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Abstract

There is a great interest among gerontologists, demographers and actuaries to the question about 

the limits to human longevity. Attempts to get answers to this important question stimulated many 

studies on late-life mortality trajectories, often with opposite conclusions. One group of 

researchers believes that mortality stops growing with age at extreme old ages, hence there is no 

fixed limit to lifespan. Other studies found that mortality continues to grow with age up to extreme 

old ages. This study suggests a possible solution to this controversy. We found that mortality 

deceleration is best observed when older, less accurate lifespan data are analyzed, while in the case 

of more recent and reliable data there is a persistent mortality growth with age. We compared 

performance (goodness-of-fit) of two competing mortality models - the Gompertz model and the 

“mortality deceleration” Kannisto model at ages 80–105 years using data for 1880–1899 single-

year birth cohorts of U.S. men and women. The mortality modeling approach suggests a transition 

from mortality deceleration to the Gompertzian mortality pattern over time for both men and 

women. These results are consistent with the hypothesis about disappearing mortality deceleration 

over time due to improvement in the accuracy of age reporting. In the case of more recent data 

mortality continues to grow with age even at very old ages. This observation may lead to more 

conservative estimates for the future human longevity records.
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1. INTRODUCTION

There is a great interest among gerontologists, demographers and actuaries to the question 

what are the limits to human longevity, and whether the fixed limits exist at all. Attempts to 

get answers to these important questions stimulated many studies on late-life mortality 

trajectories, often with opposite conclusions. One group of researchers claims that mortality 

stops growing with age at extreme old ages, hence there is no fixed limit to lifespan [1]. 

Other studies found that mortality continues to grow with age even at late life [2]. Recent 

debates in “Gerontology” journal about the limit to human lifespan highlighted the need to 
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know better the shape of mortality trajectories at extreme old ages [3, 4]. It was long 

believed that the exponential growth of the force of mortality with age (the Gompertz law) is 

followed by the period of deceleration when mortality growths slower than predicted by the 

Gompertz law [5–8]. Thatcher and colleagues tested several models of mortality using data 

on thirteen countries with presumably good quality of mortality statistics and found 

downward deviation of mortality from the Gompertz law after age 80 years [7, 8]. Horiuchi 

and Wilmoth analyzed age trajectories of life table aging rate in Sweden and Japan and 

found that the life table aging rate has a tendency to decline after 75–80 years of age 

suggesting mortality deceleration [6]. This mortality deceleration eventually produces “late-

life mortality leveling-off” and “late-life mortality plateaus” at extreme old ages [5, 9, 10]. 

Actuaries (including Gompertz himself) first noted this phenomenon and they proposed a 

logistic formula for mortality growth with age in order to account for mortality deceleration 

at advanced ages. The same phenomenon of ‘almost non-aging’ survival dynamics at 

extreme old ages was observed in other biological species. In some species (medflies and 

house flies) mortality plateau can occupy a sizable part of their life [11]. The existence of 

mortality plateaus is now well documented for a number of lower organisms (see review in 

[11]). However, later studies reported no mortality deceleration at older ages for primates 

[12, 13], rodents and humans [2, 14]. In another study, Gompertz-like mortality was found 

for Australia, Canada and the United States and mortality deceleration for a number of 

European countries [15].

The estimation of the force of mortality at very old ages faces difficulties, because of very 

small number of survivors to these ages and because of age misreporting by older persons. 

The age misreporting may be a problem affecting estimates of mortality at older ages [16–

19]. Even a small percentage of inaccurate data can greatly distort mortality trajectories at 

advanced ages [20, 21]. In most cases, age misreporting at older ages leads to mortality 

underestimation [22] and even rare errors in age reporting can accumulate at extreme old 

ages leading to spurious mortality deceleration [21]. Taking into account that the accuracy of 

age reporting is positively correlated with education [23], we can hypothesize that 

improvement of education over time would lead to more accurate age reporting and hence 

less prevalent mortality deceleration. Also, it is known that birth registration in the United 

States was introduced gradually with only six states having official birth registration 

between 1841 and 1890 [24]. Introduction of birth registration improves the quality of age 

reporting among subsequent birth cohorts. Preliminary data suggest that mortality at 

advanced ages in earlier U.S. birth cohorts shows stronger deceleration compared to 

mortality in later birth cohorts [14].

