain to be defined.

In addition to the above non-hematopoietic cells, hematopoietic populations such as 

megakaryocytes, T cells, NK cells and B cells (Hirata et al., 2018; King et al., 2009; 

Nakamura-Ishizu et al., 2014; Ratliff et al., 2013) can be considered as components of the 

hematopoietic microenvironment in view of their ability to regulate blood cell development. 

A regulatory role for B cells beyond their traditional function as a source of 

immunoglobulins is a relatively recent concept (Dang et al., 2014; Rauch et al., 2012), and 

the regulatory B cell pool includes cytokine secreting plasma cells (PCs) (Dang et al., 2014). 

Pioli et al. Page 3

Immunity. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCs produce both pro- and anti-inflammatory cytokines such as IL-10 (Suzuki-Yamazaki et 

al., 2017), IL-17 (Bermejo et al., 2013), IL-35 (Shen et al., 2014) and TNF-α (Fritz et al., 

2011) and they can modify immune responses in extramedullary tissues such as the intestine 

(Fritz et al., 2011; Kim and Kim, 2014). We considered the possibility that PCs contribute to 

age-related changes in hematopoiesis because, in addition to being a source of myelopoietic 

cytokines, they sequester in BM following their generation in secondary lymphoid tissues 

(Chu and Berek, 2013; Fairfax et al., 2008).

Here we examined the contribution of PCs to the increased myelopoiesis associated with 

aging. We found that the number of PCs significantly increased in aging BM and that PC 

depletion with CD138 antibodies resulted in a reduction in the numbers of My-HSCs and 

myeloid progenitors as well as an attenuation of myelopoiesis. Whole transcriptome 

profiling revealed that old PCs acquired a TLR responsive gene signature that distinguished 

these cells from their young counterparts and that TLR4 signaling promoted the production 

of inflammatory cytokines known to stimulate myelopoiesis. In addition, PCs regulated 

inflammatory cytokine gene expression in BM stroma, indicating the existence of a cross-

talk between these two populations. Thus, the accumulation of plasma cells in the BM 

environment is a major contributor to enhanced myelopoiesis observed during aging.

Results

PCs accumulate in aging BM

Using cell surface expression of CD138, CD45R(B220) and IgD, we quantified the number 

of CD138high CD45R(B220)+ IgD™ short-lived plasmablasts (PBs) and CD138high 

CD45R(B220)™ IgD™ mature plasma cells (PCs) in the BM of young (2-3 months old), 

middle-aged (9-10 months old) and old (17-19 months old) mice (Figure 1A) (Chernova et 

al., 2014). While PBs were unchanged with age, mature PC frequency and number 

significantly increased in BM of middle-aged and old mice (Figure 1B). The PCs identified 

in Figure 1A exhibited heterogeneous expression of CD19 (Figure 1C) (Chernova et al., 

2014) but not CD11b (Kunisawa et al., 2013) or Gr-1 (Figure 1C). PCs from young and old 

mice were labeled with anti-IgM, IgG and IgA (Figure 1D). In agreement with previous 

reports (Pinto et al., 2013), some PCs expressed surface immunoglobulin (Ig) (Figure 1D), 

and almost all cells expressed Ig following permeabilization (Figure 1D). Both young and 

old PCs also expressed Blimp-1 (Shapiro-Shelef et al., 2003; Taubenheim et al., 2012) 

(Figure 1E).

PCs arise in disparate sites and secrete Igs of different classes (Lemke et al., 2016; Reynolds 

et al., 2015). We examined membrane-bound IgM (mIgM) and IgA (mIgA) expression 

(Pinto et al., 2013) and identified 1) mIgM+ mIgA™ single positive (mIgM SP); 2) mIgM™ 

mIgA™ double negative (DN); 3) mIgM™ mIgA+ single positive (mIgA SP); and 4) mIgM+ 

mIgA+ double positive (DP) (Figure 1F) PCs. Their quantification revealed significant 

increases in the numbers of IgM and IgA expressing PCs evident by middle-age and 

maintained in old mice (Figure 1G). This included a subset of IgM and IgA double positive 

cells absent in young animals but present in middle aged and old mice. IgM+ IgA+ B cells 

are present in patients with IgA deficiency (Conley and Cooper, 1981) and may arise due to 
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defective class switch recombination (Yazdani et al., 2017). It is relevant in this regard that 

old B cells exhibit impaired class switching (Frasca et al., 2008).

We also analyzed PB and PC populations in the spleen (SPL) of young, middle-aged and old 

mice (Figures S1A–S1G). In contrast to BM, both SPL PBs and PCs exhibited an age-

associated accumulation that was evident by middle-age (Figures S1A and S1B). Similar to 

BM PCs, SPL PCs displayed variable CD19 expression whereas these cells were negative 

for both CD11b and Gr-1 staining (Figure S1C). PCs in the SPL expressed intracellular Ig, 

in particular IgM, and Blimp-1 (Figures S1D–G).

PC depletion in old mice abrogates increased myelopoiesis

We investigated whether PC accumulation had functional relevance by depleting them in old 

mice with a mouse anti-mouse CD138 antibody (muCD138). This IgG2a heavy chain and κ 
light chain antibody originates from the 281–2 hybridoma (Jalkanen et al., 1985). Cohorts of 

old mice were treated in parallel with an isotype matched mouse anti-human CD20 

(huCD20) antibody (Figure 2A). After two weeks, the status of lymphopoiesis and 

myelopoiesis was analyzed. Young, untreated mice were assessed in parallel to provide a 

reference for any effects seen upon PC depletion. muCD138 treated mice had a significant 

reduction in the frequency (Figure S2B) and number of PCs (Figure 2B) whereas PC 

numbers in the huCD20 treated mice were comparable to those in untreated old mice 

(Figures 1B and 2B).

Total BM cellularity in muCD138, but not huCD20, treated mice was reduced to levels 

observed in young animals (Figure 2C). This reduction resulted from a significant decline in 

the numbers of monocytes and granulocytes to levels observed in young mice (Figures 2D–

2F). muCD138 treated mice also had a significant reduction in the numbers of My-HSCs 

(Figure 2G and Figure S3) and CMPs (Figures 2H and 2I) which increase with age (Min et 

al., 2006; Signer et al., 2007). While the numbers of GMPs and MEPs were also reduced, 

these changes were not significant (Figures 2J and 2K). These observations demonstrated 

that PC depletion results in a decrease in My-HSCs and myeloid progenitors and a 

significant reduction in myelopoiesis in the BM. Despite the fact that the number of myeloid 

lineage cells was reduced in PC depleted mice, only subtle changes in the frequency of these 

populations were observed (Figure S2). This is due to the fact that, while myelopoiesis was 

reduced in muCD138 treated mice, B lymphopoiesis did not rebound.

A reduction in BM lymphopoiesis occurs with age (Alter-Wolf et al., 2009; Miller and 

Allman, 2003; Min et al., 2006). muCD138 treated old mice exhibited no significant change 

in the numbers of Ly-HSCs (Figure 2L) while CLPs (Figure 2M) and committed B 

lymphoid progenitors (Hardy et al., 1991; Hardy and Hayakawa, 1995) (Figures 2N–2Q) 

remained depressed. Immature B220+ IgD™ B lineage cells in the BM express intermediate 

levels of CD138 (Tung et al., 2006) (Figure 2R), leading to the possibility that B cell 

development did not rebound in muCD138 treated mice due to their depletion. However, 

CLPs do not express CD138, and their numbers, which are decreased with age, remained 

depressed in muCD138 treated mice (Figure 2M). In addition, the muCD138 treatment did 

not reduce the number of B220+ IgD™ CD138int cells below levels observed in huCD20 

treated old mice (Figure 2S).
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PC depletion in young mice does not alter myelopoiesis

The above data demonstrated that old PCs are key effectors of the age-associated increase in 

myelopoiesis. However, it is unclear what, if any, regulatory role PCs play in the BM of 

young mice. To investigate this, we treated young (2 months old) mice with PBS and 

huCD20 or muCD138 antibodies (Figure 3A) and assessed hematopoiesis as described 

above. muCD138 treatment of young mice resulted in the depletion of PCs (Figure 3B) but 

had no other effect on overall BM cellularity (Figure 3C), the number of lymphoid and 

myeloid progenitors or the number of mature myeloid cells (Figures 3D–3N). These data 

indicated that the ability of PCs to regulate myelopoiesis is age-dependent and demonstrated 

that the CD138 antibody does not non-specifically deplete hematopoietic cells.