Here we analyze historical evolution of mortality trajectories at advanced ages using age-

specific death rates for 20 cohorts born in 1880–1899 in the United States. We study two 

competing models describing mortality trajectories (the Gompertz model and the Kannisto 

model) with Akaike goodness-of-fit criterion. We hypothesize that mortality deceleration 

should fade away in more recent birth cohorts due to improvement in age reporting over 

time.
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2. DATA AND METHODS

The Human Mortality Database (HMD) provides mortality and population data [25]. Age-

specific death rates are used as empirical estimates for the force of mortality [26]. Datasets 

of age-specific cohort death rates (central mortality rates) of men and women are available in 

HMD for ages up to 110 years or older. We selected data available in one-year age and time 

increments denoted as Mx, where x indicates single year of age. Yearly central death rate for 

cohort c at age x is defined as number of deaths to the cohort c between ages x and x+1 

divided by number of person-years lived by the cohort c between ages x and x+1 [27]. We 

study 1880–1899 single-year birth cohorts of the United States and analyze data for men and 

women separately.

Study of data quality at older ages found that U.S. data quality is conditionally acceptable 

[28]. U.S. data pass the tests of age heaping and Whipple’s index for centenarians, but 

consistently shows moderate data quality problems [28]. Age-specific women to men ratios 

confirm that the U.S. data are of sufficiently good quality up to ages 106–107 years [14]. 

However, age misreporting rapidly increases after age 105 years [18, 29]. For this reason, 

mortality was fit in the age interval 80–105 years.

We fit mortality with two competing models used earlier in the study by Thatcher and 

coauthors [8]: the Gompertz model and the logistic model (a simplified two-parameter 

logistic model, also called the Kannisto model):

Gompertz: μ (x) = a ebx (1)

Kannisto: μ (x) = a ebx

1 + a ebx (2)

where μ(x) is the force of mortality, x is age, a and b are parameters.

Parameters a and b are called the intercept and the slope parameters respectively.

Parameter a determines the initial level of mortality while parameter b determines the rate of 

mortality increase with age.

According to the Gompertz law (suggested by the British actuary, Benjamin Gompertz, in 

1825), the logarithm of the force of mortality (hazard rate) increases linearly with age. This 

is often used in order to illustrate graphically the validity of the Gompertz law – the data are 

plotted in the semi-log scale (known as the Gompertz plot) to check whether the logarithm 

of the hazard rate is indeed increasing with age in a linear fashion.

The Kannisto model was suggested by Vaino Kannisto in 1994 in order to take into account 

the observed mortality deceleration at advanced ages [30]. With the logistic Kannisto model, 
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there is an asymptote of mortality at the oldest ages equal to one, and hence the Kannisto 

model fits mortality better in the case of mortality deceleration.

We test these two models for their performance of fitting the empirical data. We run a 

weighted nonlinear regression model in the age interval 80–105 years (using Stata command 

nlin). Age-specific exposure values are used as weights in nonlinear regression analyses 

[31].

Akaike Information Criterion (AIC) is used to evaluate goodness of fit for the Gompertz and 

the Kannisto models:

AIC = 2k − 2ln(L) (3)

where ln(L) is the maximized log-likelihood of the model and k is the number of parameters 

estimated. AIC was computed using Stata post-estimation command estat. Both the nlin and 

estat commands are described in the Stata manual [32].

The best model has the minimal value of the Akaike Information Criterion [33]. It is not the 

absolute size of the AIC value, it is the difference of values for compared models (Δi), that is 

important in model selection. AIC difference higher than 10 suggests strong support of 

better model by data [33]:

Δi = AICi − AICmin (4)

where Δi is the AIC difference for the ith model, AICi is the Akaike Information Criterion 

value for the ith model and AICmin is the value of criterion for the best model with minimal 

AIC.

Analyses were conducted using Stata statistical software, release 14.

3. RESULTS

Figure 1 presents the results of model fitting (AIC values) for the U.S. 1880–1899 birth 

cohorts. It demonstrates clear transition from lower values of AIC (better fit) for the 

Kannisto model in the case of earlier birth cohorts to lower values (better fit) of AIC for the 

Gompertz model in the case of later birth cohorts. This phenomenon means that mortality 

deceleration, which is observed for both men and women in earlier birth cohorts, disappears 

in more recent birth cohorts. This historical change in the pattern of mortality trajectories 

from mortality deceleration to the Gompertz law occurs for persons born around 1886–1887 

(Figure 1).