Old PCs stimulate myelopoiesis and inhibit lymphopoiesis in vitro

An in vitro culture system was used to identify the stages of hematopoiesis sensitive to PC 

derived signals. PCs were purified from young and old mice (Figure S3A) and pre-incubated 

at a 10:1 ratio with young Ly-HSCs, My-HSCs, LKS™ myeloid progenitors (MyPros) and 

CLPs for 15 hours before being transferred onto green fluorescent protein (GFP)-expressing 

OP9 stromal layers (Figures 4A and S3). This PC:progenitor ratio was chosen based on the 

numbers of PCs (Figure 1) and total HSCs found in young mice.

Consistent with their lymphoid bias, Ly-HSCs predominantly produced CD19 expressing 

cells after 3 weeks in culture (Figure 4B) and addition of young PCs did not change this 

(Figures 4C and 4D). In contrast, the addition of old PCs to this system resulted in a reduced 

frequency of CD19+ and an increased proportion of CD11b+ cells (Figure 4C). As shown in 

Figures 4D and S4A, the production of CD11b+ cells from Ly-HSCs was stimulated 

approximately 9-fold. My-HSCs primarily produced CD11b+ myeloid cells in this culture 

system (Figures 4E and 4F), and PCs also enhanced their production but with different 

kinetics compared to Ly-HSCs. Unlike Ly-HSCs, PCs had little impact on My-HSC-derived 

cultures at 3 weeks post initiation (Figures 4F, 4G and S4B). However, old PCs increased 

myeloid output from My-HSCs at 1 week following culture initiation (Figures 4H–J and 

S4C).

We also investigated the ability of PCs to affect cell production from committed progenitors 

following 7 days in culture. The vast majority of cells produced by myeloid progenitors 

(MyPros), which include CMPs and GMPs, were CD11b+ (Figures 4K and 4L). CD11b+ 

cell production in old PC containing cultures increased approximately 3-fold, while young 

PCs did not affect production (Figures 4M and S4D). We cultured PCs with B lineage 

specified CLPs, which predominantly generate CD19+ committed B lineage cells after 1 

week of culture (Figures 4N and 4O). The addition of old PCs to the cultures inhibited 

CD19+ cell production by approximately 40% (Figures 4P and S4E). Young PCs stimulated 

the production of CD19+ cells in this system (Figures 4P and S4E).

It was possible that PCs acquired expression of CD11b and expanded in the above cultures 

(Figures 4B–M), leading to an overestimation of myeloid cell production. To exclude this 

possibility, co-cultures were initiated with BM PCs, which expressed high levels of CD45 

(Figure 4Q), from CD45.2 old mice and stem and progenitor cells were isolated from young 

Pioli et al. Page 6

Immunity. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD45.1 mice. To validate our detection strategy, we also performed co-cultures with young 

CD45.1+ My-HSCs and old CD45.2+ My-HSCs. As expected, both congenic markers are 

readily detectable in co-cultures containing both CD45.1+ and CD45.2+ My-HSCs (Figure 

4R, top panel), and cultures containing only CD45.1+ My-HSCs were negative for CD45.2 

staining (Figure 4R, middle panel).

The cultures initiated with old CD45.2+ PCs and young CD45.1+ My-HSCs primarily 

contained CD45.1+ cells and only a few CD45.2+ PCs (Figure 4R, bottom panel). That result 

is in accord with a previous study showing that mature PCs are non-proliferative (Chernova 

et al., 2014). On average, 33 of the originally 500 seeded PCs were recovered after 1 week 

of culture on OP9 stroma (Figure 4S), and we observed an approximately 6.4% survival rate 

(Figure 4T) after 1 week that is consistent with previous studies of in vitro PC survival 

(Minges Wols et al., 2002). Thus, the vast majority of cells recovered in our culture system 

are derived from the CD45.1+ hematopoietic progenitors that were seeded. Furthermore, old 

PCs maintained their ability to suppress lymphopoiesis and enhance myelopoiesis in these 

culture conditions (Figures S4F–H).

Old PCs are primed for Toll-like receptor signaling

RNA sequencing (RNA-seq) was performed to identify differences between young and old 

PCs (>99% pure; Figure S3). We used SaVanT (Lopez et al., 2017) to compare our PC 

transcriptional signatures against those contained within the Immunological Genome Project 

(ImmGen) and Haemopedia databases (Figure S5). Our PC-derived transcriptional footprints 

were most enriched for B cell gene expression signatures from both databases. We also 

compared our data against already published RNA-seq analyses of in vitro-derived PCs as 

well as FACS purified PCs from the SPL and BM (Lam et al., 2018; Shi et al., 2015) (Figure 

S5). Again, this comparison demonstrated that our datasets strongly resembled the PC 

signatures obtained in those studies.

1413 protein-coding (non-Ig) genes were differentially expressed between young and old 

PCs (adjusted p-value < 0.05, Log2 fold change > |1.0|) (Figures 5A and 5B and Table S1), 

which represented ~10% of the total number of detectable genes (13,638). Of these, the 

expression of 939 genes increased with age whereas 474 genes exhibited decreased 

expression in old PCs (Figures 5A and 5B and Table S1). Metascape analysis (Tripathi et al., 

2015) revealed that processes related to pathogen responses were enriched for in genes with 

increased expression in old PCs (Table S2 and Figure 5C). Within these networks, we found 

increased expression of transcripts for multiple pathogen sensors that included Naip2, 
Naip6, Nod2 and Toll-like receptors (TLRs) such as Tlr4, Tlr6 and Tlr7 (Figure 5D). We 

also observed that old PCs had enhanced expression of various effector molecules, such as 

Mapk3 (Erk1), Elk1 and Tbk1, involved in propagating responses to pathogen-associated 

molecular patterns (PAMPs) and host-derived damage-associated molecular patterns 

(DAMPs) (Table S1) (Kawai and Akira, 2010; Takeuchi et al., 1999). In addition, expression 

of the gene encoding IKKα (Chuk) was increased in old PCs (Table S1). IKKα complexes 

with IKKβ and NEMO to induce the degradation of IκB resulting in NF-κB activation 

(Kawai and Akira, 2010). Tnfaip3 (A20), which prevents excessive TLR signaling and 
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subsequent inflammation (O’Reilly and Moynagh, 2003) also exhibited reduced expression 

in old PCs (Table S1).