Table 1 presents changes in AIC and AIC difference for subsequent birth cohorts. Note that 

in most cases AIC difference is higher than 10 suggesting strong support by data for either 

the Kannisto (in the case of earlier cohorts) or the Gompertz (in the case of later cohorts) 
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models. Thus, we may conclude that mortality in the past indeed demonstrated deceleration 

while later it changed to the Gompertz pattern.

Figure 2 illustrates historical changes of mortality trajectories presenting age-specific 

mortality in semi-log scale for earlier (1881) and later (1898) birth cohorts of women in the 

United States. Mortality pattern of earlier birth cohort demonstrates an obvious deceleration 

of mortality growth with age while mortality of later birth cohort is presented by a persistent 

growth (straight line). Figure 3 demonstrates similar mortality patterns for earlier and later 

birth cohorts of U.S. men.

Note that after age 95 years mortality estimates for earlier birth cohort are even lower than 

mortality estimates for later birth cohort. This paradoxical observation is most likely related 

to a better quality of age reporting in a more recent birth cohort.

4. DISCUSSION

This study of 1880–1899 single-year birth cohorts found that mortality deceleration is more 

prevalent in historically earlier birth cohorts while more recent birth cohorts tend to 

demonstrate the Gompertzian pattern of mortality. These results support the hypothesis that 

mortality deceleration disappears over time apparently due to improvement in age reporting. 

These results agree with previous reports of Gompertzian mortality in the U.S. cohorts born 

after 1889 [2, 14].

Our results may help to understand why earlier studies found mortality deceleration and 

mortality leveling-off [6–8, 30], while more recent studies did not confirm these initial 

findings [2, 14]. More frequent age misreporting in the past by older individuals is one of the 

most likely reasons for this phenomenon [14, 21, 34]. Studies conducted more than 20 years 

ago used data for earlier birth cohorts when age reporting was not particularly accurate [28]. 

Later study found that old-age mortality in Australia, Canada and the United States is 

compatible with the Gompertzian model confirming our findings [15].

Age misreporting in the United States could be particularly prevalent, because this country 

did not have an established uniform system of birth registration up to 1933 [24]. For 

example, Kestenbaum and Ferguson were able to find only 52 birth certificates of long-lived 

persons out of 325, whereas age of 256 persons was validated through the early U.S. 

censuses [35]. According to our experience, age misreporting indeed is able to produce false 

mortality deceleration [11]. We conducted a direct age validation procedure for records of 

persons born in 1900 and aged 106 years and over by linking data available in the U.S. 

Social Security Administration Death Master File to early historical resources, including 

early censuses. We found that data cleaning (removing records with unconfirmed age) 

resulted in higher mortality estimates at advanced ages and more Gompertz-like mortality 

trajectories [11]. The proportion of records with unconfirmed age increases with age from 

12% at age 100 years to 17% at age 105 years and 35% at ages 109 years and over [18]. The 

advantage of studying U.S. mortality is its large population size with significant number of 

survivors to advanced ages, which allows researchers to obtain more reliable estimates for 

the force of mortality (hazard rate).
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In addition to age misreporting, some other causes of transition from the late-life mortality 

deceleration to the Gompertzian mortality may be involved. It was recently observed that 

mortality of centenarians in the United States did not decrease noticeably in the past 

decades, despite a significant decline in mortality of younger age groups [3]. In some 

countries (Japan, France, Switzerland and Sweden) historical decline of mortality among 

centenarians has stopped about 10–20 years ago [36]. Historical stagnation of mortality at 

ages 100 years and older may lead to steeper mortality curves for cohorts at extreme old 

ages while historical mortality decline after age 100 years may produce apparent 

decelerating pattern of mortality with age. Feehan studied cohort mortality after age 80 years 

in different countries [37]. He found that in some countries Gompertz model performed 

poorly while in other countries this model performed reasonably well. He suggests that 

period effects may have altered the shape of cohort mortality producing the strongest 

evidence of non-Gompertz death rates for cohorts that experienced continuous historical 

improvements in mortality at advanced ages [37]. Our results do not completely exclude 

possibility that the age at onset of mortality deceleration in the United States has moved 

beyond 105 years of age. Indeed, it was found that mortality in European countries does 

show deceleration, but the age at onset of mortality deceleration is shifting over time to older 

ages [15]. Thus, the same process could happen in the United States too.