These data indicated that old PCs have the potential to respond to pathogen components 

such as bacterial secretion systems (Naip2) (Kofoed and Vance, 2011), flagellin (Naip6) 

(Kofoed and Vance, 2011), peptidoglycan (Nod2 and Tlr6) (Girardin et al., 2003; Nakao et 

al., 2005), lipopolysaccharide (LPS) (Tlr4) (Qureshi et al., 1999) and viral single-stranded 

ribonucleic acid (ssRNA) (Tlr7) (Lund et al., 2004). We further analyzed our data set for the 

presence of a TLR responsive gene signature and focused on TLR4 as LPS, a TLR4 ligand, 

increases in the circulation with age (Kim et al., 2016; Thevaranjan et al., 2017) and TLR4 

was the most highly overexpressed TLR by old PCs. We compared our data to published 

lists of protein coding genes whose expression is increased and decreased in B cells 

following 2 hours of LPS stimulation (Fowler et al., 2015). Expression of sixty-four genes, 

including the chemokines Ccl3 and Cxcl10, was increased in both old PCs and LPS-

stimulated B cells while expression of 15 genes was decreased in common (Figures 5E and 

5F and Table S3). Additionally, we observed increased expression of LPS-inducible genes 

such as Ccl6 and Hdc (Das et al., 2017) in old PCs that did not overlap with the (Fowler et 

al., 2015) dataset (Tables S1 and S3). Overall, these data suggested that old PCs are more 

highly activated than young PCs due to TLR-driven responses.

We assessed expression of genes known to be activated by TLR4 signaling in PCs from both 

young and old mice following treatment in vitro with 1 μg/mL of LPS for 2 hours in order to 

provide additional support for the above conclusion. This treatment had no effect on Tlr4 
levels (Figure 5G), but LPS treated old PCs exhibited increased expression of Il1b, Il6 and 

Tnf (Figures 5H–5J). Additionally, Ccl3 and Cxcl10, identified from the (Fowler et al., 

2015) dataset were also LPS-inducible in old PCs (Figures 5K and 5L). Based on Tlr4 
expression levels, we expected young PCs to be less responsive to LPS. This was indeed the 

case as young PCs only increased Cxcl10 levels following stimulation with LPS (Figures 

5H–5L).

Old PCs regulate pro-inflammatory gene expression by BM stroma

The above data demonstrated that PCs have the potential to produce cytokines that may 

directly act on HSPCs (King and Goodell, 2011; Mirantes et al., 2014), but they could also 

alter the function of other BM microenvironmental constituents. We hypothesized that the 

BM stromal cells were a likely candidate as both HSPCs (Cordeiro Gomes et al., 2016; 

Sugiyama et al., 2006) and PCs (Minges Wols et al., 2002; Mokhtari et al., 2015; 

Zehentmeier et al., 2014) localize near stromal cells and are regulated by stromal-derived 

factors. Additionally, PCs can suppress human B lymphopoiesis in vitro via stromal 

interactions (Tsujimoto et al., 1996).

We repeated our PC depletion experiments (Figure 2A) and FACS purified the Lin™ CD45™ 

CD31™ stromal compartment from the BM of young, huCD20 and muCD138 treated old 

mice (Figure 6A). This purification strategy yields a heterogeneous mix of “stroma” 

inclusive of mesenchymal stem cells and osteoblast-lineage cells (Hu et al., 2016; Schepers 

et al., 2012). We then determined the transcriptional profiles for various cytokines and 

chemokines using an 84-gene Mouse Inflammatory Response and Autoimmunity PCR array. 
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Six genes age-regulated independently of PCs were identified (Figure 6B). In contrast, 22 

stromal genes that were PC-regulated were detected (Figure 6C). Hematopoietic regulatory 

factors whose increased expression required the presence of PCs included Csf1 (M-CSF) 

and Il1b, both of which are known to promote and suppress the development of myeloid and 

B lymphoid cells, respectively (Dorshkind, 1988a, b; Kennedy and Knight, 2015, 2017; 

Mossadegh-Keller et al., 2013; Pietras et al., 2016). In addition, we observed PC dependent 

expression of the inflammatory molecule Tnfsf14, or LIGHT (Kim et al., 2011; Shaikh et 

al., 2001). PCs were also obligate for increased stromal-derived expression of Il23 which 

regulates PC function (Cocco et al., 2011). Finally, we observed altered expression of Tirap, 
Ly96 (MD-2), Tlr4, Tlr5 and Tlr7 by stromal cells upon the removal of PCs suggesting that 

PCs regulated the capacity of the stroma to respond to pro-inflammatory stimuli (Zhou et al., 

2016; Ziegler et al., 2016).

Recent reports suggest that mature myeloid cells such as macrophages (Luo et al., 2018) and 

granulocytes (Chen et al., 2017; Fang et al., 2018) can act on upstream progenitors. In 

addition, Ly-6Chigh inflammatory monocytes increase in number with age and contribute to 

the enhanced systemic levels of IL-6 and TNF-α (Puchta et al., 2016). We found that 

Ly-6Chigh Ly-6G™ inflammatory monocytes and Ly-6Cint Ly-6G+ granulocytes, which 

dominated the CD11b+ fraction within the BM (Figure 6D), increased with age and were 

significantly decreased upon the removal of PCs (Figures 6E and 6F). Of the 84 genes in our 

panel, only 9 were differentially expressed between young and old Ly-6Chigh Ly-6G™ 

monocytes and of these, 5 were PC regulated (Figures 6G and 6H). Eight genes were 

differentially expressed in young and old Ly-6Cint Ly-6G+ granulocytes and the expression 

of 4 of these was affected by PC depletion (Figures 6I and 6J). Thus, PCs did not regulate 

inflammatory cytokine gene expression in myeloid cells to the same degree as in the stroma.

Inflammatory cytokines stimulate myelopoiesis

The above results indicate that PCs are at the center of an inflammatory cytokine network 

and their depletion abrogated the enhanced myelopoiesis observed in old mice (Figure 7A). 

A basic tenet of this model is that the age-associated enhancement of myelopoiesis is driven 

by increased inflammation in the environment. In this case, a prediction is that young and 

old HSCs would exhibit similar myelopoietic capacity when old HSCs are removed from the 

BM. To test this, we FACS purified My-HSCs from the BM of young and old mice and 

performed colony assays. As predicted, young and old My-HSCs generated similar numbers 

of colonies (Figure 7B). We also examined the colony forming potential of young and old 

CMPs in view of the fact that they are under PC regulation (Figure 2I), and this revealed that 

old CMPs also did not exhibit enhanced myeloid potential in vitro (Figure 7C). In fact, they 

generated significantly fewer colonies compared to their young counterparts.

If age-associated myeloid skewing is driven by inflammation (Figure 7A), then the addition 

of inflammatory cytokines to these cultures should enhance myelopoiesis. Low 

concentrations of IL-1β (1 ng/mL) and TNF-α (1 ng/mL) alone or in combination were 

included in order to model the inflammatory milieu present in the bone marrow of old mice 

(Henry et al., 2015). IL-1β increased the numbers of colonies generated by young and old 

My-HSCs, but this did not reach statistical significance (Figure 7B). In contrast, TNF-α 
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alone or in combination with IL-1β significantly enhanced colony formation by young and 

old My-HSCs (Figure 7B). IL-1β and TNF-α alone or in combination had no effect on 

colony formation from young CMPs (Figure 7C), but old CMPs were highly responsive to 

these cytokines (Figure 7C).

Inflammation is known to initiate signaling cascades that affect gene expression in cells 

(Oduro et al., 2012; Pietras et al., 2016), and this raised the possibility that PC depletion 

would have such effects in stem and progenitor cells. We tested this by examining how 

muCD138 treatment of old mice affected expression of 28 genes involved in key stem cell 

functions such as growth, differentiation and cytokine signaling in My-HSCs and CMPs. 

Twenty-two of these genes were selected from a list of 148 genes, generated by performing 

RNA-seq on My-HSCs from young and old mice (Montecino-Rodriguez et al., 2019). These 

22 genes exhibit robust differences in levels of expression between young and old My-

HSCs. The remaining 6 genes are implicated in the response of HSPCs to inflammation 

(Baldridge et al., 2011; Oduro et al., 2012). Only 1 gene, Nampt, an essential regulator of 

stress granulopoiesis (Skokowa et al., 2009), was dependent on the presence of PCs for 

normal expression in My-HSCs (Figure 7D). The effects of PC depletion on gene expression 

were more pronounced in CMPs where expression levels of 7 genes (Aldh1a1, Junb, Itgb3, 
Stat3, Alcam, Clu and Nupr1) were altered (Figure 7E). These included key myeloid 

transcription factors such as Junb (Rosenbauer and Tenen, 2007) and Stat3 (Panopoulos et 

al., 2002; Panopoulos et al., 2006) which exhibited decreased expression. Furthermore, 

expression of Itgb3 and Alcam, which regulate interactions between CMPs and the 

extracellular matrix, was also reduced (Choi and Harley, 2017).

IL-1 and TNF-α regulate myelopoiesis in old BM

The above results showed that old PCs are a source of cytokines known to inhibit 

lymphopoiesis and stimulate myelopoiesis from HSPCs (Nagai et al., 2006; Ueda et al., 

2005). Furthermore, PCs regulated inflammatory cytokine gene expression in BM stroma. 

As a final test of the model in Figure 7A, we determined how disruption of this circuitry 

affected patterns of hematopoiesis by treating old mice with Anakinra and Enbrel alone or in 

combination to inhibit IL-1 and TNF-α, respectively (Figure 7F). While this treatment did 

not significantly reduce the number of PCs (Figure 7G), mice treated with both drugs had a 

significant reduction in BM cellularity (Figure 7H). In view of this result, we surveyed 

myelopoiesis and lymphopoiesis in the Anakinra plus Enbrel treated mice to identify which 

hematopoietic populations were affected by cytokine neutralization (Figures 7I–7S). We 

observed significant declines in numbers of granulocytes (Figure 7J) as well as upstream 

My-HSCs (Figure 7K) and GMPs (Figure 7M). Similar to what was observed upon PC 

depletion (Figure 2), B lymphocyte development remained suppressed in mice receiving 

either drug alone or in combination (Figures 7P–7S).

Discussion

We found that PCs accumulated in aged BM and that PC depletion attenuated myelopoiesis. 

Our findings suggest that PCs are key members of the hematopoietic microenvironment and 

that their accumulation in the BM is responsible for age-related myeloid skewing. These 
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results do not exclude the possibility that other cellular changes in the old environment 

contribute to the stimulation of myelopoiesis. However, we found that PCs played an 

obligate role in doing so, and that redundant mechanisms that sustain increases in myeloid 

cell production did not exist in their absence. While some age-related changes in HSC 

behavior may be cell intrinsic, our data also establish that myeloid skewing primarily results 

from stem and progenitor cell extrinsic events. Finally, the fact that PC depletion restored 

myelopoiesis but not lymphopoiesis to levels in young animals indicates that these two 

major changes during aging hematopoiesis are separable events. In particular, the results 

discount the possibility that when myelopoiesis expands, declines in lymphocyte production 

occur because the increased numbers of myeloid progenitors outcompete lymphoid 

progenitors for access to marrow niches.

PC depletion reduced My-HSC number in old mice. This result, in conjunction with the in 
vitro colony forming studies showing that inflammatory factors stimulate myelopoiesis, 

strongly suggests the expansion of My-HSCs, myeloid progenitors and mature myeloid cells 

in aging BM results from their response to inflammatory cytokines. In contrast, PC depletion 

in old mice did not rejuvenate lymphopoiesis. This was not due to the fact that longer times 

are needed for that process to re-establish as we have previously shown (Dorshkind, 1991). 

However, the in vitro studies showed that PCs may contribute to the inhibition of that 

process. This result is consistent with a report that PCs can inhibit human pre-B cell survival 

in short term cultures (Tsujimoto et al., 1996). Thus, in contrast to increases in myelopoiesis, 

redundant mechanisms that suppress lymphocyte development during aging exist, and 

rejuvenation of lymphocyte development in old mice may be dependent on addressing each 

of these. Serial treatment of old mice with a cocktail of antibodies to CD19, CD45R(B220) 

and CD20 can rejuvenate B cell development (Keren et al., 2011). However, this procedure 

may deplete PCs (Chernova et al., 2014) as well as other populations such as B220+ natural 

killer cells (King et al., 2009) and age-associated B cells (ABCs) (Hao et al., 2011; Ratliff et 

al., 2013) that can inhibit B lymphopoiesis.

The effects of PCs in old mice are not simply the result of their increased number, because 

young PCs did not stimulate myelopoiesis or inhibit lymphopoiesis in vitro. Differences 

between young and old PCs were apparent when their transcriptomes were compared. In this 

regard, old PCs had acquired a TLR responsive gene signature and heightened responses to 

TLR ligands in vitro, raising the possibility that their activity is influenced by systemic 

events. Levels of circulating TLR4 and TLR2 ligands such as LPS (Kim et al., 2016) and 

muramyl dipeptide (MDP) (Thevaranjan et al., 2017), respectively, increase with age as a 

consequence of breakdown in the regulation of intestinal permeability (Buford, 2017; Qi et 

al., 2017). Additionally, microbiota derived from old mice enhance levels of systemic TNF-

α when transferred into young recipients (Thevaranjan et al., 2017). Thus, age-related events 

occurring in extramedullary tissues may have significant effects on microenvironmental cells 

in the BM.

The production of inflammatory cytokines and chemokines increases with age (Ergen et al., 

2012; Henry et al., 2015), and these factors can bind to receptors on HSPCs and stimulate 

myelopoiesis and inhibit lymphopoiesis (Dorshkind, 1988a, b; Kennedy and Knight, 2015, 

2017; Maeda et al., 2005; Pietras et al., 2016). Our results demonstrating that PCs express 
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genes encoding cytokines that include IL-1, IL-6 and TNF-α indicated that they contribute 

to the process of inflammaging and that PC derived factors may directly promote 

myelopoiesis as well as inhibit lymphocyte development from HSPCs. However, our in vitro 
systems were dependent on the presence of stromal cells, raising the possibility that indirect 

effects mediated by other microenvironmental elements also occurred. In support of this, 

transcriptional analysis of stroma isolated from young, huCD20 and muCD138 treated old 

mice revealed an age dependent increase in the expression of myeloid promoting cytokines 

such as Il1b and Csf1 that was abolished upon PC depletion. Monocytes and granulocytes 

are also a source of inflammatory cytokines, but PC depletion had only a minimal effect on 

inflammatory gene expression in these populations. Thus, while PCs have the potential to 

regulate various cellular components of the aging BM environment, the degree to which they 

do so varies significantly according to cell type.

Our data suggest a model in which PCs secrete inflammatory cytokines and regulate their 

production from stromal cells. We validated aspects of this model by blocking IL-1 and 

TNF-α in old mice with Anakinra and Enbrel, respectively, and found a significant 

diminution of myelopoiesis. Not all Anakinra and Enbrel treated mice exhibited changes in 

hematopoiesis, suggesting that we did not fully disrupt the circuitry presented in Figure 7A. 

This is not unexpected given the wide array of inflammatory factors that exist such as IL-6 

(Kayaba et al., 2018). Nevertheless, neutralization of only two inflammatory cytokines had 

significant effects on the age-related increase in myelopoiesis. Ultimately, these data provide 

support for inflammaging in regulating patterns of hematopoiesis, and myelopoiesis in 

particular, in the aged bone marrow environment (Kovtonyuk et al., 2016).