It is possible that both the improvement of age reporting and stagnation of mortality among 

centenarians contribute to the observed historical transition from mortality deceleration to 

the Gompertzian pattern. Overall, it appears that the onset of mortality deceleration occurs 

now at much older ages than was reported earlier [6–8, 38].

Also there are theoretical models [39, 40] and simulation studies [41] suggesting that 

mortality deceleration at advanced ages may be a consequence of population heterogeneity. 

Heterogeneity hypothesis predicts that the age of onset for mortality deceleration should 

increase over time as frailer individuals reach more advanced ages due to lower mortality at 

younger ages [6, 42]. Studies of the U.S. period mortality [42] and cohort mortality in other 

countries [6, 15] provide some empirical support for this prediction. A study of the U.S. 

period mortality revealed an expansion of life span inequalities over time among survivors to 

older ages suggesting that more heterogeneous populations are reaching older age now [43].

5. CONCLUSION

Our results demonstrate that there is no single universal answer to the question about 

mortality pattern at extreme old ages, because this answer depends on the historical period 

of mortality analysis. In old historical data the late-life mortality deceleration is observed. In 

more recent data mortality continues to grow exponentially with age even at very old ages. 

This observation may lead to more conservative estimates for the future human longevity 

records.
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Figure 1. 
Changes of Akaike Information Criterion (AIC) across birth cohorts for the Gompertz and 

the Kannisto models fitting the U.S. mortality. Lower AIC values correspond to a better 

model fit.
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Figure 2. 
Mortality (death rate) as a function of age for earlier (1881) and later (1898) birth cohorts of 

U.S. women.
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Figure 3. 
Mortality (death rate) as a function of age for earlier (1881) and later (1898) birth cohorts of 

U.S. men.
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Table 1.

Testing two competing models: Akaike Information Criterion (AIC) and AIC differences for Gompertz and 

Kannisto models. Smaller values of AIC for the Gompertz model and negative values of AIC difference 

correspond to better fit by the Gompertz model.

Birth
cohort

Men Women

Gompertz
model (1)

Kannisto
model (2)

AIC
difference,
Δi(1)-(2)*

Gompertz
model (1)

Kannisto
model (2)

AIC
difference,
Δi(1)-(2)*

1880 −169.55 −192.07 22.52 −176.34 −200.78 24.44

1881 −182.52 −210.46 27.94 −179.01 −206.80 27.79

1882 −181.83 −202.12 20.29 −185.98 −206.89 20.91

1883 −183.31 −209.56 26.25 −189.48 −207.74 18.26

1884 −191.75 −210.89 19.14 −196.12 −211.12 15.00

1885 −203.78 −212.98 9.20 −196.67 −207.93 11.26

1886 −208.18 −211.71 3.53 −208.96 −210.66 1.70

1887 −205.67 −200.85 −4.83 −207.71 −199.09 −8.62

1888 −209.03 −198.26 −10.77 −219.34 −199.84 −19.50

1889 −215.13 −194.48 −20.65 −210.41 −198.90 −11.51

1890 −207.04 −188.96 −18.07 −205.40 −193.38 −12.02

1891 −201.96 −183.22 −18.74 −207.72 −191.80 −15.92

1892 −210.89 −188.96 −21.92 −216.20 −192.00 −24.20

1893 −215.09 −190.38 −24.71 −210.89 −201.20 −9.70

1894 −212.31 −191.89 −20.42 −212.68 −205.22 −7.46

1895 −223.97 −196.96 −27.02 −225.02 −205.37 −19.65

1896 −233.26 −199.47 −33.80 −230.94 −202.51 −28.43

1897 −213.76 −189.90 −23.86 −224.90 −200.85 −24.05

1898 −229.67 −194.13 −35.54 −236.07 −203.37 −32.70

1899 −208.38 −183.20 −25.18 −212.28 −187.50 −24.77
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