Studies showing that HSCs from old mice exhibit myeloid skewing and attenuated 

lymphopoiesis following transplantation into irradiated young recipients have led to the view 

that HSC intrinsic events underlie age-related changes in hematopoiesis (de Haan and 

Lazare, 2018). However, we recently reported that old Ly-HSCs exhibit normal lymphoid 

developmental potential and no myeloid skewing when transplanted into busulfan 

conditioned mice. The fact that irradiation induces high levels of inflammation while 

busulfan does not may explain why our results differ from previous studies as discussed 

(Montecino-Rodriguez et al., 2019). These recent observations indicate that changes in the 

old environment, rather than intrinsic stem cell defects, are primarily responsible for 

alterations in patterns of hematopoiesis with age. It is for these reasons that the current study 

is significant, because it identified a key age-related change in the microenvironment that 

alters hematopoietic development. Additional studies are needed to define how signals in the 

old PC inflammatory network, as well as other age-related changes in the hematopoietic 

microenvironment affect HSC expansion and differentiation. Our data also demonstrated that 

events acting at the level of lymphoid and myeloid progenitors also contribute to the decline 

in lymphopoiesis and increased myelopoiesis. Thus, a full understanding of how aging 

affects hematopoiesis will need to analyze a wide spectrum of HSPCs.

In summary, we found that the accumulation and functional alteration of PCs is a major age-

related change in the hematopoietic microenvironment and that PCs played an obligate role 

in the stimulation of myelopoiesis and contributed to declines in lymphopoiesis. It will be 

important to determine if various interventions such as caloric restriction (Tang et al., 2016), 
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CCL5 blockage (Ergen et al., 2012) and clearance of senescent cells (Chang et al., 2016), 

which reduce My-HSC number in old mice, act via effects on PC number and/or function. 

These issues aside, the data herein indicate that targeting extrinsic signals may be a relevant 

strategy in reversing some of the deleterious effects of aging on hematopoiesis. It is also 

relevant that genetic alterations in the BM niche can lead to the development of 

myeloproliferative disorders (Hoggatt et al., 2016; Walkley et al., 2007a; Walkley et al., 

2007b). It will be of significant interest to determine if PCs play any role in this process.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Kenneth Dorshkind (kdorshki@mednet.ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental Animals—All mice were of the C57BL/6J strain and CD45.2 positive 

unless otherwise noted. Young (2–3 months) and middle-aged (9-10 months) mice were 

purchased from the Jackson Laboratory or the UCLA Division of Laboratory Animal 

Medicine (DLAM). Old (17-19 months) mice were provided by the National Institute on 

Aging aged rodent colony. Young (2-3 months) B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice 

were purchased from the Jackson Laboratory. Both males and females were used when 

possible. Animal care and use were conducted according to the guidelines of the UCLA 

Institutional Animal Care and Use Committee. All animals were housed and/or bred in the 

Division of Laboratory Animal Medicine vivarium at UCLA.

METHOD DETAILS

Isolation of Spleen and Bone Marrow Tissue—All tissues were processed and 

collected in calcium and magnesium-free 1× phosphate buffered saline (PBS). Spleens were 

dissected and crushed between the frosted ends of two slides. Bone marrow was isolated 

from both femurs and tibias by cutting off the end of bones and flushing the marrow from 

the shaft using a 23-gauge needle. Cell suspensions were centrifuged for 5 minutes at 4 °C 

and 400g. Red blood cells were lysed by suspending cells in 3 mL of 1× red blood cell lysis 

buffer on ice for 3 minutes. Lysis was stopped with the addition of 7 mL of 1× PBS. Cell 

suspensions were counted in a hemocytometer and filtered through 70-μm nylon mesh 

before use.

Immunostaining—All staining procedures were performed in 1× PBS. Samples were 

labeled with a CD16/32 blocking antibody to eliminate non-specific binding of antibodies to 

cells via Fc receptors. In those samples in which fluorescence-conjugated CD16/32 antibody 

was used to resolve myeloid progenitors, total mouse IgG was used as a blocking reagent. 

All antibodies utilized are listed in the Key Resources Table. For surface staining, cells were 

incubated on ice for 40 minutes with the appropriate antibodies. Unbound antibodies were 

washed from cells with PBS and cells were resuspended in an appropriate volume of 1× PBS 

for flow cytometric analysis.
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For intracellular immunoglobulin staining, cells were stained for surface antigens and then 

fixed at room temperature for 20 minutes with 4% paraformaldehyde. Subsequently, cells 

were or were not permeabilized at room temperature for 30 minutes with 1× BD Perm/Wash 

Buffer in the presence of a CD16/32 blocking antibody and then stained for intracellular 

antigens at room temperature for 2 hours. Unbound antibodies were washed from cells with 

1× BD Perm/Wash (2 times) followed by PBS (1 time) and cells were resuspended in an 

appropriate volume of 1× PBS for flow cytometric analysis.

For intracellular Blimp-1 staining, cells were stained for surface antigens and then fixed at 

room temperature for 1 hour with fixative provided in the BioLegend True-Nuclear 

Transcription Factor Buffer Set. Subsequently, cells were permeabilized at room temperature 

for 30 minutes with the provided permeabilization buffer in the presence of a CD16/32 

blocking antibody and then stained for intracellular antigens at room temperature for 2 

hours. Unbound antibodies were washed from cells with 1× PBS and cells were resuspended 

in an appropriate volume of 1× PBS for flow cytometric analysis.

Flow Cytometry and FACS-Sorting—Flow cytometry was performed on an LSRII (BD 

Biosciences) located in the Broad Stem Cell Research Center flow cytometry core at UCLA. 

Data were analyzed using FlowJo (v10) software. Cell sorting was performed with an Aria I 

(BD Biosciences) cell sorter located in the Jonsson Comprehensive Cancer Center flow 

cytometry core at UCLA. Prior to sorting, cells were resuspended at a final concentration of 

2×107 cells per mL in αMEM supplemented with HEPES (25 mM), Penicillin-Streptomycin 

(100 U/mL), L-glutamine (2 mM), Gentamicin (50 μg/mL) and EDTA (2 mM). Cells were 

collected in RPMI 1640 supplemented with heat-inactivated fetal calf serum (10%), 2-ME 

(50 μM), Penicillin-Streptomycin (100 U/mL), L-glutamine (2 mM), Gentamicin (50 μg/

mL), sodium pyruvate (1 mM), non-essential amino acids (1×) and vitamins (1×) (all from 

Gibco except for 2-ME which was from Sigma-Aldrich and EDTA which was from EMD 

Millipore).

Cytospin—FACS-sorted PCs were centrifuged onto glass slides at 350 rpm for 3 minutes 

using a Shandon Cytospin 3 cytocentrifuge. Slides were subsequently stained using the 

PROTOCOL Hema 3 manual staining system. Cells were visualized using a Leitz Laborlux 

D microscope equipped with a 50× H2O immersion objective and images were captured 

using an Olympus DP12 camera.

Liquid Cell Culture—All cell culture was conducted at 37 °C in a 5% CO2 and air 

incubator. During passaging, GFP-expressing OP9 (Schmitt and Zuniga-Pflucker, 2002) 

stromal cells were cultured in αMEM supplemented with heat-inactivated fetal calf serum 

(5%), Penicillin-Streptomycin (100 U/mL), L-glutamine (2 mM) and Gentamicin (50 μg/

mL). All in vitro co-culture steps were carried out using RPMI 1640 supplemented with 

heat-inactivated fetal calf serum (10%), 2-ME (50 μM), Penicillin-Streptomycin (100 U/

mL), L-glutamine (2 mM), Gentamicin (50 μg/mL), sodium pyruvate (1 mM), non-essential 

amino acids (1×) and vitamins (1×).

For PC:progenitor co-culture experiments, PCs were pre-incubated with 50 stem and/or 

progenitor cells at a 10:1 ratio for ~15 hours in wells of a 96-well U-bottom plate. Only 
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freshly harvested PCs were used in these and all other experiments involving these cells. For 

My-HSCs, Ly-HSCs and myeloid progenitors, this step was performed in the presence of 

SCF (20 ng/mL, Thermo Fisher Scientific), Flt-3L (10 ng/mL, R&D Biosystems), IL-3 (20 

ng/mL, Thermo Fisher Scientific) and TPO (10 ng/mL, Thermo Fisher Scientific). For 

CLPs, this step was performed in the presence SCF (20 ng/mL), Flt-3L (10 ng/mL), IL-3 (20 

ng/mL) and IL-7 (10 ng/mL, Biosource International). Subsequently, the total contents of 

each well were transferred onto monolayers of OP9 stromal cells in 48-well plates. For long-

term HSC cultures, the total contents of wells were transferred to 12-well and 6-well plates 

at 1 and 2 weeks post-culture initiation, respectively. Cultures initiated with Ly-HSCs were 

analyzed 3 weeks after initiation and cultures established with My-HSCs, myeloid 

progenitors and CLPs were assayed after 1 and/or 3 weeks in culture. Cultures were fed at 

days 2 and 4 of each week with RPMI 1640 (25% of total volume). Fold change was 

calculated using cell numbers derived from each culture condition (see Figure S4) as 

follows: (Progenitor + Old PC) / (Progenitor Only) = relative fold change.

For in vitro stimulation of PCs, 4×103 cells were resuspended at a density of 2×104 cells/mL 

in RPMI 1640 supplemented with PBS or LPS (1 μg/mL, Sigma-Aldrich) for 2 hours at 

37 °C. Subsequently, cells were washed with RPMI 1640, centrifuged and cell pellets were 

flash frozen in liquid nitrogen and stored at −80 °C.

In Vitro Colony Forming Unit Assay—Colony forming potential of My-HSCs and 

CMPs FACS-purified from the bone marrow of young and old mice was assayed by mixing 

100 My-HSCs or 250 CMPs in 1 mL of methylcellulose (MC) medium. MC medium was 

prepared by supplementing α-MEM with methylcellulose (1%, MethoCult H4100, 

STEMCELL Technologies), heat-inactivated fetal calf serum (30%), 2-ME (50 μM), 

Penicillin-Streptomycin (100 U/mL), L-glutamine (2 mM), Gentamicin (50 μg/mL), sodium 

pyruvate (1 mM), non-essential amino acids (1×) and vitamins (1×), SCF (50 ng/mL), IL-3 

(30 ng/mL), IL-6 (10 ng/mL), IL-11 (10 ng/mL) and GM-CSF (20 ng/mL). In some 

instances, IL-1 β (1 ng/mL) and/or TNF-α (1 ng/mL) were included in the MC medium. 

The mixture was plated in nontissue culture treated 3.5-cm2 dishes (Becton Dickinson). 

Plates were incubated at 37 °C in a 5% CO2 and air incubator and colonies were counted 

following 8 days (CMPs) or 10 days (My-HSCs) of culture.

In Vivo Plasma Cell Depletion and Cytokine Blockade—Young and old mice were 

between 2-3 months and 17-19 months of age, respectively. For plasma cell depletion 

experiments, mice received a total of 300 μg of antibodies specific for either anti-human 

CD20 (negative control) or anti-mouse CD138. Administration was split evenly among six 

total intraperitoneal injections (50 μg per injection) over a two-week span.

For cytokine blockade experiments, animals received intraperitoneal injections of 300 μg of 

Anakinra (UCLA Pharmacy), Enbrel (UCLA Pharmacy) or Anakinra and Enbrel. An 

additional cohort of animals received injections of an equal volume of 1× PBS. Mice 

received twelve injections over the course of one month.

RNA-Seq—PCs were FACS-sorted from 3 pools of 2-4 young (2-3 months, female) and 

old (17-19 months, male) mice. Each pool consisted of ~5193 and ~10,903 PCs for young 
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and old mice, respectively. Following isolation, cells were resuspended in 750 μL TRIzol LS 

Reagent, flash frozen in liquid N2 and stored at −80 °C until further processing. RNA 

isolation, preparation of sequencing libraries and sequencing was performed at the 

Technology Center for Genomics and Bioinformatics located at UCLA. RNa was isolated 

using a Qiagen RNeasy Plus Micro Kit and sequencing libraries were prepared with the 

Clontech SMARTer Stranded Total RNA-seq (Pico) Kit. The library preparation workflow 

consisted of first-strand cDNA synthesis, template switching, adaptor ligation and cleavage 

of ribosomal cDNA and PCR amplification. Unique adaptors were utilized for each library 

to facilitate multiplexing of samples. One hundred fifty base pair paired-end sequencing was 

performed using 3 lanes on an Illumina Hiseq3000. Data quality was verified with Illumina 

SAV and de-multiplexing was performed with Illumina bcl2fastq2 v2.17.

The STAR ultrafast universal RNA-seq aligner v2.5.2b (Dobin et al., 2013) was used to 

generate the genome index and perform paired-end alignments. Reads were aligned to a 

genome index that includes both the genome sequence (GRCm38 primary assembly) and the 

exon/intron structure of known gene models (Gencode M12 genome annotation). Alignment 

files were used to generate strand-specific, gene-level count summaries with the built-in 

gene counter in STAR. Technical replicates showed high reproducibility and were pooled. 

Only protein-coding genes in the Gencode M12 annotation were considered (85% of total 

counts on average). Independent filtering was applied as follows: genes with no counts in 

any sample, count outliers or low mappability were filtered out for downstream analysis 

(Casero et al., 2015). Counts were normalized per-sample in units of fragments per kilobase 

of transcript length per million reads (FPKM) after correcting for gene mappable length and 

sample total counts. Differential expression analysis was performed with DESeq2 (Love et 

al., 2014). Data are deposited in the NCBI Gene Expression Omnibus (GEO) database under 

accession number GSE112939. The table of expression estimates (FPKM) was used as input 

for SaVanT (Lopez et al., 2017) to compute enrichment scores on two different databases of 

mouse gene expression signatures (ImmGen (http://immgen.org) and Haemopedia 

(www.haemosphere.org)) as well as previously published RNA-seq analyses of in vitro-

derived PCs (GSE60927) as well as FACS purified PCs (GSE115858) from the spleen and 

bone marrow (Lam et al., 2018; Shi et al., 2015). Non-default parameters for SaVanT were 

“Convert matrix values to ranks” and “Compute null distribution with 10000 iterations”.

Volcano plots (all expressed protein-coding genes minus immunoglobulin and Y-

chromosome genes) and heatmaps (all significantly altered genes) were generated using R 

Studio. Gene ontology (GO) analysis of differentially expressed genes was performed using 

Metascape (Tripathi et al., 2015). Cytoscape (Shannon et al., 2003) was used to generate and 

visualize network interactions. Nodes with the same color are specific ontologies in the same 

GO generic class and are labeled using a representative member. Node size is proportional to 

the number of genes per category. Edge thickness is proportional to between-node similarity 

(Kappa similarity > 0.3, Metascape) and reflects the overlap between the gene sets annotated 

in both ontology terms.

qPCR—RNA was isolated from ~4×103 PCs using a Qiagen RNeasy Plus Micro Kit. 

Synthesis of cDNA was performed with the Qiagen RT2 First Strand Kit. Reactions were 

performed according to manufacturer instructions except for the extension step, which was 
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performed at 42 °C for 1 hour. qPCR was performed according to manufacturer instructions 

using a TaqMan Universal PCR Mix with no AmpErase UNG (Thermo Fisher Scientific). 

Details for Gapdh, Tlr4, Tnf, Il1b, Il6, Ccl3 and Cxcl10 TaqMan primers can be found in the 

Key Resources Table. qPCR reactions were carried out on a Bio-Rad MyiQ Single-Color 

Real-Time PCR Detection System using iQ5 software. Reactions were run in triplicate in 

96-well plates. Each plate was run in duplicate and PCR efficiencies were 95% to 105% as 

validated by a Gapdh standard curve. Data are presented as 2(GapdhCT – TargetCT).

For transcriptional profiling of bone marrow stroma (~1×106 cells), Ly-6Chigh Ly-6G™ 

inflammatory monocytes (~1×105 cells), Ly-6Cint Ly-6G+ granulocytes (~1×106 cells), My-

HSCs (~2×103 cells) and CMPs (~4×103 cells), RNA and cDNA was generated as above. 

Stroma, Ly-6Chigh Ly-6G™ inflammatory monocytes and Ly-6Cint Ly-6G+ granulocytes 

were assayed with a Qiagen RT2 Profiler PCR Array for Mouse Inflammatory Response and 

Autoimmunity (Catalogue #: PAMM-077Z).

My-HSCs and CMPs were assayed with a custom Qiagen RT2 Profiler PCR Array that 

included probes for Mab21l2, Selp, Nuprl, Clu, Aldhlal, Plscrl, Itgb3, Sdpr, Cd74, Alcam, 
Plk2, Clecla, Cst3, Klhl4, Sultlal, Kctd12, Nampt, Tyk2, Socs3, Gata1, Vwf, Klf1, S100a8, 
Cd34, Tet1, Cd24a, Junb, Stat3, B2m (housekeeping) and Gapdh (housekeeping). qPCR was 

performed using iQ SYBR Green Supermix and reactions were carried out on a Bio-Rad 

MyiQ Single-Color Real-Time PCR Detection System using iQ5 software. Data were 

analyzed using the Qiagen online data resource center. Two biological replicates were 

performed per experiment and all data was normalized to B2m expression. Genes were 

considered significantly different if samples from either huCD20 or muCD138 treated old 

mice had a Log2 fold change ≥ |0.9| relative to samples derived from young mice. 

Furthermore, genes were considered to be PC-regulated if the ΔLog2 fold change (huCD20 – 

muCD138) ≥ |0.6|. Only genes that had consistent positive (or negative) signals for all 

replicates as well as a standard deviation of the ΔCT (B2m - gene of interest) < 2 for a 

particular cell subset were analyzed.

QUANTIFICATION AND STATISTICAL ANALYSIS

The numbers of mice used or replicates performed per experiment are listed in the figure 

legends. Statistical analyses were performed using GraphPad Prism (v5) software. An 

unpaired Student’s t-Test or Wilcoxon matched-pairs signed rank test when appropriate was 

used for statistical comparisons between 2 groups. For comparisons among 3 or more 

groups, a one-way ANOVA with Bonferroni’s or Dunnett’s correction was utilized. 

Statistically significant p-values are shown within each figure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Inflammatory cytokine producing plasma cells (PCs) increase in number in 

old BM

• Antibody-mediated depletion of PCs from old mice reduces myeloid cell 

production

• PCs from old mice regulate inflammatory cytokine gene expression in BM 

stroma

• Treatment of old mice with IL-1 and TNF-α inhibitors reduces myelopoiesis
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Figure 1. PCs Accumulate in old BM
(A) Representative FACS plots depicting immunostaining of PBs and PCs in the bone 

marrow (BM) of young, middle-aged and old mice. (B) Frequencies and numbers of PBs 

and PCs in BM of young (n = 25), middle-aged (n = 16) and old (n = 13) mice. Each symbol 

represents an individual mouse. (C) Representative FACS plots depicting CD19, CD11b and 

Gr-1 immunostaining of PCs from young and old mice. Young total BM is shown for 

comparison. (D) Representative FACS plots depicting IgM+IgA+IgG immunostaining of 

PCs from young and old mice. Unstained samples are shown for comparison. No Perm = 

unpermeabilized; Perm = permeabilized. (E) Representative FACS plots depicting isotype 

control and Blimp-1 immunostaining of PCs in BM of young and old mice. (F) 

Representative FACS plots depicting mIgM and mIgA immunostaining of PCs in BM of 

young, middle-aged and old mice. (G) Numbers of SP, DN or DP mIgM+ and/or mIgA+ PCs 

in BM of young (n = 18), middle-aged (n = 12) and old (n = 13) mice. Bars represent mean 

± SEM. (A, C-E): Vertical dashed lines on histograms depict cut-offs for positive staining. 

Statistics: One-way ANOVA with Bonferroni’s correction.

See also Figure S1.
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Figure 2. PC Depletion Reverses the Age-associated Enhancement of Myelopoiesis
(A) Schematic of antibody-mediated depletion of PCs in old mice. Arrows indicate days of 

injection. (B) Number of PCs in young and huCD20 and muCD138 treated old mice. (C) 

Total BM cellularity in young, huCD20 and muCD138 treated old mice. (D) Representative 

FACS plot depicting immunostaining of monocytes and granulocytes in young mice. 

Numbers of (E) monocytes, (F) granulocytes and (G) My-HSCs in young, huCD20 and 

muCD138 treated old mice. (H) Representative FACS plot from young mice depicting 

immunostaining of CMPs, GMPs and MEPs. Numbers of (I) CMPs, (J) GMPs and (K) 
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MEPs in young, huCD20 and muCD138 treated old mice. (L) Numbers of Ly-HSCs and (M) 

CLPs in young and huCD20 and muCD138 treated old mice. (N) Representative FACS plots 

from young mice depicting immunostaining of pro-B and pre-B cells. Numbers of (O) 

Fraction B early pro-B, (P) Fraction C+C’ late pro-B/large pre-B and (Q) Fraction D small 

pre-B cells in young, huCD20 and muCD138 treated old mice. (R) Representative FACS 

plots from young mice depicting immunostaining of B220+ IgD™ CD138int immature B 

lineage cells. The PC containing gated region is provided as a reference point for CD138 

staining intensity. (S) Numbers of B220+ IgD™ CD138int immature B lineage cells in 

young, huCD20 and muCD138 treated old mice. (B, C, E-G, I-M, O-Q, S) Each symbol 

represents an individual mouse. Animals used: Young = 9; huCD20 = 14; muCD138 = 11. 

Statistics: One-way ANOVA with Bonferroni’s correction.

See also Figures S2 and S3.
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Figure 3. PC Depletion in Young Mice Does Not Alter Hematopoiesis
(A) Schematic of antibody-mediated depletion of PCs in young mice. Arrows indicate days 

of injection. (B) Numbers of PCs in PBS, huCD20 and muCD138 treated young mice. (C) 

Total BM cellularity in PBS, huCD20 and muCD138 treated young mice. Numbers of (D) 

monocytes, (E) granulocytes, (F) My-HSCs, (G) CMPs, (H) GMPs, (I) MEPs, (J) Ly-HSCs, 

(K) CLPs, (L) Fraction B early pro-B, (M) Fraction C+C’ late pro-B/large pre-B and (N) 

Fraction D small pre-B cells in PBS, huCD20 and muCD138 treated young mice. Each 

symbol represents an individual mouse. Young = 4; huCD20 = 4; muCD138 = 4. Statistics: 

One-way ANOVA with Bonferroni’s correction.
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Figure 4. Old PCs Enhance Myelopoiesis and Suppress Lymphopoiesis In Vitro
(A) Schematic depicting co-culture experiments utilizing PCs from young or old mice and 

hematopoietic progenitors from young mice. (B) Representative histograms of CD19 and 

CD11b expression on cells from 3 week cultures initiated with Ly-HSCs. (C) Frequencies 

and (D) fold change of CD19+ and CD11b+ cell production in 3 week cultures initiated with 

Ly-HSCs. (E) Representative histograms of CD19 and CD11b expression on cells from 3 

week cultures initiated with My-HSCs. (F) Frequencies and (G) fold change of CD19+ and 

CD11b+ cell production in 3 week cultures initiated with My-HSCs. (H) Representative 
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FACS histograms of CD11b expression in on cells from 1 week cultures initiated with My-

HSCs. (I) Frequency and (J) fold change of CD11b+ cell production in 1 week cultures 

initiated with My-HSCs. (K) Representative FACS histograms of CD11b expression on cells 

from 1 week cultures initiated with MyPros. (L) Frequency and (M) fold change of CD11b+ 

cell production in 1 week cultures initiated with MyPros. (N) Representative FACS 

histograms of CD19 expression on cells from 1 week cultures initiated with CLPSs. (O) 

Frequency and (P) fold change of CD19+ cell production in 1 week cultures initiated with 

CLPs. (Q) Representative FACS contour plot depicting CD45 and CD138 expression in old 

BM. Gated PCs (black) are overlaid upon total bone marrow (red). (R) Representative FACS 

plots of CD45.1 and CD45.2 expression on cells harvested from 1 week cultures containing 

young CD45.1 My-HSCs and old CD45.2 My-HSCs (top panel), young CD45.1 My-HSCs 

only (middle panel) or young CD45.1 My-HSCs and old CD45.2 PCs (bottom panel). (S) 

Numbers of PCs remaining after 1 week in the indicated culture conditions. (T) Survival rate 

of PCs remaining after 1 week in the indicated culture conditions. Survival rate = (number of 

PCs detected / initial number of PCs seeded) × 100. (B, E, H, K, N) Vertical dashed lines on 

CD19 and CD11b histograms indicate cut-offs for positive staining. (C, D, F, G, I, J, L, M, 

O, P) Results are from a minimum of 3 experiments with 3-5 technical replicates per culture. 

Bars represent mean ± SEM. Statistics: For 3 groups, one-way ANOVA with Bonferroni’s 

correction. For 2 groups, Wilcoxon matched-pairs signed rank test. (D, G, J, M, P) Fold 

change was calculated using cell numbers derived from each culture condition (see Figure 

S4) as follows: (Progenitor + PC) / (Progenitor Only) = relative fold change. (S, T) Results 

are from 2 experiments with 3-4 technical replicates per culture. Bars represent mean ± 

SEM.

See also Figures S3 and S4.
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Figure 5. Old PCs Possess a Toll-like Receptor Responsive Gene Signature
(A) Volcano plot depicting RNA-seq data from young and old PCs. All expressed genes are 

shown and blue dots indicate genes showing significant (adjusted p-value < 0.05, Log2 fold 

change > |1.0|) alterations in their expression levels. (B) Heatmap of genes significantly 

altered between young and old PCs. (C) Cytoscape-generated network diagram summarizing 

GO analysis performed on genes with increased expression in old PCs using Metascape. 

Nodes with the same color are specific ontologies in the same GO generic class and are 

labeled using a representative member. Node size is proportional to the number of genes per 

Pioli et al. Page 32

Immunity. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



category. Edge thickness is proportional to between-node similarity (Kappa similarity >0.3, 

Metascape) and reflects the overlap between the gene sets annotated in both ontology terms. 

(D) Fragments per kilobase of transcript length per million reads (FPKM) for pathogen 

receptors with significantly increased expression in old PCs. Genes were identified from (C). 

Bars represent mean ± SEM derived from RNA-seq data. Venn diagrams illustrating the 

number of genes with (E) increased or (F) decreased expression in both old PCs and LPS-

stimulated B cells from (Fowler et al., 2015). (G-L) qPCR analysis for (G) Tlr4, (H) Il1b (I) 

Il6, (J) Tnf, (K) Ccl3 and (L) Cxcl10 expression by young and old PCs treated with PBS or 

LPS (1 μg/mL) for 2 hours in vitro. Results are normalized to Gapdh expression. ND = not 

detected. Bars represent mean ± SEM from 3 independent experiments.

See also Tables S1–S2.
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Figure 6. Old PCs Regulate Inflammatory Gene Expression in Stromal Cells
(A) Representative FACS plot depicting purification strategy of Lin™ CD45™ CD31™ bone 

marrow stromal cells. Genes differentially expressed by young and old stroma (B) 

independent of PCs (PC-Ind) and (C) dependent on PCs (PC-Dep). (D) Strategy for 

purification of BM Ly-6Chigh Ly-6G™ inflammatory monocytes and Ly-6Cint Ly-6G+ 

granulocytes. Numbers of (E) Ly-6Chigh Ly-6G™ inflammatory monocytes and (F) Ly-6Cint 

Ly-6G+ granulocytes in BM of young, huCD20 and muCD138 treated old mice. Each 

symbol represents an individual mouse. Animals used: Young = 4; huCD20 = 8; muCD138 

Pioli et al. Page 34

Immunity. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 6. Statistics: One-way ANOVA with Bonferroni’s correction. Genes differentially 

expressed by young and old Ly-6Chigh Ly-6G™ inflammatory monocytes (G) independent of 

PCs (PC-Ind) and (H) dependent on PCs (PC-Dep). Genes differentially expressed by young 

and old Ly-6Cint Ly-6G+ granulocytes (I) independent of PCs (PC-Ind) and (J) dependent on 

PCs (PC-Dep). Bars represent average of 2 independent experiments and show average Log2 

fold changes in gene expression of samples isolated from huCD20 (orange) and muCD138 

(black) treated old mice relative to their young counterparts. Sort purities of stromal cells, 

monocytes and granulocytes were routinely greater than 99%.
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Figure 7. IL-1 and TNF-α Blockade Attenuates Myelopoiesis in Old BM
(A) Model depicting selected cytokines produced by old PCs and stromal cells and their 

potential hematopoietic regulatory roles. Numbers of colonies generated per (B) 100 young 

and old My-HSCs following 10 days in culture and (C) 250 young and old CMPs following 

8 days in culture. Bars represent mean ± SEM of colonies counted per individual 3.5-cm2 

dish. Data are derived from 2 independent experiments with at least 3-6 technical replicates 

per condition. Statistics: One-way ANOVA with Dunnett’s correction for the comparison of 

3 or more groups. Unpaired Student’s t-Test for the comparison of 2 groups. Gene 
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expression in (D) My-HSCs and (E) CMPs isolated from pools of 3-5 young, huCD2o and 

muCD138 treated old mice using a custom Qiagen PCR array. Bars represent average of 2 

independent experiments and show average Log2 fold changes in gene expression of samples 

isolated from huCD20 (orange) and muCD138 (black) treated old mice relative to their 

young counterparts. (F) Schematic depicting experimental strategy to block IL-1 and TNF-α 
in old mice. Numbers of (G) PCs, (H) total BM cells, (I) monocytes, (J) granulocytes, (K) 

My-HSCs, (L) CMPs, (M) GMPs, (N) MEPs (O) Ly-HSCs, (P) CLPs (Q) Fraction B, (R) 

Fraction C+C’ and (S) Fraction D B lineage cells. Symbols in G-S represent analyses of 

individual mice. Animals used: PBS = 8; Anakinra = 6; Enbrel = 6; Anakinra + Enbrel = 11. 

Statistics: One-way ANOVA with Bonferroni’s correction.
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